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Abstract

Membrane proteins exist in distinctly different environments than do soluble proteins, resulting in differences between their respec-

tive biophysical and evolutionary properties. In comparison with soluble proteins, relatively little is known about how the unique

biophysical properties of membrane proteins affect their evolutionary properties at the residue level. In particular, transmembrane

(TM)regionsofmembraneproteins tendtobemoreconservedthanregionsoutsideof themembrane(extramembrane[EM]regions),

but the mechanisms underlying this phenomenon are not well understood. Here, we combine homology-based high-resolution

three-dimensional protein models with rigorous evolutionary rate calculations to quantitatively assess residue-level structure–evolu-

tion relationships in the yeast membrane proteome. We find that residue evolutionary rate increases linearly with decreasing residue

burial, regardless of the hydrophobic or hydrophilic nature of the solvent environment. This finding supports a direct relationship

between a residue’s selective constraint and the extent of its packing interactions with neighboring residues, independent of

hydrophobic effects. Most importantly, for a fixed degree of burial, residues from TM regions tend to evolve more slowly than

residues from EM regions. We attribute this difference to the increased importance of packing constraints and the decreased

importance of hydrophobic effects in TM regions. This additional selective constraint on TM residues plays a dominant role in

explaining why TM regions evolve more slowly than EM regions. In addition to revealing the universality of the linear relationship

between residue burial and selective constraint across solvent environments, our work highlights the distinct residue-level evolution-

ary consequences imposed by the unique biophysical properties of the membrane environment.
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Introduction

Membrane proteins account for more than 20% of the pre-

dicted proteins in sequenced genomes (Wallin and von Heijne

1998). Unlike soluble proteins, which are surrounded by the

aqueous environment, membrane proteins are composed of

transmembrane (TM) regions residing in the hydrophobic

membrane interior and extramembrane (EM) regions residing

in the aqueous environment exterior to the membrane (fig. 1).

As a result of this distinction, physical principles governing the

folding and stability of membrane proteins differ significantly

from those governing soluble proteins (White and Wimley

1999; Popot and Engelman 2000; Bowie 2005). The evolu-

tionary properties of TM residues are also distinct from those

of soluble protein residues (Jones et al. 1994; Goldman et al.

1998; Tourasse and Li 2000; Eyre et al. 2004; Oberai et al.

2009), yet the manner in which biophysical and structural

properties of membrane proteins quantitatively affect their

evolutionary properties at the residue level is not well

understood.

In contrast to membrane proteins, a great deal is known

regarding the biophysical and structural determinants of

residue evolution for soluble proteins. For soluble protein res-

idues, it is now known that degree of burial is a major predic-

tor of evolutionary rate and that buried residues evolve more

slowly than exposed residues (Perutz et al. 1965; Overington

et al. 1992; Goldman et al. 1998; Bustamante et al. 2000;

Choi et al. 2006; Conant and Stadler 2009; Franzosa and Xia

2009; Ramsey et al. 2011). Recently, we constructed a large-

scale, quantitative model relating residue evolutionary rate to
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degree of burial for yeast soluble proteins (Franzosa and Xia

2009). Our method features accurate estimates of structural

and evolutionary properties at the residue level: Residue burial

is directly calculated from high-quality, homology-based

three-dimensional (3D) structural models of yeast proteins,

and evolutionary rate is rigorously calculated based on se-

quence alignments of orthologs from closely related yeast

species. Our analysis revealed that residue evolutionary rate

scales linearly with relative solvent accessibility (RSA). In other

words, as residues become progressively more exposed (less

buried), selective constraint relaxes at a constant rate.

The linear trend between residue instantaneous evolution-

ary rate and RSA that we observed previously was based on

soluble proteins only (Franzosa and Xia 2009). It is not known

if this linear trend holds for the TM and EM regions of mem-

brane proteins, and more importantly, to what extent such a

trend can explain the global difference in evolutionary prop-

erties of TM regions versus EM regions. Earlier studies have

shown that rates and patterns of amino acid substitutions for

TM regions of membrane proteins are very different from

those for soluble proteins (Jones et al. 1994), that TM regions

evolve more slowly than EM regions of membrane proteins

(Tourasse and Li 2000), that buried residues are more con-

served than surface residues in TM regions (Goldman et al.

1998; Eyre et al. 2004; Kauko et al. 2008; Mokrab et al.

2010), and that buried, polar or coil residues are highly con-

served in TM regions (Kauko et al. 2008; Mokrab et al. 2010;

Illergard et al. 2011). However, solvent exposure was usually

treated as a binary variable in previous studies, where residue

sites were classified into buried versus surface sites, even

though solvent exposure is a continuous property that varies

from complete burial to complete exposure (fig. 1).

