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Abstract

The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative
quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its
regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a
systematic characterization of gene expression and summarization within the context of a mathematical model is not yet
available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic
expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA
expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially
periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were
identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization
observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable,
which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and
describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type
enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly
expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein
imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding
epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators
of this regulation were identified. Furthermore, the model suggests that impairing this negative regulation will drive a
bifurcation which may represent transition into a pathological state such as hair miniaturization.
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Introduction

The miniorgan of the hair follicle represents a complex biological

system that undergoes repeated phases of death and regeneration

over its lifetime [1–3]. Understanding of the hair cycle and its

regulation would shed light on many other complex systems

relevant to biological and medical research including morphogen-

esis, stem cell biology, response to environmental perturbations and

general spatiotemporal patterning [4]. The stages of the hair cycle

have been well documented, at least from a morphological

standpoint, in mouse models [5]. The period of hair growth,

known as anagen, involves rapid proliferation of follicular epithelial

cells, such as MatriX (MX) cells in the hair bulb, which surround a

key group of mesenchymal cells that form the dermal papilla (DP).

Matrix cells differentiate to eventually compose various epithelial

populations of the hair shaft. Anagen is followed by catagen, which

is characterized by high levels of apoptosis. Finally, telogen is

typically described as a quiescent period between growth phases.

The molecular mechanisms underlying this cyclical pattern of

death and renewal in hair follicles are not well understood;

however, some general concepts, as well as specific molecular

regulators, have been identified. One key aspect is the commu-

nication between epithelial and mesenchymal cells. Numerous

studies have identified physical interactions between these cell

populations, as well as several possible signaling molecules [6].

One well studied signaling molecule of the hair cycle is Tgfb2,

which is synthesized and secreted by DP cells. The evidence

suggests that, in general, Tgfb2 suppresses proliferation and

induces catagen-like changes in the follicle, including apoptosis of

MX cells [7]. However, recent studies have identified a Tgfb2

mediated pathway which activates epithelial stem cells to promote

hair follicle regeneration [8]. This underscores the complexity of

the signaling pathways involved.

Mathematical models of general features of hair cycling have

also been studied. In a recent study by Murray et al., the authors

model follicle growth and coupling as an excitable medium [9].

Their model incorporates general aspects of hair cycle regulation,

and shows qualitative agreement to experimental observations.

Also recently, Al-Nuaimi et al. developed a general model for hair

cycling based on observations in the literature [10]. These authors
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derived a mathematical, kinetic model which proposed that

negative feedback between dynamic MX keratinocytes and static

DP cells could reproduce the cyclical growth patterns of the hair

follicle. Although these models are significant, they do not attempt

to incorporate any specific molecular details in a data-driven

approach by formally analyzing large scale experimental data sets.

In the study by Lin et al., mRNA microarrays were compiled over

the first three rounds of hair growth: morphogenesis, the second

naturally synchronized cycle and a depletion-induced cycle [11].

The results demonstrated recurrent gene expression corresponding

to hair growth, and the authors specifically focused on genes

related to circadian rhythms. However, the study does not address

the many other genes observed to have similar patterns. Currently,

an unmet need is the development of data-driven approaches that

can couple the existing transcriptome-wide data to systems-level

properties of hair cycling using formal dynamic models.

Nonlinear dynamical models have provided valuable insights into

many oscillating biological systems [12–14], and have even been

used to suggest general design principles of oscillating metabolic and

signaling networks [15]. In general, simplified oscillator models have

been developed to describe properties resulting from oscillator

interactions or coupling. One such model is the well-studied

Kuramoto model [16]. Here all oscillators are interconnected with

the same coupling strength, and studied as a single mean field.

