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While once de-rigueur for identification of genes in-

volved in biological processes, screening of chemically 

induced mutant populations is an approach that has 

largely been superseded for model organisms such as 

Saccharomyces cerevisiae. Availability of single gene 

deletion/overexpression libraries and combinatorial 

synthetic genetic arrays provide yeast researchers 

more structured ways to probe genetic networks. Fur-

thermore, in the age of inexpensive DNA sequencing, 

methodologies such as mapping of quantitative trait 

loci (QTL) by pooled segregant analysis and genome-

wide association enable the identification of multiple 

naturally occurring allelic variants that contribute to 

polygenic phenotypes of interest. This is, however, 

contingent on the capacity to screen large numbers of 

individuals and existence of sufficient natural pheno-

typic variation within the available population. The 

latter cannot be guaranteed and non-selectable, indus-

trially relevant phenotypes, such as production of vola-

tile aroma compounds, pose severe limitations on the 

use of modern genetic techniques due to expensive 

and time-consuming downstream analyses. An inter-

esting approach to overcome these issues can be 

found in Den Abt et al. [1] (this issue of Microbial Cell), 

where a combination of repeated rounds of chemical 

mutagenesis and pooled segregant analysis by whole 

genome sequencing was applied to identify genes in-

volved in ethyl acetate formation, demonstrating a 

new path for industrial yeast strain development and 

bringing classical mutant screens into the 21
st

 century. 

 

 

Fermented foods and beverages, such as beer, wine, saké, 

and bread, owe much to the primary fermentation yeast 

used in their production, Saccharomyces cerevisiae. In ad-

dition to the crucial role it plays in conversion of sugars to 

ethanol and carbon dioxide, S. cerevisiae is responsible for 

an important fraction of fermented product flavour and 

aroma through biosynthesis of esters, higher alcohols, vol-

atile fatty acids, and low-molecular weight sulfur com-

pounds [2]. Biochemical pathways have been established 

for most compounds within these families, a particularly 

well-studied example being the Ehrlich higher-alcohol 

pathway [3]. Nevertheless, the genetic determinants of 

metabolic processes for production of some compounds 

remain elusive. One of the most significant esters pro-

duced by yeast is ethyl acetate, which imparts a “fruity”, 

“confectionary” aroma at low concentrations, but at high 

concentrations is considered an off-flavour with a “sol-

vent”-like aroma. Two alcohol acetyltransferase-encoding 

genes, ATF1 and ATF2, are responsible for production of 

the related ester, 3-methylbutyl acetate, yet when both 

genes are deleted approximately 50% of ethyl acetate pro-

duction remains [4], highlighting the polygenic nature of 

this important metabolic trait.  

Pooled segregant analysis is an ideal tool for the study 

of polygenic traits in S. cerevisiae, yet has seen only spo-

radic application to production of volatile aroma com-

pounds [5-7]. Costly chemical analyses and the require-

ment to perform micro-fermentations of sufficient scale 

has undoubtedly presented a barrier for many researchers 

considering taking this approach, particularly because of 

the need for up-front large-scale screens of S. cerevisiae 

strains for production of each target metabolite [8], to 

identify those with significant differences. The work of Den 

Abt et al. [1] shows that a chemically mutagenised parent 

strain represents a more efficient way into the process, 

obviating the need for large collections of “natural” S. 

cerevisiae strains as the source of genetic variation. Indeed, 

in some strain collections the range of observed variation 

can be quite low, a case in point being extensive redun-

dancy and genetic similarity of commercial and industry-

isolated wine yeasts [9]. Important to note, and a potential 

limitation or advantage depending upon your perspective, 

is that the mutant S288c variants TDA1(4) and TDA3(4) 

generated by Den Abt et al. [1] exhibited a large number of 

mutations not observed “naturally” across approximately 

40 previously sequenced S. cerevisiae strains. 
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In the work of Den Abt et al. [1], a relatively a large 

number of mutations were generated in the haploid S288c 

background through performing repeat rounds of chemical 

mutagenesis, while monitoring a range of classical pheno-

types to estimate the efficacy of their treatments and en-

sure retention of mating proficiency. Enough mutations, 

though, to reveal previously unknown genetic determi-

nants of a complex polygenic trait? 

Pooled segregant analysis of a cross between mutant 

TDA1(4), obtained after 4 rounds of mutagenesis from a 

laboratory strain, and a high-producer of ethyl acetate, 

ER7A (haploid strain derived from a commercial strain), 

enabled the authors to identify three novel potential caus-

ative genes: PMA1, CEM1, and TPS1. The first two were 

identified as causative mutant alleles for lowering ethyl 

acetate production, while TPS1 is a causative genetic back-

ground allele found in S288c and not ER7A.  

Likely pleiotropic effects of PMA1, which encodes a H
+
-

ATPase essential for maintenance of the plasma membrane 

proton gradient, make it difficult to interpret the role of 

this gene in ethyl acetate production. On the other hand, 

CEM1, a mitochondrial β-keto-acyl synthase, is a homolog 

of FAS2, which encodes for the α-subunit of cytoplasmic 

fatty acid synthase. A gain-of-function mutation in FAS2 

has previously been shown to have a profound effect on 

the production of medium chain fatty ethyl esters, while 

the concentrations of 3-methylbutyl acetate and acetic 

acid were reduced [10,11]. It has also been described that 

null mutations in CEM1 result in a decreased number of 

lipid droplets in the cell [12], and the main enzyme in-

volved in acetate ester production during fermentation, 

Atf1p, is located in lipid particles. Further characterisation 

of CEM1 and its role in ethyl acetate production may in 

turn reveal novel links with production of other important 

flavour-active esters. 

Coming back to an earlier question. Is it a limitation or 

advantage that the observed mutations in TDA1(4) and 

TDA3(4) after repeated rounds of mutagenesis were out-

side those found “naturally” amongst sequenced strains of 

S. cerevisiae? The ability to pick up both mutant and back-

ground alleles in one experiment highlights the potential 

power of this novel approach. Furthermore, if the goal is to 

identify genes that contribute to a phenotype, or to find 

novel alleles that confer an industrially-relevant phenotype, 

an efficient path to the desired endpoint is arguably more 

important than being able to draw conclusions about driv-

ers of microevolution within the species. A limitation of the 

study is the use of a single laboratory strain genetic back-

ground to investigate a phenotype of industrial relevance 

in the beverage industry. The authors’ state in their conclu-

sion that small collections of independently mutagenised 

strains could be established, and it is important that indus-

trial strains are amongst them so as to enable the study of 

industrial performance traits that laboratory yeasts do not 

possess. This will undoubtedly happen in the near future 

and by proving its utility for the study of complex polygenic 

traits, Den Abt et al. [1] have given the humble mutant 

screen a new lease on life.  
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