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Abstract: A series of bio-based hydrophobically modified isosorbide dimethacrylates, with para-,
meta-, and ortho- benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated
as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate)
dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA),
and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethy-
lene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated
for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition
temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized,
and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a
reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39–44 µg/mm3) over
Poly(ISDGMA/TEGDMA) (73 µg/mm3) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm3).
Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37–45 MPa) over Poly(ISDGMA/
TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-
buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition tem-
perature at 85 ◦C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the
(ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the
ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be
the focus for future study.

Keywords: isosorbide dimethacrylates; dental filling material; hydrophobic; bio-based; bisphenol-A
(BPA)

1. Introduction

Dental amalgam and resin-based composites are commonly used dental filling materi-
als. The recent US-FDA epidemiological review of exposure to dental amalgam mercury
did not find sufficient evidence correlating adverse health outcomes with exposure to den-
tal amalgam mercury [1]. However, the negative perception of amalgam, lower aesthetic
appeal [2], and the Minamata convention to minimize mercury production and impact [3],
are leading reasons that resin-based composites are preferred.

Dental resin composites consist of a polymeric resin, filler particles, and a coupling
agent. The polymeric resin is largely made up of hydrophobic dimethacrylates that
crosslink into a three-dimensional network. These polymeric networks should have a
high degree of monomeric conversion, low water uptake, low polymerization shrinkage,
and good mechanical properties [4,5].

The most common dental restorative dimethacrylate monomer is 2,2-bis [4-(2-hydroxy-
3-methacryloyloxypropoxy)phenyl] propane (BisGMA). Its structure imparts a high poly-
meric modulus, low shrinkage, and strong adhesion to the tooth enamel [6–8]. It is highly
viscous and is typically mixed with the dental diluent, triethylene glycol dimethacrylate
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(TEGDMA). However, TEGDMA is reported to increase water sorption and polymeriza-
tion shrinkage [9,10]. In contrast, 1,6-bis(2-methacryloxy-2-ethoxycarbonylamino)-2,4,4-
trimethylhexane (UDMA) is a urethane dimethacrylate with lower viscosity in comparison
to BisGMA, and exhibits good durability and adhesion to the tooth enamel [11,12].

Dimethacrylates exhibit excellent properties in resin dental restoration. However, den-
tal dimethacrylate monomers, and the resulting degradation products, were demonstrated
to exhibit a cytotoxic and genotoxic effect [13,14]. Further, prior investigations suggest
that TEGDMA and UDMA can induce apoptosis in dental pulp [15,16]. Trace amounts of
Bisphenol A (BPA), a suspected estrogen mimic, can be present in BisGMA and elute into
the oral environment [17,18]. Increased levels of BPA exposure have been linked to various
prenatal, childhood, and adult adverse health outcomes. These include, but are not limited
to, reduced fertility, altered childhood behavior and neurodevelopment, type-2-diabetes,
cardiovascular disorders, inflammation, and altered gene expression [19]. Hence, there has
been a growing interest in developing safer alternative materials.

Isosorbide is a sugar-based molecule derived from starch and is classified as “gener-
ally recognized as safe”. It is made up of two cis-fused tetrahydrofuran rings, which are
nearly planar, and contains two hydroxyls at positions 2 and 5, as shown in Figure 1 [20,21].
Isosorbide has found potential applications in the biomedical field, including aspirin
prodrugs [22,23], substrates for human butyrylcholinesterase [24], tissue engineering scaf-
folds [25,26], and dental restorative materials [27–30].
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Some of the studies on isosorbide for dental materials include the synthesis and
evaluation of the BisGMA analogue, 1,4:3,6-dianhydro-D-sorbitol 2,5-bis(2-hydroxy-3-
methacylolxypropoxy) (ISDGMA) as reported by Łukaszczyk et al., and Shin and cowork-
ers [27,28]. Duarte et al., have studied the synthesis of an isosorbide urethane dimethacry-
late (IS-UDMA) [29]. Vasifihasel et al. and Łukaszczyk and co-workers developed ethoxy-
lated isosorbide dimethacrylates (ISETDMA) as a dental diluent [30,31]. Jun et al. devel-
oped isosorbide dimethacrylates based on isocyanoethyl methacrylates and evaluated their
performance as dental sealants [32]. Kim et al. reported on isosorbide 2,5-bis(propoxy)
dimethacrylate (ISOPMA) and evaluated it as a dental resin composite in comparison to
ISDGMA [33].

The aim of this study is to synthesize and investigate the development of new
hydrophobically-modified isosorbide dimethacrylate monomers, using para, meta, and or-
tho-substituted hydroxy benzoates as hydrophobic spacers. The new monomers are 1,4:3,6-
dianhydro-D-sorbitol 2,5-bis [4-(2-hydroxy-3-methacryloyloxypropoxy)benzoate](ISB4GBMA),
1,4:3,6-dianhydro-D-sorbitol 2,5-bis [3-(2-hydroxy-3-methacryloyloxypropoxy)benzoate] (ISB3
GBMA), and 1,4:3,6-dianhydro-D-sorbitol 2,5-bis[2-(2-hydroxy-3-methacryloyloxypropoxy)
benzoate] (ISB2GBMA). Their chemical structures are shown in Figure 2. The biobased
carbon content of these monomers is about 18%.

This new series of isosorbide dimethacrylates is evaluated as copolymers with TEGDMA,
and the performance attributes as dental restorative resins are compared to copolymers
of ISDGMA/TEGDMA and BisGMA/TEGDMA. The chemical structures of ISDGMA,
BisGMA, and TEGDMA are depicted in Figure 3.
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lene glycol dimethacrylate).