Although a major simplification, mean field models have success-

fully described high level properties of many large, complex systems

including statistical mechanics (for a review see [17]), economics

[18,19] and even social networks [20]. Importantly, the Kuramoto

model is capable of capturing a critical phase transition from an

incoherent state to one in which all oscillators converge to a single,

coherent cluster. This behavior is referred to as synchronization and

is quantified by complex order parameters [21]. Modified and

extended versions of the Kuramoto model have been used in many

complex systems [22] including synthetic genetic networks [23];

cyclical gene expression and cellular networks [24]; neural networks

for memory and brain activity [25], [26]; chemical oscillators [16];

and laser arrays [27], [28]. We would not expect such models to be

capable of incorporating or identifying mechanistic molecular

interactions or specific details; however, given the above literature

evidence, they can be quite successful at describing systems level

properties, such as synchronization, and the sufficient, underlying

conditions that can produce them.

Our aim here was to investigate a subset of genes whose

expression changes as a function of time in a potentially periodic

manner, similar to the cyclical nature of hair growth. Previous

modeling studies, which have focused on general aspects of hair

growth, represent important initial steps in applying mathematical

strategies to understanding the hair cycle [9,10]; however, these

models are not driven by molecular-level data. In contrast, other

studies use high-throughput molecular-level data to identify

important targets, and they apply additional experiments to

delineate specific molecular mechanisms [11]; however, these

studies are limited to investigation of a small number of genes, and

they do not attempt to place the observations into a quantitative

modeling context. In this study, we focused on two complementary

mathematical modeling strategies that look at high-level features,

such as average dynamic behavior, that is based on the individual

patterns of thousands of genes. Thus, we are attempting to bridge

the gap between the two strategies described above. Using whole

skin, transcriptome-wide expression data, we demonstrate the

existence of two subsets of genes that have synchronized, out-of-

phase expression profiles. Motivated by this observation, we

applied a coupled oscillator modeling framework to identify a

specific coupling configuration that spontaneously, and stably

reproduced the observed synchronization. We then applied a 2-

population mixture model to associate the corresponding gene

clusters to two computationally determined populations, a rapidly

expanding population and a relatively static background popula-

tion. The estimated population dynamics indicated an association

between computationally derived background/expanding popula-

tions and the mesenchymal/follicular epithelial cells, respectively.

Cell type specific enrichment analysis and experimental imaging

with in situ hybridization and immunofluorescence all demon-

strated similar associations. The results describe a coupling

scheme, between these two cell populations, which would be

sufficient to maintain the observed synchronization. Specific

signaling molecules were also identified as being priority follow-

up targets for drivers of synchronization. To our knowledge this is

the first attempt at integrating high-throughput molecular data

with a mathematical model to predict systems level properties,

such as synchronization and population dynamics.

Results/Discussion

Identification and characterization of periodic expression
signals

Given the proposed cyclical nature of hair growth, we

investigated the possibility of periodically expressed mRNA in

the microarray data collected by Lin et al. [11]. We assumed that

such expression patterns may relate to hair cycle regulation. We

applied a periodic identification scheme for non-uniformly

sampled data [29]. This method estimates a discrete Fourier

Series Decomposition (FSD) for each expression signal by robust

regression. We identified 4627 probesets (mapping to 3567 unique

genes) as significantly periodic signals with a false discovery rate of

10%. Using the semantic measure Normalized Google Distance

(NGD), we found that 315 of the corresponding periodic genes had

a notable proximity to the hair cycle described in a survey of

PubMed abstracts. This translates to an enrichment p-value of

2.5E-5. For example, periodic genes with the lowest NGD are

discussed in the literature as being related to hair pigmentation

Author Summary

The hair cycle represents a complex process of particular
interest in the study of regulated proliferation, apoptosis
and differentiation. While various modeling strategies are
presented in the literature, none attempt to link extensive
molecular details, provided by high-throughput experi-
ments, with high-level, system properties. Thus, we re-
analyzed a previously published mRNA expression time
course study and found that we could readily identify a
sizeable subset of genes that was expressed in synchrony
with the hair cycle itself. The data is summarized in a
dynamic, mathematical model of coupled oscillators. We
demonstrate that a particular coupling scheme is sufficient
to explain the observed synchronization. Further analysis
associated specific expression patterns to general yet
distinct cell populations, background mesenchymal and
rapidly expanding follicular epithelial cells. Experimental
imaging results are presented to show the localization of
candidate genes from each population. Taken together,
the results describe a possible mechanism for regulation
between epithelial and mesenchymal populations. We also
described an alternate state similar to hair miniaturization,
which is predicted by the oscillator model. This study
exemplifies the strengths of combining systems-level
analysis with high-throughput experimental data to obtain
a novel view of a complex system such as the hair cycle.

