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MicroRNAs (miRNAs), small non-coding molecules targeting messenger RNAs and
inhibiting protein translation, modulate key biological processes, including cell growth
and development, energy utilization, and homeostasis. In particular, miRNAs control
the differentiation, survival, and activation of CD4+ T conventional (Tconv) cells, key
players of the adaptive immunity, and regulate the physiological response to infections
and the pathological loss of immune homeostasis in autoimmunity. Upon T-cell receptor
(TCR) stimulation, the described global miRNA quantitative decrease occurring in T
cells is believed to promote the acquisition of effector functions by relaxing the post-
transcriptional repression of genes associated with proliferation and cell activity. MiRNAs
were initially thought to get downregulated uniquely by intracellular degradation; on the
other hand, miRNA secretion via extracellular vesicles (EVs) represents an additional
mechanism of rapid downregulation. By focusing on molecular interactions by means of
graph theory, we have found that miRNAs released by TCR-stimulated Tconv cells are
significantly enriched for targeting transcripts upregulated upon stimulation, including
those encoding for crucial proteins associated with Tconv cell activation and function.
Based on this computational approach, we present our perspective based on the
following hypothesis: a stimulated Tconv cell will release miRNAs targeting genes
associated with the effector function in the extracellular space in association with
EVs, which will thus possess a suppressive potential toward other Tconv cells in the
paracrine environment. We also propose possible future directions of investigation aimed
at taking advantage of these phenomena to control Tconv cell effector function in health
and autoimmunity.
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INTRODUCTION

CD4+ T conventional (Tconv) cells represent the master
orchestrators of the adaptive immunity. Naïve Tconv cells
respond to T-cell receptor (TCR) stimulation (i.e., antigen
encounter), costimulatory molecules, and cytokines by
undertaking clonal expansion and engaging effector and memory
functions (Bluestone et al., 2009). The transcriptional circuits
of CD4+ T cells (Tconv but also the T regulatory subset) are
highly responsive to regulation by microRNAs, which cooperate
with epigenetic remodeling and lineage-restricted transcription
factors to sculp the transcriptome and direct the functional
outputs (modulation of energy metabolism, proliferation,
and cytokine production) (Garavelli et al., 2018). MicroRNAs
(miRNAs) are small (∼22 nucleotides in length), non-coding
RNAs, transcribed by RNA polymerase II as longer RNAs called
“pri-miRNAs” (Lee et al., 2004). The first steps of maturation
involve the sequential action of two endoribonucleases, Drosha
and Dicer, to generate the miRNA duplex (containing the
miRNA paired to its passenger strand), which is loaded into an
Argonaute (Ago) protein; then, the expulsion of the miRNA
passenger strand leads to the formation of the mature RNA-
induced silencing complex (RISC). Once loaded into the RISC,
the miRNA pairs to sites usually within the 3′ untranslated
region of messenger (m)RNAs, causing mRNA decay and block
of translation (Bartel, 2018).

All eukaryotes share the miRNA-dependent post-
transcriptional gene expression regulation, which possibly
evolved from the ancient RNA interference (RNAi) process,
and the majority of human mRNAs are known to be targeted
by miRNAs, potentially implicating these molecules in all
cells and all physio/pathological processes (Friedman et al.,
2009). The general role of miRNAs in CD4+ T cells is revealed
by experimental conditions in which all miRNA action has
been blocked in these cells: either Dicer or Drosha deficiency
demonstrates a significant skew toward a pro-inflammatory
phenotype leading to spontaneous inflammation/autoimmunity
(Cobb et al., 2005; Muljo et al., 2005; Chong et al., 2008).
Similarly, Ago-deficient T cells, which also suffer from miRNA
depletion, are likewise predisposed to differentiate into effector
cytokine-releasing cells (Bronevetsky et al., 2013). From these
studies, it seems reasonable to hypothesize that miRNA action
generally restrains the acquisition of effector functions by
CD4+ T cells, possibly repressing transcripts that propel Tconv
cell activation (Garavelli et al., 2018). Consistently with this
hypothesis, TCR stimulation is known to lead to a global miRNA
level decrease that accompanies a net increase of total RNA
yield per cell and the induction of a plethora of transcripts
(Bronevetsky et al., 2013). This miRNA decrease is believed to
depend on both pri-miRNA transcription drop and a decline in
RISC activity (Bronevetsky et al., 2013).