This investigation was performed under the hypothesis that hydrophobic ISBGBMA
(bio-based hydrophobically modified isosorbide dimethacrylates) monomers, in contrast
to hydrophilic ISDGMA, will result in lower water uptake and improved mechanical
properties, when co-polymerized with TEGDMA for dental applications.

This concept was previously addressed by the Jaffe group [34]. In that study, the water
uptake of an isosorbide thermoset was reduced, and its mechanical properties were en-
hanced when a hydrophobic moiety was incorporated into the backbone of the polymer. We
also theorize the ISBGBMA monomers to have properties similar to BisGMA. The findings
of this investigation will provide value for further isosorbide dimethacrylate development.

2. Materials and Methods

Isosorbide (98%), methyl 4-hydroxybenzoate (≥99%), methyl 3-hydroxybenzoate
(99%), methyl 2-hydroxybenzoate (≥99%), methacrylic acid (MAA, 99%), bisphenol A
glycerolate dimethacrylate (BisGMA, >98%), triethylene glycol dimethacrylate (TEGDMA,
95%), camphorquinone (CQ, 97%), 2-(dimethylamino)ethyl methacrylate (DMAEMA, 98%),
and triphenylphosphine (TPP, 99%) were acquired from Sigma-Aldrich (St. Louis, MO,
USA) and used without further purification. Allyl bromide (99%), 3-chloroperbenzoic acid
(mCPBA, 75%), ethylcarbodiimide hydrochloride (EDC, 99%), 4-(dimethylamino)pyridine
(DMAP, 98%), 4-methoxyphenol (MeHQ), phenothiazine (98%), N,N-dimethylformamide
(DMF, 99%), methanol (MeOH, 99%), methylene chloride (DCM, 99%), anhydrous potas-
sium carbonate (K2CO3, 99%), and sodium hydroxide (NaOH, 98%) were obtained from
Oakwood Chemical (Estill, SC, USA) and used as received. Gibco DPBS (1X) pH 7.1 was
obtained from Thermo Fisher Scientific (Waltham, MA, USA) and used as supplied.

Fourier Transform Nuclear Magnetic Resonance spectroscopy data were obtained
using an Agilent 400 MHz FT-NMR spectrometer (Santa Clara, CA, USA). Attenuated
Total Reflectance Fourier-Transform infrared (ATR-FTIR) spectroscopy was performed on a
Thermo Fisher Nicolet iS10 instrument (Waltham, MA, USA). Contact angle measurements
with water were carried out using a Kruss—DSA30S drop shape analyzer (Hamburg,
Germany). Viscosity measurements were performed using a Brookfield AMETEK DV2D
LV viscometer at 200 RPM (Middleborough, MA, USA). Glass transition temperatures
(Tg) were measured with a TA Instruments Q800 DMA (New Castle, DE, USA). Flexural
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strength was measured with a TA.XT Plus texture analyzer (Hamilton, MA, USA). The
logarithm of the 1-octanol/water partition coefficient was estimated using ChemDraw
Prime 17.1 (Cambridge Software from Perkin Elmer). One-way ANOVA with a Tukey
post-hoc test was used for statistical analysis, with a significance level of p < 0.05 using
IBM SPSS Statistics software, version 27.

2.1. Synthesis

Since the synthesis of the para-, ortho-, and meta-substituted isosorbide 2,5-
bis(glyceryloxybenzoate) dimethacrylates is similar, the para-substituted isosorbide 2,5-
bis(4-glyceryloxybenzoate) dimethacrylate reaction scheme is given as an example in
Figure 4.
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Figure 4. Reaction scheme for ISB4GBMA (1,4:3,6-dianhydro-D-sorbitol 2,5-bis [4 -(2-hydroxy-3-
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DCM to make isosorbide 2,5-bis(4-allyloxybenzoate). 

Isosorbide 2,5-bis(4-allyloxybenzoate) is further reacted with MCPBA to generate iso-
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3.9–4.1 (6H, 4H -CH2 isosorbide, 2H-CH2 glycidyloxy), 4.29–4.31 (2H, -CH2 glycidyloxy), 
4.67 (1H, -CH isosorbide), 5.03 (1H, -CH isosorbide), 5.39 (1H,-CH isosorbide), 5.46 (1H-
CH isosorbide), 6.94 (4H, -CH aromatic), 7.9 (2H, -CH aromatic), and 8.0 (2H, -CH aro-
matic). 
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Figure 4. Reaction scheme for ISB4GBMA (1,4:3,6-dianhydro-D-sorbitol 2,5-bis [4-(2-hydroxy-3-
methacryloyloxypropoxy)benzoate]).

Starting with methyl 4-hydroxybenzoate, allyl bromide is added in the presence of
anhydrous potassium carbonate and DMF. The resulting product is distilled to produce
methyl 4-allyloxybenzoate. After saponification with sodium hydroxide in methanol, 4-
allyloxybenzoic acid is esterified with isosorbide in the presence of EDC and DMAP in
DCM to make isosorbide 2,5-bis(4-allyloxybenzoate).