Modeling Mouse Hair Cycle Gene Expression Dynamics
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(Mc1r, Tyrp1, Stx17), growth and cycle regulation (Liph, Foxn1),

disorders and malformations (Lpar6, Zdhhc13, Krt85) and general

associations to hair (Krt28). For a full list of genes and related

NGDs to hair see Supplementary File S1.

To further investigate the periodic expression, we assigned a

specific frequency and a phase shift to each signal. This was done

using the Principal Periodic Component (PPC) as an approxima-

tion to the FSD. Both the PPC and FSD reasonably recapitulated

the time course trajectories, primarily the low frequency expres-

sion signals (Supplementary Figure S1 top). Furthermore, the

majority of the periodic signals, 3988 probesets, were associated to

this low frequency, which corresponds to a period of 31 days

(Supplementary Figure S1 bottom). The 31 day period of

expression was on the same time scale as the hair cycle, and

further suggested a relationship between the corresponding genes

and hair growth and regulation. Although repeating cycles were

not directly observed to demonstrate cyclical behavior, we note

that the data was a composite of both the second natural and

depilation-induced hair growth cycles and, therefore, the expres-

sion patterns were common to, at least, these two cycles.

For visual examination, we sorted the periodically expressed

probesets by frequency and phase shift (Figure 1A). We compared

this data to the PPC trajectories (Figure 1B) to underscore the

similarities. We noted a distinct clustering of the expression signals,

including two clusters within the low frequency probesets. The

lower and upper clusters demonstrate maximal and minimal

expression near the end of anagen, respectively. This reciprocal

periodic behavior is referred to as out-of-phase periodicity. We

calculated the phase shift based on the time to the next maximum

value. The phase shift (Figure 1C) clearly identifies these two

tightly clustered groups. We associated 1452 probesets to cluster

one and 2536 to cluster two. Cluster one and two correspond to

probesets that are predicted to reach maximum expression at

approximately 33 (first anagen phase after morphogenesis) and 48

(following telogen phase) days postnatal, respectively. The

separation of the phase shift further indicates that the two groups

are almost exactly out-of-phase. The mean of the two groups is

separated by 15.4 days which in polar coordinates corresponds to

approximately 180u. Although fast cycling genes were identified,

we chose to overlook this group due to a relatively poor fit to the

PPC, median coefficient of determination was less than 0.5

(Supplementary Figure S1 Top). However, given that the data was

derived from full-thickness mouse skin, it is possible that cyclic

gene expression in Keratinocytes could be contributing to the

short period signal. This possibility was strengthened with the

recent report that human epidermal stem cell functions are

regulated by circadian oscillations [30] with a period of 24 hours

in vitro. Additional experiments, with higher time-resolution

sampling, may better describe fast cycling genes and may provide

a link between Keratinocytes, hair-cycling and circadian rhythms.

The clustering of periodic signals was quantified using complex

order parameters [21,31,32]. Considering only the periodic

component of the low frequency expression signals corresponding

to a 31 day period, we can visualize the expression as points

moving around the unit circle in the complex plane as they travel

through the cycles. How tightly grouped these points are can be

quantified by a set of order parameters, Zj :