Three recent studies (Kauko et al. 2008; Oberai et al. 2009;

Illergard et al. 2010) pioneered the use of a continuous mea-

sure of solvent exposure for studying membrane protein evo-

lution. Illergard et al. (2010) found that residue substitution

rate increases linearly with RSA when averaged over all mem-

brane proteins, but they did not carry out separate calculations

for TM regions and EM regions of membrane proteins. Kauko

et al. (2008) and Oberai et al. (2009) found that residue con-

servation increases monotonically with increasing residue

burial for both TM and EM regions. However, both studies

binned degree of residue burial into intervals with unequal

range, preventing a quantitative assessment of the effect of

burial on residue evolution. After controlling for solvent acces-

sibility, Kauko et al. (2008) found that TM sites have lower

indel rates than EM sites for both helical and coil residues and

that TM sites have lower amino acid substitution rates than

EM sites for coil residues, which comprises only 7% of all sites

within the deep membrane core. However, when controlling

for solvent accessibility, this difference in amino acid substitu-

tion rates between TM and EM sites is diminished for helical

residues, which comprises the majority of TM sites for a-helical

TM proteins (Kauko et al. 2008). Similarly, Oberai et al. (2009)

failed to find any difference in residue conservation between

TM and EM sites after controlling for solvent accessibility.

These negative results seem to indicate that TM and EM

sites with similar solvent exposure evolve at similar rates.

However, it is possible that these negative results are caused

by the methodological disadvantages of previous analyses that

prevented the quantitative and sensitive detection of impor-

tant evolutionary differences between TM and EM regions.

Instead of calculating instantaneous rate of evolution over a

fixed species tree, all three aforementioned studies (Kauko

et al. 2008; Oberai et al. 2009; Illergard et al. 2010) used

residue conservation scores or amino acid substitution rates

based on sequence alignments of homologous proteins from

diverse species, without directly taking into account differ-

ences in species divergence time and without explicitly sepa-

rating orthologs from homologs, thus preventing a rigorous

and sensitive characterization of selective constraint. So far,

there has been no proteome-wide study on the quantitative

relationship between residue burial and instantaneous evolu-

tionary rate for the TM and EM regions of membrane proteins,

and hence the role of this relationship in explaining the global

evolutionary rate difference between TM and EM regions

remains unexplored.

In this work, we apply the rigorous and quantitative frame-

work that we developed previously for soluble proteins

(Franzosa and Xia 2009) to the study of residue-level struc-

ture–evolution relationships for membrane proteins in yeast,

using high-quality homology-based 3D structural annota-

tions of 59 membrane proteins encoded in the yeast nuclear

genome, and evolutionary rates calculated from sequence

alignments of orthologs from four closely related yeast species.

Because membrane proteins that do not have well-defined

Transmembrane (TM)

Extramembrane (EM)

More
Buried

More
Exposed

FIG. 1.—Residue environments within membrane proteins. A cartoon

diagram of a membrane protein in cross section. Residues from membrane

proteins fall into two distinct types of regions: TM regions (red), which lie

within the membrane in which the protein is embedded, and EM regions

(blue), which lie outside of the membrane. In both TM and EM regions,

residues experience different degrees of burial within the protein, ranging

from completely buried to highly exposed.
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orthologs in these yeast species are excluded from subsequent

analysis, we choose to focus on four closely related yeast spe-

cies as an optimal balance between robust evolutionary statis-

tics and coverage of a large number of yeast membrane

proteins. We find that in spite of the vast difference in the

solvent environment for TM and EM regions of membrane

proteins, the quantitative relationships between residue evo-

lutionary rate and degree of solvent exposure are very similar:

For both TM and EM regions of membrane proteins, the

trends are strong, positive, and linear. More importantly, for

a given degree of residue burial, TM residues are consistently

more slowly evolving than EM residues and must therefore be

subject to consistently stronger selective pressure. Although

previous studies have attributed the heightened conservation

of TM regions to their increased fraction of buried residues

(Oberai et al. 2009), we demonstrate here that the newly

observed systematic increase in selective constraint across

all TM residues is the dominant determinant of the reduced

evolutionary rate of TM regions relative to EM regions.

In addition, our study highlights the universality of the linear

relationship between residue evolutionary rate and solvent

exposure across diverse environments (soluble proteins, EM

regions, and TM regions of membrane proteins), supporting

residue packing constraint as the major driving force behind

these linear trends. Because of the decreased importance of

hydrophobic effects in the membrane interior, residue packing

takes on increased importance in TM regions, thus providing a

natural explanation for the systematic increase in selective

constraint across all TM residues. Our study reveals distinct

principles governing the structure–evolution relationships of

membrane proteins at the residue level and highlights the

manner in which residue-level biophysical properties drive

the global evolutionary behavior of membrane proteins.

We focus on the budding yeast Saccharomyces cerevisiae

because it is an ideal model system for genomic analysis. The

yeast proteome has been extensively annotated. In addition to

the budding yeast, several closely related yeast taxa have also

been sequenced. The ortholog relationships among the yeast

genes have been accurately determined, a prerequisite for

calculating evolutionary rate. Focusing on yeast also allows

for a direct comparison with our previous work on prote-

ome-wide structure–evolution relationships in yeast soluble

proteins (Franzosa and Xia 2009). The fundamental difference

in biophysical properties between membrane and aqueous

environments and its effects on protein evolution are expected

to be largely species independent. Thus, we expect that our

results are broadly applicable to a wide range of membrane

proteomes from bacteria to higher eukaryotes.