Isosorbide 2,5-bis(4-allyloxybenzoate) is further reacted with MCPBA to generate
isosorbide 2,5-bis(4-glycidyloxybenzoate) (60% yield, >98% pure, mp 112–113 ◦C). 1H NMR
(CDCl3-δ, ppm): 2.78 (2H, -CH oxirane), 2.93 (2H, -CH oxirane), 3.37 (2H, -CH oxirane),
3.9–4.1 (6H, 4H -CH2 isosorbide, 2H-CH2 glycidyloxy), 4.29–4.31 (2H, -CH2 glycidyloxy),
4.67 (1H, -CH isosorbide), 5.03 (1H, -CH isosorbide), 5.39 (1H,-CH isosorbide), 5.46 (1H-CH
isosorbide), 6.94 (4H, -CH aromatic), 7.9 (2H, -CH aromatic), and 8.0 (2H, -CH aromatic).

The final dimethacrylate monomer (ISB4GBMA) is attained upon reacting 20 g (40 mmol)
of isosorbide 2,5-bis(4-glycidyloxybenzoate) with 100 mL (1.14 mol) methacrylic acid in
the presence of 0.3 g (1.14 mmol) of triphenyl phosphine as the catalyst. MEHQ (10 mg,
0.81 mmol) and Phenothiazine (10 mg, 50 µmol) were added as inhibitors and stabilizers.
The reaction was run at 76 ◦C for up to 24 h. Excess methacrylic acid is first removed under
vacuum and then the crude is mixed with DCM and washed with a saturated sodium
carbonate solution. The final product is purified through column chromatography (ethyl
acetate/hexanes-70:30 w/w) and stabilized with 500 ppm of MeHQ. The synthesis and
characterization of intermediate compounds are provided in the supplementary materials.

ISB4GBMA (69% yield, >98% pure), 1H NMR (CDCl3-δ, ppm): 1.9 (6H, 2x-CH3
methacrylate), 3.9–4.4 (14H, 4H-CH2 isosorbide, 8H-CH2, 2H-CH glyceryloxy), 5.03 (1H,
-CH isosorbide), 4.6 (1H, -CH isosorbide), 5.39 (1H, -CH isosorbide), 5.45 (1H, -CH isosor-
bide), 5.6 (2H, =CH2 methacrylate), 6.15 (2H, =CH2 methacrylate), 6.9 (4H, -CH aromatic),
7.9 (2H, -CH aromatic), 8.04 (2H, -CH aromatic).
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ISB3GBMA (76% yield, >98% pure), 1H NMR (CDCl3-δ, ppm): 1.9(6H, 2x-CH3 methacry-
late), 3.9–4.4 (14H, 4H-CH2 isosorbide, 8H-CH2, 2H-CH glyceryloxy), 5.03 (1H, -CH isosor-
bide), 4.6 (1H, -CH isosorbide), 5.39 (1H, -CH isosorbide), 5.45 (1H, -CH isosorbide), 5.6
(2H, =CH2 methacrylate), 6.15 (2H, =CH2 methacrylate), 7.1 (2H, -CH aromatic), 7.3–7.4
(2H, -CH aromatic), 7.5 (1H, -CH aromatic), 7.6 (2H, -CH aromatic), 7.7 (1H, -CH aromatic).

ISB2GBMA (79% yield, >96% pure), 1H NMR (CDCl3-δ, ppm): 1.9(6H, 2x-CH3
methacrylate), 3.9–4.4 (14H, 2H-CH isosorbide, 2H-CH2 isosorbide, 8H-CH2, 2H-CH
glyceryloxy), 5.03 (1H, -CH isosorbide), 4.6 (1H, -CH isosorbide), 5.39 (1H, -CH isosorbide),
5.45 (1H, -CH isosorbide), 5.6 (2H, =CH2 methacrylate), 6.15 (2H, =CH2 methacrylate),
6.9–7.0 (4H, -CH aromatic), 7.45–7.52 (2H, -CH aromatic), 7.8–7.9 (2H, -CH aromatic).

ISDGMA was synthesized according to the reaction scheme in Figure 5.
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Figure 5. Reaction scheme for ISDGMA.

Isosorbide was etherified in the presence of allyl bromide, potassium hydroxide,
and water. The subsequent reaction step with MCPBA provided isosorbide diglycidyl
ether. ISDGMA was synthesized via the addition of 75 mL (0.85 mol) methacrylic acid
to 20 g (77 mmol) of isosorbide diglycidyl ether in the presence of 0.15 g (0.57 mmol)
triphenylphosphine. MEHQ (12.5 mg, 0.1 mmol) and Phenothiazine (12.5 mg, 63 µmol)
were added as inhibitors and stabilizers. The reaction was run at 76 ◦C for up to 24 h.
Excess methacrylic acid was first removed under vacuum and then the crude was mixed
with DCM and washed with a saturated sodium carbonate solution. The final product was
purified through column chromatography (ethyl acetate/hexanes-95:5 w/w) and stabilized
with 500 ppm MeHQ. The synthesis and characterization of intermediate compounds are
provided in the supplementary materials.

ISDGMA (82% yield, >85% disubstituted with up to 15 mole% branching), 1H NMR
(CDCl3-δ, ppm): 1.9 (6–7.5H, 2-CH3 methacrylate), 3.5–4.2 (16–20H, 4H-CH2 isosorbide,
2H-CH isosorbide, 8H-CH2, 2H-CH glyceryloxy), 4.5 (1H, -CH isosorbide), 4.65 (1H, -CH
isosorbide), 5.6 (2–2.5H, =CH2 methacrylate), 6.15 (2–2.5H, =CH2 methacrylate). The
varying proton area integration observed in various regions of the NMR spectrum will be
addressed in the discussion section.