Zj(t)~Rj(t)e
iWj (t)~

1

N

XN

n~1

eijhn(t), ð1Þ

where N is the number of oscillators and hn(t) is the instantaneous

phase or the position of oscillator n on the unit circle at time t. See

Methods for more details on the formulation of EQ 1. When

studying systems of coupled oscillators, the magnitude of Zj ,

denoted Rj , is used to quantify the coherence or synchronization

of the system (Supplementary Figure S2 shows typical Zj values for

specific configurations of points). In such systems, a high level of

synchronization is typically the result of coupling between

oscillators. The low frequency expression signals in the hair cycle

demonstrated high out-of-phase synchronization as measured by

R2, as well as a notable asymmetry, due to uneven sized clusters,

measured by R1 (Figure 2A). As a negative control, we random-

ized the oscillator phases to demonstrate R1 and R2 near zero for a

similar, but un-clustered system (Figure 2A, black lines). Synchro-

nization was further exemplified by considering order parameters

calculated for the specific clusters, denoted zclust1
1 and zclust2

1

(Figure 2B, green and blue lines corresponding to clusters shown

in Figure 1C). This level of synchronization appears to be

dynamically stable throughout the time course. If we can expect

similar molecular behavior underlying subsequent cycles of hair

growth, we would anticipate these periodic expression signals to

repeat. In an ideal case the low frequency gene expression could

then be viewed much like a system of oscillators, and the observed

dynamic stability could be investigated in that context.

Expression modeled as a system of coupled oscillators
We believed that strong synchronization over multiple expres-

sion signals was indicative of regulation between the corresponding

genes. As mentioned above, systems of multiple agents with

periodic behavior are often described using coupled oscillator

models. Furthermore, and most significantly, we found a striking

similarity between the observed expression in the mouse hair cycle

and a simple system of coupled oscillators formulated by Hong and

Strogatz [33]. In this model one possible attractor (or long time

behavior) was the synchronization of two, asymmetric, out-of-

phase, oscillator clusters. Spontaneous, stable synchronization was

observed when one cluster was positively coupled to the system’s

macroscopic rhythm, embodied by complex order parameter Z1

(see EQ 1), and the other was negatively coupled. In this case

positive or negative coupling indicates oscillators that move

towards or away from Z1, respectively. Although such models

are a significant simplification from the true biology, the

qualitative agreement was encouraging, and we wished to

investigate if reasonable insights could be drawn from such an

abstraction. In the following we consider a system of Low

Frequency Oscillators (LFO) corresponding to the 31 day period

expression signals identified above.

We first considered if our system could be quantitatively

described by the above model. At the level of individual oscillators

this model can be written as

h
_((z)
n ~vnzK (z)Rsin(W{h(z)

n ),n~1,:::,M

h
_(({)
n ~vnzK ({)Rsin(W{h({)

n ),n~Mz1,:::,N
ð2Þ

where hn is the phase of the nth oscillator, vn is the natural or

intrinsic frequency for hn, K is the coupling constant, M is the

number of positively coupled oscillators, N is the total number of

oscillators, R~R1 and W~W1 from EQ 1 where the subscript is

dropped for simplicity. The dot denotes change with respect to

time. Here, we have assumed two groups representing positive and

negative coupling denoted by superscripts + and 2, respectively.

The coupling constants are related by K (z)~{1 �Q � K ({)

where Qw0, K (z)
w0, K ({)

v0. This model can be simplified to

two dimensions when describing only the dynamics of the first

Modeling Mouse Hair Cycle Gene Expression Dynamics
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order parameter for the two clusters (recall Figure 1C, green and

blue clusters), which was what we focused on here as a high level

characterization of the system

_zz(z)~{2 � cz(z)z(p � z(z)zqz({)){(p�zz(z)zq�zz({))z(z)2,

_zz({)~{2 � cz({){Q½(p � z(z)zqz({)){(p�zz(z)zq�zz({))z({)2�,
ð3Þ

where z(z) and z({) are the first order parameters (similar to EQ 1

with j~1) for the two oscillator groups related to positive and

negative coupling, respectively; p is the proportion of positively

coupled oscillators and q~1{p. The bar denotes complex

conjugate. Given the first order parameters of our observed

clusters (zclust1
1 and zclust1

1 , recall Figure 2B green and blue lines)

and the number of oscillators for the two clusters (which provides

p), we solved exactly for the relative coupling strength, Q, and the

intrinsic frequency distribution, c. We refer the reader to Methods

for a detailed description of this process including additional

assumptions. Interestingly, the only stable configuration was

negative coupling of cluster 1, the smaller cluster (z({)~zclust1
1 ).

Figure 3A shows that this configuration resulted in spontaneous,

stable synchronization (config 1, red solid line, a corresponding

movie of the individual oscillators is available in Supplementary

File S2), a steady-state magnitude of the first order parameter

equivalent to the observed magnitude (recall Figure 2A), and

clusters that remain 180u out-of-phase (upper panel of Figure 3A).