Through robust proliferation, T cells may also passively dilute
abundant miRNAs simply by cell division, but this mechanism
cannot occur in the first hours of activation, i.e., before
mitosis actually starts. An additional mechanism for the cell to
rapidly downregulate miRNAs is through their disposal into the
extracellular milieu via extracellular vesicles (EVs), membrane

surrounded bodies of nanometric size (from 50 nm to 1 micron),
with well-characterized biogenesis (Raposo and Stoorvogel, 2013;
Zhang et al., 2014); it is the case of miR-150, whose extracellular
accumulation is concomitant with intracellular downregulation
and subsequent induction of its target, the transcriptional factor
c-Myb, which, together with other mRNAs, critically promotes
lymphocyte survival and response (de Candia et al., 2013). If
this regulatory mechanism stands true for other miRNAs as well,
then EVs may be enriched for molecules targeting transcripts
that need to be upregulated upon T-cell activation, and thus
EVs derived from a TCR-stimulated T cell may carry a “T cell
suppressive cargo” in the extracellular milieu. The association
between this potential biological function and T-cell activation
is strengthened by the observation that unstimulated T cells are
mostly inactive in EV production (Torri et al., 2017). In the
present perspective, we have directly tested this hypothesis by
a computational approach focusing on molecular interactions
by means of graph theory (Vella et al., 2017). In addition,
we combined miRNA–target interaction and protein–protein
interaction (PPI) network models with the purpose of predicting
the main players involved in the suppressive function potentially
exerted by EV-associated miRNAs.

MicroRNAs Released by T-Cell
Receptor-Stimulated T Conventional
Cells Are Significantly Enriched for
Targeting Transcripts Upregulated
During T-Cell Activation
In order to evaluate the EV-associated miRNome released by
human CD4+ Tconv cells upon in vitro activation, we have
isolated naïve CD4+CD25− T cells circulating in peripheral
blood of five healthy subjects and stimulated them in vitro
with anti-CD3/anti-CD28 beads. Compared to previous analysis
(Torri et al., 2017), cells were stimulated by a low concentration
of beads (0.2/cell), which is able to better mimic conditions of
T-cell activation in vivo. After 72 h, EVs were isolated from
conditioned medium through size exclusion chromatography
and 752 human miRNAs were profiled by quantitative RT-
PCR. Sixty EV-associated miRNAs out of 752 (7.9%) were
identified as detectable in Tconv cell-derived EVs, for showing
a Ct <35 in at least 4/5 subjects, and were normalized
by internal miRNA global mean (Figure 1A): their mean
relative expression values are reported in Supplementary
Table 1. Among the most expressed EV-associated miRNAs
(EV-miRNAs), we spotted molecules with well-characterized
immune regulatory functions, such as miR-21-5p, miR-155-5p,
miR-150-5p, and miR-106a-5p (Figure 1A; Garavelli et al., 2018).
MiRNA relative quantities in EVs did generally correlate with
those registered at the intracellular level although the correlation
index was not strong (Pearson R = 0.5, Supplementary
Figure 1A), a result in line with previous reports (de Candia
et al., 2013; Torri et al., 2017). Furthermore, miRNAs well
known to be downregulated upon TCR stimulation (Rodríguez-
Galán et al., 2018, 2021) demonstrated to be enriched in
EVs compared with the intracellular milieu (Supplementary
Figure 1B), supporting the hypothesis that miRNA disposal
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FIGURE 1 | (A) Heatmap showing miRNA expression (n = 60) in extracellular vesicles released by in vitro TCR-stimulated Tconv cells (isolated from five healthy
donors). Each molecule was normalized by miRNA global mean and ranked based on relative mean expression value from the most to the least expressed. (B) Bar
histogram showing the number of miRNA targets (among those transcripts either upregulated, red, or downregulated, blue, following TCR stimulation) for each of the
60 detectable Tconv-derived EV-miRNAs, ranked based on target total number. (C) Box plots comparing the number of miRNA–target interactions (degree, upper
panel) and density distribution of the interactions (lower panel) distinguishing the transcripts (targets) for being either upregulated (red) or downregulated (blue)
following TCR stimulation (Student’s t-test, p < 0.0001). (D) MiRNAs–targets network reconstructed considering only transcripts upregulated following TCR
stimulation. (E) Protein–protein interaction HUBS selected by considering Betweenness, Bridging, and Centroid centralities; the gene name size is proportional to the
number of miRNAs targeting it.

by EV release may represent an additional pathway of
miRNA downregulation.