Materials and Methods

We constructed a data set of homology-based 3D structural

annotations of nuclear-encoded yeast membrane proteins in

the following way. We first assembled two data sets: 1) the set

of yeast open reading frames (ORFs) annotated as “integral to

membrane” in the Saccharomyces Genome Database (Cherry

et al. 1998) and 2) the set of membrane proteins of known 3D

structure from the Protein Data Bank (Berman et al. 2000) that

are divided into TM and EM regions based on annotations

from the MPtopo database (Jayasinghe et al. 2001). We

then identified the most significant sequence alignment be-

tween each yeast ORF and a membrane protein of known 3D

structure based on alignment E value, as determined using the

gapped Basic Local Alignment Search Tool (BLAST) software

program (Altschul et al. 1997). We saved optimal yeast ORF-

to-structure mappings with E value< 10�5 as homology-

based 3D structural annotations of yeast membrane proteins.

Our final data set consists of 59 structurally annotated yeast

membrane proteins, which contribute a total of 7,090 TM

residues and 6,844 EM residues for subsequent analysis (sup-

plementary table S1, Supplementary Material online).

For ungapped positions in the yeast ORF-to-structure align-

ments, we assigned physical properties determined for residue

sites in the membrane proteins of known 3D structure to the

corresponding aligned yeast protein residues. In addition to

assigning residues to TM and EM regions based on the anno-

tations from the MPtopo database, we calculated the solvent-

accessible surface area (SASA) for residues in the membrane

proteins of known 3D structure using MSMS (Sanner et al.

1996), excluding hydrogen atoms. We used a 1.4 Å sphere

(representing a water molecule) as a solvent probe for all res-

idues. Notably, residues in TM regions are normally solvated by

lipids, not water. However, for our purposes, a residue’s SASA

is used merely as a proxy for its degree of burial within the

protein. Our degree-of-burial calculations are relatively insen-

sitive to the precise nature of the solvent probe, provided that

the same probe is used consistently for all residues. We nor-

malized raw SASA values to the 99th percentile within each

residue type as determined from distributions of large num-

bers of residues generated during our previous work (Franzosa

and Xia 2009). This procedure accounts for differences in the

sizes and empirical SASA distributions of the 20 different

amino acid residue types. The resulting normalized SASA

values take the form of RSA, a quantity which varies between

0 (for completely buried residues) and 1 (for maximally ex-

posed residues); we set outlier residues to RSA¼1 during

the normalization procedure.

Each structurally annotated yeast membrane protein in our

final data set is associated with its most significantly aligned

orthologs in the three closely related yeasts S. paradoxus, S.

mikatae, and S. bayanus, as determined from orthology and

sequence annotations in the Fungal Orthogroups Repository

(Wapinski et al. 2007). We aligned codons from the four total

yeast species to their corresponding residue sites in the 3D

models of yeast membrane proteins using the original

ORF-to-structure alignments as templates. We then concate-

nated columns from these codon alignments that correspond

to residues with similar physical properties (e.g., EM vs. TM

Franzosa et al. GBE

736 Genome Biol. Evol. 5(4):734–744. doi:10.1093/gbe/evt039 Advance Access publication March 19, 2013

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt039/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt039/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt039/-/DC1


environment, and degree of burial). We calculated a single

dN/dS value over the yeast tree for each group of concate-

nated codon columns using the codeml software program

within the Phylogenetic Analysis by Maximum Likelihood

(PAML) package (Yang 1997). dN/dS compares the rate of

nonsynonymous amino acid changing substitutions (dN) to

the rate of synonymous substitutions (dS) at the DNA level,

with the latter acting as a normalizing factor. We estimated

the error in our measurements of dN/dS using 100 rounds of

bootstrap resampling, following our previous work (Franzosa

and Xia 2012). We fit lines to dN/dS versus RSA relationships

using a standard procedure that accounts for variation in the

error in dN/dS estimation between RSA bins (Press et al. 2007).

Results and Discussion

TM Regions Evolve More Slowly than EM Regions

To evaluate the effects of the membrane environment on

residue-level protein structure–evolution relationships in

yeast (S. cerevisiae), we annotated 59 yeast membrane pro-

teins and their orthologs in three closely related yeast species

with 3D structures based on sequence homology. Because of

the distinctly different selective forces acting upon nuclear-

versus mitochondrial-encoded proteins, we focused on nu-

clear-encoded membrane proteins for this work. Residues

from membrane proteins can be divided into two types

based on the region of the membrane protein in which they

lie: TM residues, which lie in the membrane-embedded TM

regions, and EM residues, which lie outside of the membrane

in EM regions (fig. 1). It was previously observed that TM

regions tend to evolve more slowly (i.e., experience greater

selective constraint) than EM regions (Tourasse and Li 2000;

Oberai et al. 2009). Consistent with this observation, we find

that the value of dN/dS is approximately 42% smaller among

the 7,090 TM residues in our data set relative to the 6,844 EM

residues (dN/dS¼0.036 vs. 0.062; fig. 2). dN/dS compares the

rate of nonsynonymous amino acid changing substitutions

(dN) to the rate of synonymous substitutions (dS) in protein

coding sequences, and it is often used as a measure of selec-

tive constraint. Because the comparison between TM and EM

residues is carried out within the same membrane proteins,

this difference in dN/dS between TM and EM regions cannot

be attributed to protein-level properties of membrane proteins

such as expression level and essentiality.