Furthermore, if cluster 1 is positively coupled (z(z)~zclust1
1 ), the

model system is unstable and no synchronization is observed

(Figure 3A purple dashed line, config 2). The results suggest that a

positive coupling of cluster 1 to the system is physically unlikely.

This result provides us with our first biological insight,

specifically, the genes corresponding to cluster 1 were negatively

Figure 1. Periodic gene expression in mouse hair cycle. An approximation of the hair cycle phase corresponding to the time scale is indicated
via a color bar, see legend in lower right. (A) Heat map of actual expression data for probesets identified as periodic. For visualization, the data is
normalized relative to the corresponding maximum and minimum values (this normalization was not used in statistical analysis), and sorted first by
principal frequency and second by phase. (B) Heat map of expression estimated by the principal periodic component corresponding to A. Sorted and
normalized as in A. (C) Histogram of the phases for probeset expression patterns corresponding to the longest period, 31 days, estimated by the
principal periodic component.
doi:10.1371/journal.pcbi.1003914.g001
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coupled to the system’s macroscopic rhythm, and repelled by this

average behavior of the system. If these genes can be associated

with specific cell populations, then inhibition or repression of this

population by the system would explain the simultaneous negative

coupling of a large number of genes. Inhibition at the cellular level

could be achieved by regulated apoptosis, which is consistent with

a previous model of the hair cycle from the literature [10]. The

authors described that negative feedback in the form of regulated

apoptosis or inhibition of regulated proliferation could produce

observed cyclical hair growth patterns.

Using this coupled oscillator model, we investigated what other

states could be possible if specific variables were changed. We

constructed a bifurcation diagram that shows the steady-state

behavior of the system given different values of p (see EQ 3) and

assuming that other properties remain constant. Figure 3B shows

three qualitatively different states for varying values of p. Low

values of p relate to an incoherent state which has no

synchronization and, therefore, no clustering. For large values of

p, we find the p-state in which two clusters are stable, out-of-phase

and oscillate with the same long period throughout a range of p

values, with increasing asymmetry to one cluster. Finally, we

observed a traveling wave state for intermediate values of p, here

the period of the system is greatly reduced and even variable with

respect to p. These states were described by Hong and Strogatz

[33]. Interestingly, the hair system lies at the edge of the p-state,

near a bifurcation into the traveling wave state. A reduction in p

corresponds to a decrease in the relative size of cluster 2, and

would reduce the effective negative coupling on oscillators in

cluster 1, which is what drives the system into a different state.

Therefore the model anticipates that on average, removal of

oscillators in cluster 2 would result in a loss of regulation which is

specifically associated with varying, high frequency oscillations.

Furthermore, we noted that the reduced period of the traveling

wave state is similar to the fast cycling of short hairs in an existing

model of hair cycle [10], which was shown to result from changing

parameters associated with negative feedback. This alternative

state may be biologically related to the pathological state of hair

miniaturization and androgenic alopecia.