To evaluate the correlation between EV-miRNAs released
by TCR-stimulated Tconv cells and the TCR-dependent
transcriptional modulation in the same cells, we took advantage
of the list of transcripts that were recently identified as
differentially expressed (DE) in human peripheral blood-derived
CD4+CD25− T cells upon 12 h of TCR stimulation (anti-
CD3/CD28 beads, at 0.2 beads/cell) (Procaccini et al., 2021). The
list of DE transcripts is composed of 231 upregulated and 129

downregulated transcripts (total number = 360, relative mean
expression values and fold changes, reported in Supplementary
Table 1). By combining Tconv cell-derived EV-miRNAs and the
TCR-dependent transcriptional modulation, we found that 304
out of 360 (84.4%) DE transcripts were experimental validated
targets of at least one of the considered miRNAs (Supplementary
Table 1). The two miRNAs targeting the highest number of
DE transcripts considered (degree >120) were miR-16-5p
and miR-155-5p, which were also the second and third most
represented miRNA in EVs (with mean relative quantities of
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+3.90 for both miRNAs); on the other hand, miR-1539 and
miR-663b were those with the lowest number of targets (<2) and
also the least represented in EVs (with mean relative quantities of
−2.85 and −2.77, respectively) (Figure 1B and Supplementary
Table 1). Beside the absolute number of targeted mRNAs,
the great majority of these mRNAs are actually upregulated
upon activation (red in Figure 1B, mean% equal to 78.33 for
miRNAs with >2 targets), suggesting that the resulting overall
function of EV-associated miRNome is to actually suppress
activation-dependent transcriptional circuits. In further support
of this hypothesis, we found that, on average, DE transcripts
upregulated following TCR stimulation are targeted by a number
of EV-miRNAs, which is double that comprising of miRNAs
targeting downregulated transcripts (Student’s t-test, p < 0.0001,
Figure 1C).

Crucial Genes Associated to T
Conventional Cell Activation and
Function Are Targeted by Multiple
Extracellular Vesicle-MicroRNAs
Released by T Conventional Cells
By reconstructing a miRNAs–targets network based on
upregulated DE transcripts following TCR stimulation in
Tconv cells, we were able to reveal both EV-miRNAs and
intracellular targets with the highest grade of connections
(Figure 1D). In particular, among the transcripts targeted
by the highest numbers of considered EV-miRNAs (degree
>30), we spotted CCND1 (G1/S-specific cyclin-D1), PMAIP1
(Phorbol-12-myristate-13-acetate-induced protein 1), CDK6
(Cyclin-dependent kinase 6), and VEGFA (Vascular endothelial
growth factor A), all critically involved in cytokine-mediated
signaling pathway, cell cycle/proliferation, and apoptotic
processes (Figure 1D and Supplementary Table 1). Another
highly targeted mRNA encodes for ZNF267 (Zinc finger protein
267), which belongs to the family of Kruppel-like transcription
factors and regulates fundamental biological processes such as
development, proliferation, and differentiation; intriguingly,
among the 31 Tconv cell-derived EV-miRNAs targeting this
transcript, miR-23a-3p and miR-23b-3p were already reported
to regulate it with an EV-mediated mechanism (Lu et al., 2015).
Interferon regulatory factor 4 (IRF4), a transcription factor
critically involved in maturation and differentiation of naïve
CD4+ T cells into effector cells (Th1, Th2, Th9, Th17, and T reg
subsets) (Huber and Lohoff, 2014), TFRC (Transferrin Receptor,
necessary for cellular iron uptake) whose upregulation on the
surface of T cells is among the earliest and provides necessary
cues for T cell activation and proliferation (Batista et al.,
2004), Cytosolic Branched Chain Aminotransferase 1 (BCAT1),
shown to be relevant in T-cell metabolic reprogramming upon
TCR stimulation via regulation of cytosolic leucine utilization
(Ananieva et al., 2014), and FAS, a member of the TNF-
receptor superfamily, with a central role in the physiological
regulation of programmed cell death and optimal CD4+ T
cell expansion (Puliaeva et al., 2008) are all targeted by more
than 20 EV-miRNAs (Figure 1D and Supplementary Table 1).
Furthermore, the list of miRNAs targeting CCND1, CDK6,