Average Burial and Hydrophobicity in TM and EM
Regions

Oberai et al. (2009) carried out an analysis of residue-level

conservation of membrane protein structures not restricted

to any particular genome. They attributed the higher residue

conservation of TM regions relative to EM regions entirely to

the observation that TM regions tend to contain a greater

proportion of buried residues than EM regions. Because

buried residues tend to be more conserved than exposed res-

idues in both aqueous environments (Perutz et al. 1965;

Overington et al. 1992; Goldman et al. 1998; Bustamante

et al. 2000; Choi et al. 2006; Conant and Stadler 2009;

Franzosa and Xia 2009; Ramsey et al. 2011) and membrane

environments (Goldman et al. 1998; Eyre et al. 2004; Kauko

et al. 2008; Oberai et al. 2009), an enrichment for buried

residues in TM regions could explain the observed decrease

in the average evolutionary rate in TM regions.

We quantified the degree of residue burial in our data set

using RSA, as outlined in the Materials and Methods section.

We define degree of solvent exposure to be the same as RSA,

and we consider both water molecules in the aqueous envi-

ronment and lipid molecules in the membrane environment as

possible solvents for proteins. RSA¼0 implies that the residue

is completely buried, RSA¼1 implies that the residue is max-

imally exposed relative to other residues of the same type, and

RSA values between 0 and 1 correspond to intermediate

degrees of burial. Our RSA distributions calculated from struc-

turally annotated yeast membrane proteins agree with the

findings of Oberai et al., namely that TM regions tend to con-

tain a greater proportion of “highly buried” (RSA� 0.2) resi-

dues than EM regions (51% of TM residues have RSA� 0.2,

compared with 37% of EM residues; fig. 3A).

A second major difference between TM and EM regions

that could potentially contribute to their difference in evolu-

tionary rate is hydrophobicity distribution. Although buried res-

idues in both TM and EM regions tend to be biased toward

hydrophobic residues, exposed TM residues also tend to be

hydrophobic as a result of their exposure to the lipid environ-

ment. Indeed, if we divide residues evenly into “hydrophobic”

and “hydrophilic” classes (Kyte and Doolittle 1982), we ob-

serve that highly buried TM and EM residues with RSA� 0.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

dN
/d

S

All EM
Residues

All TM
Residues

FIG. 2.—TM regions evolve more slowly than EM regions. When res-

idues from membrane proteins are binned broadly according to the type of

region in which they lie (EM vs. TM), we observe that residues from TM

regions (red) tend to evolve much more slowly than their counterparts in

EM regions (blue), as measured by dN/dS. Error bars reflect estimates of

the standard error from 100 rounds of bootstrap resampling.
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are both strongly enriched for hydrophobic residues in S. cer-

evisiae (76% of TM residues with RSA� 0.2 are classified as

hydrophobic, compared with 71% of EM residues; fig. 3B).

However, as RSA increases, enrichment for hydrophobic res-

idues drops in the EM regions, but remains roughly constant

throughout the TM regions (fig. 3B), consistent with previous

observations (Stevens and Arkin 1999). Thus, in addition to

their difference in RSA distributions, EM and TM regions differ

markedly in their amino acid composition, and this could also

potentially contribute to the decrease in overall evolutionary

rate in TM regions (Graur 1985).

Residue Evolutionary Rate Scales Linearly with Solvent
Accessibility in Both TM and EM Regions

To investigate whether the difference in selective constraint

between TM and EM regions (fig. 2) could be entirely attrib-

uted to differences in their RSA or hydrophobicity distribu-

tions, we further subdivided residues into smaller RSA bins

and calculated RSA-specific dN/dS values for residues from

TM and EM regions. Previously, using a large data set of 3D

homology models of yeast proteins, we showed that dN/dS

increases in a strong, positive, linear manner with increasing

RSA for soluble proteins (Franzosa and Xia 2009). Here, we

calculated the trend between dN/dS and RSA for residues

from membrane proteins according to the environment in

which they lie (within or outside of the membrane). By exclud-

ing soluble proteins and only comparing residues within mem-

brane proteins in this analysis, we control for any inherent

biases within membrane proteins.

Consistent with our previous findings based on soluble pro-

teins (Franzosa and Xia 2009), we observe a strong, positive,

linear trend between dN/dS and RSA for residues in EM re-

gions of membrane proteins (r¼ 0.98, P<10�6; fig. 4).