2.2. Resin Preparation and Evaluation

Resins were prepared by mixing each isosorbide monomer, or the reference BisGMA
material, with TEGDMA in a 60:40 weight ratio, and by adding the photoinitiator, cam-
phorquinone, and the co-initiator, dimethyl aminoethyl methacrylate (0.4% and 1.0%,
respectively, by weight) [27]. The final mixture was poured into a stainless-steel mold
and bounded by two microscope slides. The mixture was then cured using an AZDENT
1900 mW/cm2 LED curing light with an 8 mm diameter light guide tip, operating in the
wavelength range of 400–500 nm, and placed 50 mm above the mold. This polymerization
technique was adopted as a general method to compare the different resins.

Resin mixtures for water sorption testing had the dimensions of (1 mm thick × 15 mm
diameter) and were cured for 40 s on the top and bottom sides. ISDGMA/TEGDMA sam-
ples were cured for 80 s on both sides for reasons to be addressed in the discussion section.
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The evaluation for the remaining tests (degree of conversion, polymerization shrinkage,
glass transition temperature, flexural strength and modulus) was done on resin mixture
samples with 2 mm × 6 mm × 38 mm dimensions, in which the top and bottom sides were
cured for 40 s twice in an alternating manner. The resulting samples were evaluated as is. For
the degree of conversion and polymerization shrinkage, five samples were evaluated, while the
evaluation of flexural strength and glass transition temperatures was done on three samples.

Water sorption: Five disc-shaped samples were prepared to measure the water sorption
according to ISO4049 [35]. Upon curing, the samples were placed in a 37 ◦C oven to obtain
a constant mass. Then, they were placed upright in the center of a 14 mL vial using a holder,
and 10 mL of DPBS were added. The samples were kept at 37 ◦C for 7 days. Samples were
then removed and pat dried with Kim wipes before mass measurement. Water sorption was
measured according to Equation (1), where m7 is the weight after 7 days of immersion, m0
is the initial weight prior to immersion, and V0 is the initial volume of the specimen.

Water sorption (WS, µg/mm3) =
m7 − m0

V0
(1)

Degree of monomer conversion: ATR-FTIR was used to measure the degree of conver-
sion of the methacrylate double bonds according to Equation (2) in polymers derived from
BisGMA and ISBGBMA monomers [36]. The degree of conversion was calculated using the
polymer to monomer ratio of the absorbance height of the methacrylate vinyl C=C stretching
at a frequency ν = 1636 cm−1. The spectra of the absorbance bands were normalized using
the C=C aromatic stretching band at ν = 1610 cm−1 as an internal standard. The degree
of conversion is reported as the average between the top and bottom layers of the test
specimen. On the other hand, ISDGMA does not contain an aromatic group to be used as
an internal standard, and as such, its degree of conversion was not calculated in this study.

Degree of conversion = [1 − A(c = c) methacrylate (polymer)
A(c = c) methacrylate (monomer)

]× 100% (2)

Polymerization shrinkage: A 25 mL pycnometer (Wilmad lab glass, Vineland, NJ,
USA), and an analytical balance (OHAUS explorer, Parsippany, NJ, USA), were used to
determine the mass, volume, and the corresponding densities of the cured specimens.
Polymerization shrinkage, [PS(%)], as a result of volumetric shrinkage, was calculated
according to Equation (3), where dp is the density of the polymer and dm is the density of
the monomer mixture [37].

PS (%) =
dp − dm

dp
× 100% (3)

Glass transition temperature: Glass transition temperature (Tg) was determined using
a three-point bending test in the temperature range of −40 ◦C to 200 ◦C, at a rate of
10 ◦C/min and a frequency of 1 Hz. Tg was evaluated at the maximum tan delta peak [38].

Flexural strength and modulus: Flexural strength was calculated based on a modified
ISO 4049 method [35]. TA-XT Plus texture analyzer equipped with a 50 Kg load cell and a
strain rate of 1.2 mm/min was used. Resin sample sets were divided into two groups. One
group was measured after immersion in a DPBS buffer solution for 24 h at 37 ◦C, while
the other group was measured after being placed in an oven at 37 ◦C for 24 h. Flexural
strength (σ, MPa) was calculated using Equation (4), where F is the maximum load exerted
on the specimen at the point of fracture (N), l is the distance between the supports (mm), b
is the width of the specimen (mm), and h is the thickness of the specimen (mm). Flexural
modulus was obtained from the slope in the linear region between 0.05–0.25% strain,
similar to ISO 178 [39].

σ =
3Fl
2bh2 (4)
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3. Results and Discussion

Isosorbide with its two-ring structure and hydroxyl functionality can resemble Bisphe-
nol A, and as such, it is typically viewed as a potential BPA replacement [40]. In the
work of Łukaszczyk et al., and Shin and coworkers, ISDGMA was proposed as a BisGMA
replacement [27,28]. However, because of its hydrophilic nature, ISDGMA is reported
to have higher water sorption relative to BisGMA. To overcome this, three isosorbide
dimethacrylate monomers with hydrophobic benzoate aromatic spacers were synthesized
and evaluated. They differ amongst each other based on the position of the dimethacrylate
substituent on the aromatic ring (para-, meta-, or ortho-).