VEGFA, IRF4, TFRC, BCAT1, and FAS consistently includes
miR-21-5p, miR-16-5p, and miR-155-5p, which are the three
molecules with the highest relative expression in Tconv-derived
EVs (Supplementary Table 1).

It is also noteworthy that transcripts targeted by a high
number of EV-miRNAs, such as CCND1 and VEGFA, were found
to be central hubs following a PPI network topological analysis,
confirming a potential key role in cellular regulation (Figure 1E
and Supplementary Table 2).

Suppressive Potential of T Conventional
Cell-Derived Extracellular
Vesicle-MicroRNAs
Based on the observation that miRNAs robustly expressed in
Tconv cell-derived EVs show an enriched ability to suppress
transcripts upregulated in the same cells upon TCR stimulation,
we hypothesize the following mechanism (depicted in Figure 2):
in an unstimulated Tconv cell (blue cell, left), most mRNAs linked
to cellular activation are also kept repressed through miRNA-
dependent translational inhibition. Upon T-cell activation (blue
to red cell, up), CD25 is upregulated and miRNAs are lowered
also via EV-associated release, resulting in specific activation
marker upregulation and full initiation of the T effector
transcriptional and functional program (red cell, right). If EV-
miRNAs are taken up by a surrounding Tconv cell and exert their
inhibitory action on transcriptional program therein, then this
EV recipient cell will be (partially) restrained in its activation
potential (red to blue cell, down).

DISCUSSION

An RNA-based paracrine signal transmission, dependent on the
stability provided by EV protection, is well suited to regulate the
space-confined development of an adaptive immune response,
such as that occurring in secondary lymphoid organs. Moreover,
the peripheral blood up-tick of immune-derived EV-miRNAs
during pathological, but also physiological, activation of the
immune system may work as an endocrine negative loop aimed at
down-modulating the response through the miRNA-dependent
inhibition of specific targets in EV recipient cells (de Candia
et al., 2013, 2014; Torri et al., 2017). Notably, in both the
human and the murine system, EV-miRNAs were shown to
directly participate into CD4+CD25+ T regulatory (Treg) cell-
mediated immune suppression, with Treg-derived EV-miR-146a-
5p functioning as a cell-to-cell molecular stop signal in Tconv
cells (Okoye et al., 2014; Li et al., 2017; Torri et al., 2017).
In addition, it has been recognized that a key mechanism
underpinning the immunosuppressive potential of mesenchymal
stem cells resides in the release of EVs, which have indeed
become an attractive therapeutic biological for the treatment
of immune-mediated disorders (Gomzikova et al., 2019). Here,
we propose that EVs also released by TCR-stimulated Tconv
themselves may contain a fingerprint of miRNAs prompted to
exert potential suppression activity. Our computational analysis
has given support to this hypothesis, showing a significant
enrichment of transcripts upregulated upon activation among
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FIGURE 2 | Cartoon summarizing our hypothesis: upon TCR stimulation, a naïve T cell (blue, left) downregulates miRNAs (also) by EV-associated release into the
extracellular space (blue to red gradient, upper), thus leading to proper mRNA expression in activated T cell (red, right). EV-miRNAs can be up-taken by an adjacent
T cell (red to blue gradient, lower), thus causing mRNA repression and (partial) cell inhibition. TCR, T-cell receptor; EVs, extracellular vesicles.

the targets of Tconv cell-derived EV-miRNAs. Moreover, as EVs
carry multiple miRNAs, functionally related transcripts may be
suppressed simultaneously, with a resulting enhanced biological
effect. To better investigate this effect, the analysis of molecular
interactions by means of network models represents a valuable
tool for identifying molecules with a key regulatory role, and
candidates here selected represent a starting point for future
in-depth investigation.