Despite the functional differences between membrane and

soluble proteins, the EM regions of membrane proteins are

similar to soluble proteins in that they are surrounded by the

aqueous environment. As a result, it is not surprising that sol-

uble proteins and EM regions of membrane proteins exhibit

similar linear relationships between residue-level dN/dS and

RSA. On the other hand, we also observe a strong, positive,

linear trend between dN/dS and RSA for TM residues

(r¼0.93, P< 10�4; fig. 4), in spite of the vast difference in

biophysical environment between TM and EM regions. The

linear model is justified by the statistical significance associated

RSA
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FIG. 3.—Physical properties of residues from TM and EM regions. (A) Relative to EM regions, TM regions contain a larger proportion of highly buried

residues (RSA� 0.2). (B) Residues from TM regions tend to be strongly hydrophobic independent of their degree of burial, whereas only the most buried EM

residues reach this level of hydrophobicity. Error bars reflect the standard error.
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slope = 0.094(0.009)y-int = 0.023(0.003)r = 0.98, p < 1e-6

Transmembraneslope = 0.066(0.008)y-int = 0.015(0.002)r = 0.93, p < 1e-40
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FIG. 4.—dN/dS scales linearly with exposure for TM and EM residues.

When binning residues from TM and EM regions according to degree of

exposure (as measured by RSA), we find that dN/dS tends to increase

linearly with RSA in both regions. Notably, for a given degree of exposure

(RSA bin), residues from TM regions are always evolving more slowly than

similarly buried residues from EM regions. The slope and intercept of each

trend are provided for reference; values in parentheses reflect the standard

error.
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with the fit. Furthermore, fitting the dN/dS versus RSA data

with a more complex quadratic model does not significantly

improve the goodness-of-fit compared with the linear model

(P¼ 0.27 for EM; P¼0.92 for TM). In addition to being very

simple and providing a better fit to data than more complex

models, the linear model is also conceptually justified by the

residue packing argument that we put forward. Supplemen-

tary figure S1, Supplementary Material online, compares the

EM and TM trends to a trend calculated over 795 soluble

proteins in our previous work (Franzosa and Xia 2012); the

soluble protein trend is qualitatively more similar to the EM

trend than to the TM trend.

TM Residues Evolve More Slowly than EM Residues with
the Same Degree of Burial

Although the overall dN/dS versus RSA trends are similar, dN/

dS values for TM residues are consistently lower than dN/dS

values for EM residues for any given degree of residue burial

(RSA bin) (fig. 4). The slope and intercept of the TM trend are

both significantly lower than those of the EM trend (t-statistic-

based two-tailed P¼ 0.025 and P¼0.043). Our observations

are different from those of Oberai et al. (2009) and Kauko

et al. (2008), who found that the trends between residue con-

servation and degree of burial were not significantly different

between the EM and TM regions for most residue sites.

Notably, our analysis of residue-level structure–evolution rela-

tionships is more quantitative than the analyses by Oberai et al.

and Kauko et al. in two critical ways: 1) we calculate evolu-

tionary rates by comparing orthologs from a fixed set of closely

related species to control for divergence time, as opposed to

measuring conservation across homologous proteins from di-

verse species without directly controlling for divergence time

and 2) we divide residues into RSA bins with equal range,

rather than dividing into intervals with unequal range.

Our observed similarities and differences between the TM

and EM trends are due entirely to selection at the amino acid

sequence level. Using un-normalized dN as a proxy for selec-

tion at the amino acid sequence level, we find that the trends

between dN and RSA for TM versus EM residues are qualita-

tively similar to the trends observed between dN/dS and RSA

(fig. 5A). However, the trends between dS and RSA for TM

versus EM residues are identical and essentially flat (fig. 5B).

Because dS measures the rate of synonymous substitutions,

this result implies that there is comparatively little variation in

the degree of selection at the level of synonymous codons

among residues from membrane proteins, independent of

solvent environment or degree of burial.

Why Do TM Regions Evolve More Slowly than EM
Regions?

The results illustrated in figure 4 have important implications

regarding the nature of selective constraint in TM versus EM

regions. It was previously proposed that TM regions tend to

evolve more slowly than EM regions due entirely to the fact

that TM regions contain a larger fraction of buried residues

(Oberai et al. 2009). Although it is true that TM regions con-

tain a larger fraction of buried residues than EM regions

(fig. 3A), TM residues also evolve consistently more slowly

than EM residues with similar degrees of burial (fig. 4).

Indeed, the dN/dS value for completely buried EM residues

is more than 50% larger than the value for completely

buried TM residues (0.023 vs. 0.015; t-statistic-based two-

tailed P¼0.043; fig. 4). This suggests that the 42% lower

overall evolutionary rate of TM regions relative to EM regions

(fig. 2) is due to a combination of two effects: 1) a general

enrichment for buried, slowly evolving residues in TM regions

(fig. 3A) and 2) a systematic decrease in the evolutionary rates

of all TM residues, independent of degree of burial (fig. 4).
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FIG. 5.—The relationship between dN/dS and RSA for TM and EM residues is driven by selection at the amino acid sequence level. We investigated the

relationship between residue burial and selection at (A) the amino acid sequence level (as measured by dN) and (B) the synonymous codon level (as measured

by dS). The dN versus RSA trends for TM and EM residues are qualitatively similar to the dN/dS versus RSA trends from figure 4. Conversely, there is very little