Inspection of the 1H NMR spectra reveals that, during the final step of the synthesis of
ISB4GBMA, the epoxide protons of the glycidyloxybenzoate intermediate at 3.37, 2.93, and
2.78 ppm disappear and give rise to methacrylate protons at 5.6 and 6.15 ppm, as shown in
Figures 6 and 7. Similarly, the related proton NMR spectra of the meta and ortho benzoate
substituted isosorbides are provided in Figures S1–S4 (Supplementary Materials).
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Figure 8 displays the NMR spectrum of ISDGMA. Branching in the form of bis-
methacrylation, up to 15 mole %, at the glyceryloxy hydroxyl functionality is suspected
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as evidenced by the excess area integration of the isosorbide cycle protons H3/H4 to
the methacrylate protons at 5.6/6.1 ppm, and to the methyl protons at 1.9 ppm. The
new ISBGBMA monomers were found to be less susceptible to such branching. The NMR
spectrum of isosorbide diglycidyl ether is provided in Figure S5 (Supplementary Materials).
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Figure 8. 1H Isosorbide 2,5-bis(glyceryloxy) dimethacrylate.

The benzoate functionality in ISBGBMA monomers was added to increase the hy-
drophobicity over ISDGMA. Contact angle measurements and cLogP estimations of IS-
BGBMA monomers, ISDGMA, and BisGMA are reported in Table 1. The mean contact
angle (θ) of ISBGBMA monomers at (~62.9◦) is higher than 13.41◦ for ISDGMA. This
indicates that the new monomers are more hydrophobic [41]. However, they are less hy-
drophobic than BisGMA at 77◦. The cLogP estimations indicate the ISBGBMA monomers
to be more hydrophobic than ISDGMA, but less hydrophobic than BisGMA as well [42].

Table 1. Contact Angle Measurements and cLogP Estimations of BisGMA, ISB4GBMA, ISB3GBMA,
ISB2GBMA, and ISDGMA.

Sample Contact Angle (Degrees ◦) cLogP

BisGMA a 76.97 (2.84) [b,c,d,e] 5.09
ISB4GBMA b 63.21 (4.08) [a,e] 2.75
ISB3GBMA c 62.65 (1.33) [a,e] 2.75
ISB2GBMA d 62.82 (1.74) [a,e] 2.75

ISDGMA e 13.41 (1.76) [a,b,c,d] −0.53

Letters indicate statistically significant difference (p < 0.05) based on group. Standard deviation in parenthesis.

The viscosity of the monomer mixture is an important parameter that affects the
degree of polymerization conversion and the amount of filler that can be incorporated into
a composite. Therefore, it is typically preferred to have resin mixtures with lower viscosities
as long as polymerization shrinkage and water sorption are kept to a minimum [43,44].
Viscosity increased for the ISBGBMA/TEGDMA monomer mixtures in the order of ortho
< meta < para, as shown in Table 2. ISB4GBMA/TEGDMA had the highest viscosity at
2.49 Pa·s, while the ortho mixture ISB2GBMA/TEGDMA had the lowest at 0.63 Pa·s. The
viscosity of the ortho mixture was near to that of the BisGMA/TEGDMA reference at
0.48 Pa·s and was noticeably higher than the viscosity of ISDGMA/TEGDMA at 0.06 Pa·s.
In the work of Kim et al., the viscosity of ISDGMA/TEGDMA at 70:30 wt% was similar to
that of BisGMA/TEGDMA at 60:40 wt% [28].
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Table 2. Brookfield Viscosity of BisGMA/TEGDMA, ISB4GBMA/TEGDMA, ISB3GBMA/TEGDMA,
ISB2GBMA/TEGDMA, and ISDGMA/TEGDMA at 60:40 wt% and 25 ◦C.

Sample Viscosity at 25 ◦C (Pa·s)

BisGMA/TEGDMA 0.48
ISB4GBMA/TEGDMA 2.48
ISB3GBMA/TEGDMA 1.26
ISB2GBMA/TEGDMA 0.63
ISDGMA/TEGDMA 0.06

The size and shape of the molecule, its molecular weight, and ability for inter and in-
tramolecular interactions have an impact on its viscosity [7]. The ISBGBMA monomers are
larger at (~671 g/mol) in comparison to ISDGMA (~431 g/mol) and BisGMA (~513 g/mol),
and can therefore cause more friction and increase the viscosity of the mixture. On the other
hand, since all the ISBGBMA monomers have the same molecular weight, we propose that
the difference in viscosity is likely related to the conformation of the isosorbide monomer.
ISB4GBMA is relatively planar while ISB2GBMA is sterically hindered; planar aromatic
molecules are known to closely align in parallel, in what is called π-stacking [45]. The steric
hindrance and lower potential of ISB2GBMA for packing is believed to result in lower
friction and lower viscosity for ISB2GBMA/TEGDMA.

The degree of conversion, polymerization shrinkage, and glass transition temperatures
are presented in Table 3. Conversion of p(ISB2GBMA/TEGDMA) at 52% was significantly
different from the conversion of p(ISB4GBMA/TEGDMA) at 47%, but statistically similar to
the conversion of p(BisGMA/TEGDMA) at 54%. As stated earlier, ISDGMA does not con-
tain an aromatic ring and its degree of conversion was not calculated in this study. On the
other hand, Łukaszczyk et al., reported the degree of conversion of p(ISDGMA/TEGDMA)
at 60:40 wt% to be slightly higher than that of P(BisGMA/TEGDMA) by means of photo-
DSC in their studies [27].

Table 3. Degree of Conversion, Polymerization Shrinkage, and Glass transition Temperature of p(BisGMA/TEGDMA),
p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA), p(ISB2GBMA/TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt%.