The capability of EV-miRNAs to skew Tconv cell activation
makes them new immune-modulatory therapeutic targets in
inflammatory and/or autoimmune conditions. On the contrary,
although our hypothesis is that Tconv cells release miRNAs to
rapidly down-modulate them, we do acknowledge that several
EV-associated miRNAs are known to instead be upregulated
upon TCR stimulation and to actually activate the Tconv-
mediated immune response. A relevant example is that of
three members of the mir-17-92 cluster (i.e., miR-19a, 19b,
and 20a, among the first 10 most expressed EV-miRNAs, as

well as among the miRNAs targeting the highest number of
activation-linked transcripts); the cluster is known to sustain
lymphocyte proliferation, inhibit cellular death, and push toward
a more pronounced pro-inflammatory type-1 phenotype, and
hence these miRNAs were proposed as potential targets for the
clinical intervention in autoimmunity (Ventura et al., 2008; Xiao
et al., 2008; Sasaki et al., 2010; Liu et al., 2014; Wu et al.,
2015). Similarly, miR-155, the third most represented miRNA
in EVs and the second in terms of transcripts targeted, has
also been shown to promote both Th1 and Th17 differentiation
and cytokine secretion; an anti-miR-155 treatment has hence
also been proposed to reduce Th1/Th17-related inflammation
and the autoimmune response (Yao et al., 2012; Yan et al.,
2016; Zhang et al., 2017). The design of EV-miRNAs as a novel
therapeutic approach should thus contemplate the pleiotropy of
their transcriptional regulation and coordinated modulation of
tens of transcripts altogether and carefully consider their final
biological effect on the “activated T-cell expression network.”
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Another important frontier will regard different T-cell subset
flexibility in terms of EV-miRNA release. We are now aware of
several examples of cytokines that, initially discovered as subset-
restricted, are instead produced by functionally distinct T-cell
populations (the best example being IL-10, initially discovered
as a Th2-type cytokine but actually released also by Th1, Th17,
and Treg cells) (O’Shea and Paul, 2010). We already know that
different T-cell subsets release specific miRNA fingerprints, yet
highly overlap in terms of components, and are not strictly
correlated with intracellular expression, indicating regulatory
mechanisms behind miRNA disposal via EV release (Rossi et al.,
2011; Okoye et al., 2014; Torri et al., 2017), but we are still
far from fully recognizing the association between EV-miRNA
quantitative traits and the actual biological effect. To increase
complexity, one miRNA can inhibit different sets of transcripts
in different cell contexts; thus, the EV recipient cell may also
dictate the EV-miRNA functional output. T-cell-derived EVs
were shown to be devoid of coding RNA transcripts, being
instead dramatically enriched with small non-coding regulatory
RNA molecules (Torri et al., 2017), which suggests that mRNAs
may not be a quantitatively relevant part of the EV-associated
molecular message. On the other hand, we have taken into
consideration exclusively the EV-miRNA cargo, but Tconv-
derived EVs do also contain a plethora of other non-coding
RNAs, many of which are abundant, evolutionary well conserved,
and associated to gene regulatory functions beyond the action
of miRNAs (Nolte-’t Hoen et al., 2012). In addition, since
Tconv cell-derived EVs have not yet been described to possess
proliferative/functional suppressive capacity toward other cells,
the “non-miRNA cargo,” including uncharacterized proteins
and lipids, may be functionally dominant in natural vesicles,
with relevant consequences regarding the design of engineered
immune-suppressive EVs. Moreover, another relevant point
to be considered is the potential pleiotropy of Tconv-derived
EVs in terms of target cell types; notably, the actual passage
of miRNAs from T cells to pancreatic β-cells was shown
to alter their gene expression asset and cause β-cell death
in a murine model of type 1 diabetes (Guay et al., 2019).
This study is representative of the general possibility that,
in vivo, the tissue context can be determinant in dictating
not only the function but also the cellular targets of T cell-
derived EVs.