variation in rates of synonymous selection between TM and EM residues and across RSA bins.
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How important is the increased fraction of buried residues

in TM regions in explaining the 42% lower overall evolutionary

rate of TM regions? We answer this question in the following

way. We assume that TM residues follow the same dN/dS

versus RSA trend as EM residues (i.e., ignoring the systematic

difference between the TM and EM trends) and then predict

overall dN/dS for EM and TM regions based on average RSA

only. EM regions have average RSA of 0.35, yielding a pre-

dicted overall dN/dS of 0.056. On the other hand, TM regions

have average RSA of 0.25, yielding a predicted overall dN/dS

of 0.047. Hence, on the basis of difference in average degree

of burial alone, we predict that TM residues should evolve only

16% more slowly than EM residues, a much smaller effect

than the observed difference of 42% (fig. 2).

How important is the systematic decrease in evolutionary

rates of all TM residues independent of degree of burial (fig. 4)

in explaining the lower overall evolutionary rate of TM re-

gions? To answer this question, we assume that TM residues

follow the same RSA distribution as EM residues (i.e., ignoring

the systematic difference in RSA distribution between TM and

EM regions) and then predict overall dN/dS for EM and TM

regions based on expected dN/dS versus RSA trends only

(fig. 4). The average RSA over all EM residues is 0.35. The

predicted overall dN/dS for EM regions is therefore 0.056 (as

above), whereas the predicted overall dN/dS for TM regions is

0.038. Thus, considering only the difference between the EM

and TM trends, we predict that TM residues should evolve

33% more slowly than EM residues. This is larger than the

16% difference predicted above based on the difference in

average burial only and closer to the observed difference of

42% (fig. 2). We therefore conclude that the systematic in-

crease in selective pressure for TM residues relative to EM

residues with similar degree of burial (fig. 4) is the dominant

determinant of the difference in overall evolutionary rate of

TM versus EM regions (fig. 2).

Although not the dominant determinant, the difference in

RSA distribution does contribute independently to the overall

evolutionary rate difference between TM and EM regions.

Indeed, if we predict TM dN/dS based on a combination of

TM-specific RSA distribution and dN/dS versus RSA trend, the

resulting prediction is 44% smaller than the predicted EM

dN/dS based on a combination of EM-specific RSA distribution

and dN/dS versus RSA trend. This is in very good agreement

with the observed difference of 42%. These predictions

are illustrated in supplementary figure S2, Supplementary

Material online.

It was previously observed that soluble proteins with small

average RSA tend to evolve more quickly than soluble proteins

with large average RSA (Bloom et al. 2006). If we assume that

this observation also holds for the TM and EM regions of

membrane proteins, then because TM regions have smaller

average RSA than EM regions, TM regions are expected to

evolve more quickly than EM regions. Thus, the observation

that TM regions evolve more slowly than EM regions further

confirms out conclusion that there is a systematic increase in

selective constraints for TM sites relative to EM sites imposed

by the special properties of the membrane environment, and it

is this systematic increase in selective constraints rather than

the difference in RSA distribution that is the dominant deter-

minant of the slower overall evolutionary rate of TM regions

relative to EM regions.

Residue Packing as a Dominant Driving Force behind the
Linear dN/dS versus RSA Trends

There are three possible candidate driving forces behind the

linear residue dN/dS versus RSA trends observed for both sol-

uble and membrane proteins: 1) backbone hydrogen bond-

ing, which is responsible for the formation of secondary

structures; 2) hydrophobic interaction, which is the dominant

driving force in the folding of soluble proteins; and 3) residue

packing, which is important in the formation of a tightly

packed protein interior.

Backbone hydrogen bonding cannot be a dominant driving

force, as it is generally well conserved between closely related

proteins and does not directly depend on the protein se-

quence. Side chain hydrogen bonding does, however,

depend on sequence, and its effect on protein evolution is

similar to packing, which we will discuss in detail later.

Hydrophobic interactions cannot be a dominant driving

force either for three reasons. First, our earlier work demon-

strated that in soluble proteins, buried residues evolve more

slowly than exposed residues independent of hydrophobicity

(Franzosa and Xia 2009). Second, the expected dN/dS values

for TM residues increase more than 5-fold across the RSA

range (from dN/dS¼ 0.015 to 0.081; fig. 4), whereas

degree of hydrophobicity remains roughly constant with in-

creasing RSA (fig. 3B). This suggests that the positive slope of

the dN/dS versus RSA trend for TM regions is not driven by

hydrophobicity. Third, for the most buried residues in the TM

and EM regions (RSA� 0.2), the fractions of TM and EM

residues that are hydrophobic are very similar (76% vs.

71%; fig. 3B), yet EM residues are evolving more than 50%

faster (fig. 4). This means that the systematic differences in

evolutionary rates observed between TM and EM residues

with similar degrees of burial are largely not driven by hydro-

phobicity. Hence, although increased hydrophobicity is a hall-

mark of TM regions, it is not a driving force behind 1) the

overall similarity in the linear trends between dN/dS and RSA

for membrane and soluble proteins (fig. 4) (Franzosa and Xia

2009), 2) the overall evolutionary rate difference between TM

and EM regions of membrane proteins (fig. 2), or 3) the dif-

ference in the dN/dS versus RSA trends for residues from TM

versus EM regions (fig. 4).