Sample Degree of Conversion (%) Polymerization Shrinkage (%) Glass Transition
Temperature (◦C)

p(BisGMA/TEGDMA) a 54 (3) [b] 6.54 (1) [b] 95.73 (3.73) [b,c,e]

p(ISB4GBMA/TEGDMA) b 47 (4) [a,d] 4.25 (1) [a,d,e] 80.57 (0.46) [a]

p(ISB3GBMA/TEGDMA) c 51 (3) 5.41 (1) [d,e] 77.38 (3.86) [a]

p(ISB2GBMA/TEGDMA) d 52 (5) [b] 6.7 (1) [b,c] 86.52 (1.18)
p(ISDGMA/TEGDMA) e N/A 7.28 (1) [b,c] 85.56 (7.30) [a]

Letters indicate statistically significant difference (p < 0.05) based on group. Standard deviation in parenthesis.

Unreacted double bonds can indicate the presence of free monomers or pendant
groups. A degree of conversion of less than 50% suggests the presence of unreacted
residual dimethacrylates. Free monomers can leach and irritate the soft tissue, while
pendant groups lower chemical crosslink density and reduce mechanical integrity [6,46].
The efficiency of the photopolymerization system and the stiffness and elasticity of the
monomers can affect the degree of conversion [47]. The addition of a diluent helps increase
the degree of conversion through a reduction in the overall viscosity and an increase in
reaction diffusion [48].

In the work of Pfeifer et al., the degree of conversion of p(BisGMA) was improved
with increasing TEGDMA content and lowering the viscosity of the mixture [49]. Therefore,
the higher degree of monomer conversion of p(ISB2GBMA/TEGDMA), in comparison to
the other ISBGBMA isomers, is attributed to its lower viscosity.

The polymerization shrinkage was highest around 7% for p(ISB2GBMA/TEGDMA),
p(BisGMA/TEGDMA), and p(ISDGMA/TEGDMA) and was statistically different from the



Materials 2021, 14, 2139 10 of 17

polymerization shrinkage of p(ISB4GBMA/TEGDMA) at 4.25%. Polymer systems shrink
as the covalently bonded monomers occupy less space [37]. This depends on the degree
of conversion, functionality, and molecular weight [50]. Polymerization shrinkage causes
stresses within the matrix and within the matrix and tooth interface. It is associated with
microleakage, gap formation, enamel crack propagation, and post-operative sensitivity [51].

The lower degree of conversion for the para- and its bulky structure is believed to
result in lower polymerization shrinkage. According to Pfeifer et al. [49], higher degrees of
conversion resulted in higher polymerization shrinkage in p(BisGMA/TEGDMA). Simi-
larly, the polymerization shrinkage of p(ISDGMA/TEGDMA) was slightly higher than that
of p(BisGMA/TEGDMA) in the work of Łukaszczyk et al., and was attributed to higher
degrees of monomeric conversion [27].

Glass transition temperatures were determined from the maxima of tan delta curves,
as shown in Figure 9.

Materials 2021, 14, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 9. Tan delta of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA), 
p(ISB2GBMA/TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt%. Maximum tan delta value in 
brackets and standard deviation in parenthesis. 

The glass transition temperature must exceed cure temperature and temperature 
ranges encountered in the oral environment, for the material to be clinically viable [7]. The 
lower Tg of the polymers derived from ISBGBMA, relative to that of p(Bis-
GMA/TEGDMA), are attributed to their relative lower degrees of monomeric conversion. 
Stansbury et al. and Sideridou and co-workers demonstrated higher glass transition tem-
peratures that were obtained with higher degrees of conversion [6,7]. The polymer de-
rived from ISB2GBMA had a slightly higher glass transition temperature (86 °C) than the 
polymer derived from ISB4GBMA (80 °C) or ISB3GBMA (77 °C). Steric hindrance, in-
creased rigidity, and improved degree of conversion are likely to be the cause for this 
behavior. 

In contrast, statistical analysis did not show a significant difference between the glass 
transition temperatures of p(BisGMA/TEGDMA) at 95 °C and p(ISB2GBMA/TEGDMA) 
at 86 °C, suggesting the corresponding crosslinked networks to be structurally similar. 
The glass transition temperature of p(ISDGMA/TEGDMA) at 85 °C was statistically dif-
ferent only from the Tg of p(BisGMA/TEGDMA). On the other hand, the glass transition 
temperature of p(BisGMA/TEGDMA) and p(ISDGMA/TEGDMA) were reported to be 
comparable in the work of Łukaszczyk et al., and were attributed to similar degrees of 
conversion between the two polymers. Different curing and Tg characterization methods 
were used in that study [27]. 

The corresponding storage modulus is shown in Figure 10. It is highest for p(Bis-
GMA/TEGDMA) and p(ISB2GBMA/TEGDMA) where the degree of conversion is higher. 
The low modulus obtained for p(ISDGMA/TEGDMA) might be attributed to its structural 
flexibility. 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

-4
0

-2
7

-1
4 -1 12 25 38 51 64 77 90 10
3

11
6

12
9

14
2

15
5

16
8

ta
n 

δ

Temperature, °C

p(BisGMA/TEGDMA)
 [95.73°C (3.72)]

p(ISB4GBMA/TEGDMA)
 [80.57°C (0.45)]

p(ISB3GBMA/TEGDMA)
 [77.38°C (3.86)]

p(ISB2GBMA/TEGDMA)
 [86.52°C (1.17)]

p(ISDGMA/TEGDMA)
 [84.56°C (7.29)]

Figure 9. Tan delta of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA),
p(ISB2GBMA/TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt%. Maximum tan delta value in
brackets and standard deviation in parenthesis.