CONCLUSION

We have here highlighted that miRNAs loaded onto EVs and
released by Tconv cells upon TCR stimulation are enriched in
molecules suppressing transcripts whose upregulation associates
with functional activation; further experiments should thus be
designed to test the hypothesis that these EV-miRNAs can indeed
produce inhibitory effects in bystander cells. Moreover, in order
to use the regulatory function of EV-miRNAs for therapeutic
purposes, we will have to pinpoint throughout the relation with
other EV components and target transcripts to efficiently curb
the function of Tconv cell subsets in pathological conditions such
as autoimmunity.

MATERIALS AND METHODS

Human T Conventional Cell Purification
and Culture
CD4+CD25− T cells were purified from peripheral blood
mononuclear cells (PBMCs) from buffy coats of human
healthy donors by magnetic cell separation with the Dynabeads
Regulatory T Cell Kit (Invitrogen), allowing the separation of
a 95–99% pure cell population by FACS analysis. Cells were
then stimulated in vitro for 72 h in serum-free AIMV Medium
AlbuMAX supplement (Gibco) in the presence of anti-CD3- and
anti-CD28-coated Dynabeads (0.2 beads per cell) (Invitrogen).

Extracellular Vesicle Isolation and
MicroRNA Profiling
Human Tconv cell-derived EVs were isolated from conditioned
media using size exclusion chromatography (Exo-spinTM

columns, Cell Guidance) according to the manufacturer’s
protocol. The characterization of Tconv cell-derived EVs isolated
with such a procedure is reported elsewhere (Torri et al., 2017).
Isolated EV eluate was total RNA extracted using miRNeasy
serum/plasma advanced kit (Qiagen, United States) and a fixed
volume of eluted RNA sample was used as input for reverse
transcription reaction by miRCURY-LNA RT Kit according
to the manufacturer’s instruction (Qiagen, United States).
EV-associated miRNAs (n = 752) were profiled by using the
complete human miRCURY LNA miRNA panel I + II (V5,
Qiagen, United States).

Microarray Analysis
The list of genes that are either upregulated or downregulated
by TCR stimulation in Tconv cells (Supplementary Table 1)
was previously obtained by total RNA hybridization onto
Agilent Whole Human Genome 4 × 44K, with detectable
raw intensities being log-2 transformed, normalized by the
quantile method across the arrays and analyzed, as described
(Procaccini et al., 2021).

Bioinformatics Analysis
Experimentally validated miRNA targets were automatically
retrieved by miRecords (Xiao et al., 2009), miRTarBase (Hsu
et al., 2011), and TarBase (Karagkouni et al., 2018), using an
in-house R script based on readxl, xlsx, and multiMiR libraries;
score cutoff was set to the default value 20 (search the top 20%).
Using these data, a miRNAs–targets network was reconstructed
by the Cytoscape platform (Shannon et al., 2003), maintaining
exclusively the targets present in the list of transcripts/genes
differentially expressed in Tconv cells upon TCR stimulation.
The miRNAs–targets reconstructed network was processed at
the topological level, by Centiscape Cytoscape’s App (Scardoni
et al., 2014), to calculate the node Degree centrality (the number
of interactions of each node in the network). Using JMP 15.1
SAS statistical software, the degree distribution of up- and
downregulated transcripts was compared by Student’s t-test.
The list of transcripts differentially expressed following TCR
stimulation was also used to reconstruct a PPI network by
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String Cytoscape’s App (Doncheva et al., 2019); specifically,
only Experiments (score >0.0031) and Databases (score >0.36)
annotated interaction were considered. The reconstructed PPI
network was finally processed at the topological level by
Centiscape Cytoscape’s App (Scardoni et al., 2014), to calculate
the node Betweenness, Bridging, and Centroid centralities;
nodes with centrality values above the average calculated on
whole network were considered hubs, as previously reported
(Di Silvestre et al., 2021). In addition, statistical significance
of topological results was tested by considering randomized
network models (Supplementary Figures 1C,D): they were
reconstructed and analyzed by an in-house R script based
on VertexSort (to build random models), igraph (to compute
centralities), and ggplot2 (to plot results) libraries; the results
were visualized in the form of violin plots.
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