Instead, we argue that residue packing is a dominant driv-

ing force behind the linear dN/dS versus RSA trends for both

soluble and membrane proteins. In our earlier work, we dem-

onstrated that although solvent accessibility is a convenient
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measure of residue burial, there was evidence to indicate that

residue–residue packing was in fact the true agent of selective

constraint for soluble proteins (Franzosa and Xia 2009). More

buried residues (with lower average RSA) will also tend to

make more contacts with neighboring residues, and these

contacts help to stabilize the native structure of the protein.

Indeed, the packing of residues is so precise that we may think

of proteins as solutions to 3D “jigsaw puzzles,” wherein the

outside pieces make fewer contacts with other pieces and are

therefore more free to change, whereas the buried inside

pieces are heavily constrained by their densely packed envi-

ronment (Richards 1974). This would explain why we observe

a positive relationship between dN/dS and RSA for both EM

and TM regions: Despite the vast difference in solvent envi-

ronment between EM and TM regions, buried residues in both

EM and TM regions make more residue–residue contacts and

therefore make greater contributions to protein stability than

exposed residues. Given this additional structural and func-

tional importance, it is not surprising that buried residues in

both EM and TM regions experience heightened selective con-

straint compared with exposed residues.

In a soluble protein, the folding process is driven in large

part by the hydrophobic effect, that is, the tendency for hy-

drophobic residues to bury themselves, such that unfavorable

contacts with the surrounding solvent (water) are minimized

(Dill 1990). On the other hand, TM residues in membrane

proteins are highly hydrophobic regardless of degree of

burial (as seen in fig. 3B), consistent with previous observations

that membrane proteins are not “inside-out” soluble proteins

(Rees et al. 1989; Stevens and Arkin 1999). In the absence of

the hydrophobic effect, it was proposed that residue–residue

packing effects must dominate the stability of TM regions of

membrane proteins (Stevens and Arkin 1999). The fact that

dN/dS among TM residues is always lower than dN/dS among

EM residues for a given degree of burial may reflect the fact

that, although EM regions are stabilized both by the hydro-

phobic effect and residue–residue packing, in TM regions

packing is a more dominant force, and hence must be more

intensely selected. Indeed, TM residues are known to be

packed more tightly than soluble protein residues (Eilers

et al. 2000; Adamian and Liang 2001; Lehnert et al. 2004).

This additional constraint on residue–residue packing through-

out the TM regions of membrane proteins has a major effect

on the overall evolution of these regions and contributes to an

explanation of why TM residues in general are more conserved

than their EM counterparts, independently of their elevated

average burial and hydrophobicity.

Observed TM and EM Differences Cannot Be Explained
by Overall Evolutionary Rate Variation between Proteins

Our observations that TM residues tend to be more conserved

than EM residues both globally (fig. 2) and across the range of

residue burial (fig. 4) are based on averages over 59 yeast

membrane proteins. To ensure that our findings cannot be

attributed to variation in the background evolutionary rates of

these proteins, it is important to show that TM residues also

tend to be more conserved than EM residues on a per-protein

basis, both throughout each protein and within specific burial

regimes. The importance of comparing EM residues with TM

residues on a per-protein basis was elegantly demonstrated in

a recent study (Spielman and Wilke 2013). However, per-pro-

tein analyses involve much smaller numbers of residues than

we have considered up to this point. To ensure meaningful

statistical analysis, we classified residue burial on a per-protein

basis using three broad RSA bins (RSA<1/3, 1/3< RSA<2/3,

and RSA> 2/3) and required a minimum of 25 residues in any

single bin for dN/dS estimation.

Among the 55 yeast membrane proteins in our data set

containing at least 25 EM residues and 25 TM residues, the

TM residues have lower dN/dS than the EM residues in 73% of

cases, a strong and statistically significant tendency (Wilcoxon

signed-rank test, two-tailed P<10�4; fig. 6). This suggests

that the tendency of TM residues to evolve more slowly

than EM residues across our data set (fig. 2) cannot be ex-

plained by the overall evolutionary rate variation between

yeast membrane proteins.

Moreover, per-protein analysis supports our more general

conclusion that TM residues tend to be more conserved than

EM residues of the same degree of burial (fig. 4). Among the

39 yeast membrane proteins contributing at least 25 EM res-

idues and 25 TM residues of high burial (RSA<1/3), the TM

residues have lower dN/dS than the EM residues in 67% of

cases (P¼ 0.0013; fig. 7A). In addition, among the 24 proteins

Protein EM
Region

Protein TM
Region

0

0.05

0.10

0.15

0.20

0.25

dN
/d

S

EM >TM for 73% of proteins
p < 0.0001

 

FIG. 6.—TM residues evolve more slowly than EM residues for most

proteins. We divided the 59 yeast membrane proteins in our data set into

protein-specific EM and TM regions and calculated dN/dS for any region

containing at least 25 residues. EM and TM regions from the same protein

are connected by lines, which are colored blue if the EM region has a

higher dN/dS value and red if the TM region has a higher dN/dS value. EM

regions tend to have higher dN/dS values than TM regions within the same

protein. Solid black bars indicate the average dN/dS over all EM or TM

protein regions.