The glass transition temperature must exceed cure temperature and temperature
ranges encountered in the oral environment, for the material to be clinically viable [7]. The
lower Tg of the polymers derived from ISBGBMA, relative to that of p(BisGMA/TEGDMA),
are attributed to their relative lower degrees of monomeric conversion. Stansbury et al. and
Sideridou and co-workers demonstrated higher glass transition temperatures that were
obtained with higher degrees of conversion [6,7]. The polymer derived from ISB2GBMA
had a slightly higher glass transition temperature (86 ◦C) than the polymer derived from
ISB4GBMA (80 ◦C) or ISB3GBMA (77 ◦C). Steric hindrance, increased rigidity, and im-
proved degree of conversion are likely to be the cause for this behavior.

In contrast, statistical analysis did not show a significant difference between the glass
transition temperatures of p(BisGMA/TEGDMA) at 95 ◦C and p(ISB2GBMA/TEGDMA)
at 86 ◦C, suggesting the corresponding crosslinked networks to be structurally similar. The
glass transition temperature of p(ISDGMA/TEGDMA) at 85 ◦C was statistically differ-
ent only from the Tg of p(BisGMA/TEGDMA). On the other hand, the glass transition
temperature of p(BisGMA/TEGDMA) and p(ISDGMA/TEGDMA) were reported to be
comparable in the work of Łukaszczyk et al., and were attributed to similar degrees of
conversion between the two polymers. Different curing and Tg characterization methods
were used in that study [27].

The corresponding storage modulus is shown in Figure 10. It is highest for p(BisGMA/
TEGDMA) and p(ISB2GBMA/TEGDMA) where the degree of conversion is higher. The
low modulus obtained for p(ISDGMA/TEGDMA) might be attributed to its structural
flexibility.
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Figure 10. Storage modulus of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/
TEGDMA), p(ISB2GBMA/TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt%.

The lower water sorption of p(ISB2GBMA/TEGDMA) at 39 µg/mm3 was statistically
different from the water sorption of p(ISB4GBMA/TEGDMA) at 44 g/mm3. However,
the polymer derived from BisGMA had the lowest water sorption at 26 µg/mm3, and the
polymer derived from ISDGMA had the highest at 73 µg/mm3, as shown in Figure 11.
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Figure 11. Water sorption of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA), p(ISB2GBMA/
TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt%. Letters indicate statistically significant difference (p < 0.05) based on
group. Individual groups are represented by (a–e).

The improved hydrophobicity of the ISBGBMA series over ISDGMA helped lower the
water sorption by about 40%. However, it was not enough to result in lower water sorption
than p(BisGMA/TEGDMA). The isosorbide core is hygroscopic with hydrophilicity similar
to diethylene glycol [20,52]. Therefore, improving the hydrophobicity further is expected
to reduce the water sorption further.

Hygroscopic expansion due to water can weaken mechanical properties, increase
wear rate, and reduce dimensional stability [53–55]. Polymer samples derived from the
hydrophilic ISDGMA deteriorated and cracked as a result of water uptake after immersion
in buffer solution, as shown in Figure 12a. This was also noted by Kim et al., where
p(ISDGMA) resins and resin-based composites showed surface cracks after buffer stor-
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age [33]. On the other hand, polymer samples derived from the ISBGBMA monomers
exhibited greater stability due to improved hydrophobicity and reduced water sorption,
similar to the BisGMA reference. This is illustrated in Figure 12b,c.
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Figure 12. SEM images at 150× and 2.5 kV of (a) p(ISDGMA/TEGDMA), (b) p(ISB2GBMA/
TEGDMA), and (c) p(BisGMA/TEGDMA) after buffer immersion for 7 days at 37 ◦C.

When ISDGMA/TEGDMA samples were initially cured similarly to other resin sam-
ples for water sorption, the results obtained were inconsistent. Lower degree of conversion,
sample deterioration, and dissolution are probable causes. To optimize the curing condition
further, the samples were cured longer. As a result, the water sorption was consistent, and
this is shown in Figure S6 (Supplementary Materials).

In addition, the choice to store the samples in DPBS instead of DI water for water
sorption was to compare this data to ISDGMA values reported in the literature [27,28]. To
determine any interference that the buffer solution may have to the water sorption data,
SEM-EDS was used to determine the extent of phosphorus deposition on all sample groups.
The results revealed no detectable deposition levels and therefore, any interference to the
water sorption from the storage medium would be negligible.

Dental restorative materials should have sufficient mechanical integrity to function
properly. While ISO 4049 reports on the minimum requirements for resin-based composites,
it is generally recognized that the higher the mechanical strength is, the better is the perfor-
mance [56]. In our studies, flexural strength analysis showed a decrease in strength for all
samples once immersed in DPBS for 24 h as shown in Figure 13. The decrease in strength
was greatest (80%) for p(ISDGMA/TEGDMA), where signs of network degradation were
observed. All other samples had a comparable 50% loss.
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Figure 13. Flexural strength of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA), p(ISB2GBMA/
TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt% at RT. Letters indicate statistically significant difference (p < 0.05)
based on group.
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Although one can note differences in flexural strength across various groups as indi-
cated in the graph, statistical analysis did not confirm such variations, which might be due to
the limited number of sample sets per group. The flexural strength of p(BisGMA/TEGDMA)
was statistically significant only from p(ISDGMA/TEGDMA) in both dried and immersed
states. On the other hand, p(ISDGMA/TEGDMA) was statistically significant from all
samples in the immersed sample set.