Membrane Protein Structure–Evolution Relationships GBE

Genome Biol. Evol. 5(4):734–744. doi:10.1093/gbe/evt039 Advance Access publication March 19, 2013 741



contributing sufficient EM and TM residues of intermediate

burial (1/3<RSA< 2/3), the TM residues have lower dN/dS

than the EM residues in 71% of cases (P¼0.0089; fig. 7B).

There are too few TM residues with low burial (RSA>2/3) to

perform meaningful statistical comparison with EM residues

on a per-protein basis: The average protein in our data set

contains only eight TM residues with RSA>2/3, and no pro-

tein contains the minimum 25 residues we deemed necessary

for dN/dS estimation (fig. 7C). In conclusion, in regimes of

both high and intermediate residue burial where sufficient

data exist for proper statistical comparison, per-protein anal-

ysis suggests that the difference between the TM and EM

trends observed in figure 4 cannot be explained by the overall

evolutionary rate variation between membrane proteins.

Conclusions

We have presented the first quantitative model of the rela-

tionships between biophysical and evolutionary properties of

yeast membrane proteins at the residue level. In spite of the

vast differences in solvent environment between membrane

proteins and soluble proteins, we find that residues in each

environment follow the same striking trend: As solvent acces-

sibility increases, the rate of amino acid sequence evolution

increases proportionally. This evidence strongly supports a

direct relationship between residue packing and selective con-

straint for all protein residues.

In addition, we observed that TM residues evolve consis-

tently more slowly than EM residues of a similar degree of

solvent exposure, a phenomenon we attribute to an increase

in the importance of residue packing in TM regions as a result

of the decreasing importance of hydrophobic effects. This

turns out to be a dominant force behind the lower overall

evolutionary rate of TM regions relative to EM regions, al-

though an increase in the fraction of buried residues also

makes an important contribution (Oberai et al. 2009).

Notably, we found no significant evidence of a direct link be-

tween the elevated hydrophobicity of TM regions and their

tendency to evolve more slowly.

This improved understanding of the structure–evolution re-

lationships of membrane proteins at the residue level has

many important applications. Our quantitative residue-level

structure–evolution model provides an improved baseline for

evolutionary analyses of the EM and TM regions of membrane

proteins. Such a baseline is critically important for detecting

signs of differential selection, which may be used to identify

surface sites with enhanced functionality (Adamian et al.

2011). Understanding the baseline constraints on the surfaces

of membrane proteins is also crucial for predicting interaction

interfaces of known or putative membrane protein–protein

interactions (Miller et al. 2005; Xia et al. 2006; Babu et al.

2012). Additional applications of our model include prediction

of the deleterious effects of SNPs in membrane proteins

(Oberai et al. 2009) and 3D structure prediction of membrane

proteins (Hopf et al. 2012).

Overall, our work reveals the universality of the linear

relationship between residue burial and selective constraint

across diverse solvent environments and quantifies the dis-

tinct evolutionary consequences at the residue level imposed

by the unique biophysical properties of the membrane envi-

ronment. Thus, our study highlights the importance of a high-

resolution, quantitative approach that integrates structural
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FIG. 7.—TM residues evolve more slowly than similarly buried EM residues for most proteins. We divided the 59 yeast membrane proteins in our data set

into protein-specific EM and TM regions and then binned residues in these regions according to broad burial regime (high burial, RSA< 1/3; intermediate

burial, 1/3< RSA<2/3; and low burial, RSA> 2/3). We calculated dN/dS for any bin containing at least 25 residues. EM and TM bins from the same protein

are connected by lines, which are colored blue if the EM bin has a higher dN/dS value and red if the TM bin has a higher dN/dS value. Solid black bars indicate

the average dN/dS over all bins of a particular type. In the (A) high burial and (B) intermediate burial regimes, EM residues tend to have higher dN/dS values

than TM residues within the same protein. In the (C) low burial (high exposure) regime, TM residues are too rare within individual membrane proteins to

conduct a statistically meaningful comparison with EM residues.
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with evolutionary proteomics in revealing general principles

governing the biophysics and evolution of membrane

proteins.

Note Added to Proof

After submission of this manuscript, we were made aware of

a recently completed study by Spielman and Wilke (2013)

where TM residues of mammalian G protein-coupled

receptors (GPCRs) were compared with the corresponding

EM residues on a per-protein basis. It was shown that the

slower evolutionary rate of TM regions of mammalian

GPCRs cannot be entirely explained by their higher average

RSA, and thus the membrane environment must play an ad-

ditional role in shaping membrane protein evolution. That

study and our study together demonstrate the importance

of rigorous statistical analysis in studying membrane protein

evolution.

Supplementary Material

Supplementary table S1 and figures S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org).
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