In the work of Yiu et al., the tensile strength of unfilled dental resins was lower for
hydrophilic materials upon water storage, where water sorption was highest and water
acted as a plasticizer [57]. As such, we believe the improved hydrophobicity and increased
rigidity of the ISBGBMA monomers over ISDGMA, through the presence of the aromatic
groups, to improve flexural strength by reducing the water uptake of the samples. Table 4
shows the percent water uptake with respect to mass after 24 h of sample storage. The
hydrophilic material p(ISDGMA/TEGDMA) had the highest water uptake and the lowest
flexural strength. Since the storage time was short (24 h), it is unclear if saturation was
obtained, and thus, caused such significant decreases in flexural strength. Longer storage
times are needed to verify this concept further. Similarly, Kim et al. reported a decrease
in flexural strength in resins and resin-based composites of p(BisGMA/TEGDMA) and
p(ISDGMA) after PBS buffer storage for 7 days at 37 ◦C [33].

The lower flexural strength of the ISBGBMA polymers, in comparison to p(BisGMA/
TEGDMA), is due to the lower degree of monomeric conversion and corresponding cross
link density, where the concentration of methacrylate double bonds is 5.13 mol/Kg for
BisGMA/TEGDMA, and 4.58 mol/Kg for ISBGBMA/TEGDMA. Gajewski et al. have
shown that flexural strength improves with higher degree of conversion and cross link
density [58].

The flexural modulus is given in Figure 14; it is highest for p(BisGMA/TEGDMA) and
p(ISB4GBMA/TEDMA) in the samples dried at 37 ◦C. However, no statistical significance
in the modulus was noted between all samples dried at 37 ◦C. As expected, the flexural
modulus of the immersed samples is lower. In the work of Ito et al., the modulus of
elasticity was lower in resins with higher water sorption. The more hydrophilic the resin
is, the higher is the water sorption, and the lower is the modulus of elasticity [59]. The
flexural modulus of p(ISDGMA/TEGDMA) was statistically significant from all samples
in the immersed state. Similar to flexural strength, the limited number of sample sets per
group may contribute to the findings of statistical analysis.
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Figure 14. Flexural modulus of p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA), p(ISB3GBMA/TEGDMA), p(ISB2GBMA/
TEGDMA), and p(ISDGMA/TEGDMA) at 60:40 wt% at RT. Letters indicate statistically significant difference (p < 0.05)
based on group.
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Table 4. Water uptake after 24 h and at 37 ◦C in DPBS for p(BisGMA/TEGDMA), p(ISB4GBMA/TEGDMA),
p(ISB3GBMA/TEGDMA), p(ISB2GBMA/TEGDMA) and p(ISDGMA/TEGDMA).

Test p(BisGMA/TEGDMA) p(ISB4GBMA/TEGDMA) p(ISB3GBMA/TEGDMA) p(ISB2GBMA/TEGDMA) p(ISDGMA/TEGDMA)

WU% 0.91% (0.05) 1.48% (0.09) 1.35% (0.13) 1.19% (0.06) 4.20% (0.17)

WU%: water uptake percentage. Standard deviation in parenthesis.

Additionally, the reported modulus of p(BisGMA/TEGDMA) in this study might be
lower than what is described in the literature [60,61]. We attribute these differences to the
polymerization technique in this work, which as stated earlier, is adopted as a general
approach to compare the different resins. Thus, the modulus and the corresponding
properties of all polymers reported herein, are dependent on the polymerization condition,
where light intensity at the sample surface and various depths might play a role.

4. Conclusions

The focus of this study was to identify bio-based, BPA-free, dental resin methacrylates
with similar key characteristics to BisGMA. In this regard, three hydrophobically-modified
isosorbide dimethacrylate isomers (ISBGBMA) were synthesized, characterized, and evalu-
ated in the form of copolymers with TEGDMA as potential dental filling resins. ISBGBMA
monomers were more hydrophobic than ISDGMA based on contact angle measurements
and cLogP estimations, but less hydrophobic than BisGMA.

The para, meta, and ortho substitution of the benzoate functionality in the ISBGBMA
monomers resulted in different properties. In this series, the monomer mixture of TEGDMA
and the ortho ISBGBMA monomer had the least viscosity. The corresponding copolymer
had the lowest water sorption and the highest degree of monomeric conversion, polymer-
ization shrinkage, glass transition temperature, and storage modulus. However, flexural
strength was comparable, while the flexural modulus was highest for the copolymer of
TEGDMA and the para-substituted ISBGBMA monomer in the dry sample set.

The hydrophobic ISBGBMA monomers showed greater improvement over the hy-
drophilic ISDGMA monomer. The corresponding copolymers with TEGDMA had lower
water sorption and improved mechanical strength, modulus, and buffer stability. On the
other hand, the viscosity of their monomeric mixtures with TEGDMA was much higher.

The performance of the ortho ISBGBMA monomer was comparable to that of BisGMA
among the ISBGBMA series. The viscosity of the monomer mixture with TEGDMA was sim-
ilar. The degree of conversion of the corresponding copolymer, polymerization shrinkage,
glass transition temperature, storage modulus, flexural strength, and modulus resembled
those of p(BisGMA/TEGDMA). However, the water sorption was significantly higher.

Taken together, these data suggest that the ortho ISBGBMA monomer is a potential
bio-based, BPA-free replacement for BisGMA, and should be the focus for future studies.
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.3390/ma14092139/s1, Figure S1: 1H NMR spectrum of Isosorbide 2,5-bis(3-glycidyloxybenzoate),
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1H NMR spectrum of Isosorbide 2,5-bis(2-glycidyloxybenzoae), Figure S4: 1H NMR spectrum of
Isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate, Figure S5: 1H NMR spectrum of Isosorbide
2,5-bis(glycidylether), Figure S6: Water sorption of p(ISDGMA/TEGDMA) when cured at different
time lengths.
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