Although our model recapitulated the observed synchroniza-

tion, we emphasize here the various abstractions introduced. First,

we did not attempt to model the physical, molecular interactions

involved, as we felt such an approach would be too error prone

given limited data and a priori knowledge [34]. Instead, we chose

to implement the simplest phenomenological model we could

conceive to describe observed behaviors. Here oscillators repre-

sented probesets with periodic expression patterns (see Methods

EQ 7). Modeled oscillators changed due to two terms: the intrinsic

term, vn, and the coupling terms, K (both from EQ 2). In a

physical model the intrinsic term would represent some constant,

external force that independently drives oscillations, in this case

the intrinsic term represents all the unknown interactions that

were the basis for periodic expression. As a result, insight and

prediction related to these interactions was beyond this model’s

reach. In contrast the coupling terms were of most interest, and

Figure 2. Complex order parameters for the hair system. Here we only consider the low frequency expression patterns. Different levels of
approximation were used to calculate the instantaneous phase, Fourier Series Decomposition (FSD), the Principal Periodic Component (PPC) as well
as a combination of FSD and data referred to as Data. (A) The magnitude of the first (red) and second (orange) order parameter. Note that all
approximations for R1 are similar and that both R1 and R2 are much higher then random (shown in black). (B) The first order parameter for the full
system (red, corresponds to A) as well as sub systems cluster one (green, corresponds to Figure 1C) and cluster two (blue, corresponds to Figure 1C).
Time points corresponding to anagen postnatal day 24 (P24) and telogen postnatal day 44 (P44) shown in green squares and yellow ovals,
respectively. Note that the clusters are highly synchronized, with radii near one, and angles 180u apart.
doi:10.1371/journal.pcbi.1003914.g002
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represented the average force felt by oscillators of a certain group,

due to other oscillators. This coupling term is what drove the

observed out-of-phase synchronization. The model was further

abstracted as we specifically considered the average dynamics of

the two clusters (see EQ 3), which were coupled via the average

coupling of the underlying oscillators. In a sense the model treated

interactions as being ‘smeared-out over all oscillators. Although

exact physical interpretation is difficult, this average effect on the

many corresponding genes may be the result of an extensive

transcriptional program or a cellular event such as regulated

apoptosis or proliferation, and suggests that these clusters may be

related to specific cell populations.

Associating gene clusters to biologically relevant cell
populations

Given previous results, we hypothesized that the two observed

clusters of LFO gene expression may relate to specific cell types or

general cell populations. We noted that observed relative

expression changes can be attributed to changes in relative cell

population size as opposed to intracellular changes. Furthermore,

opposite expression patterns can result when one population is

constant in size and the other is changing (See Supplementary

Figure S3, and Methods for details). To investigate further, we

applied in silico microdissection [35] to estimate properties of two

distinct cell populations from the heterogeneous hair cycle data.

Here, the 2-population mixture model assumes static intracellular

gene expression. Furthermore, we also assume one population is

expanding, while the second is a static background population. We

emphasize here that we make no assumption as to the specific cell

types contributing to these populations nor the relative expression

levels of genes within these populations. We then fit this model

using all of 45k+ probesets from each micro array chip.

From the heterogeneous hair cycle samples, we were able to

approximate the dynamics of dominant expanding cell popula-

tions (Figure 4). The trajectory was consistent with cells associated

with rapidly proliferating follicle epithelial cells. In particular the

model estimated (without any a priori knowledge) a sharp and

complete depletion of the expanding population within the

catagen time frame. The model also identified differences between

samples from the natural and induced cycle. Specifically, the

model estimated a slower anagen onset in depletion induced mice,

this was also observed by comparing morphologies of tissue

sections in Lin et al. [11]. Furthermore, we demonstrated that

these features were not estimated in a negative control (see

Supplementary Figure S4), using a permutation strategy to

simulate data with no hair cycle relationship. This suggested that

our results were not due to an artifact or bias introduced in the

analysis. These observations suggested that the in silico microdis-

section procedure was able to identify expanding cell populations

compared to a static background populations.

The model was also able to estimate static intracellular

expression levels for each population. Combining this with the

estimated population size, we were able to compare estimated

expression levels to those observed in the data. Overall, we found

Figure 3. Simulation results from mean field coupled oscillator model. All curves are calculated by solving EQ 2 (for additional details also
see EQ 11). The magnitude of the first order parameter, R shown in red, can be easily calculated from the individual order parameters, z(z) and z({) .
Here, R is related to the first order parameter in Figure 2, also shown in red (note the subscript was dropped for convenience). (A) Simulation results
of R for configuration one (config 1, solid) and configuration two (confg 2 dashed). Here config 1 relates to cluster one having negative coupling
(z({)~zclust1

1 ). Note that the synchronization was stable only in config 1. We also show the incoherent result when configuration two (z(z)~zclust1
1 )

was set near, the steady-state value. The top plots show the values of z1 for both cluster 1 (green) and 2 (blue) on the unit circle at time = 1, 12 and 40
days. Note that the clusters are out-of-phase. A movie of the individual oscillators corresponding to configuration 1 is available as Supplementary file
S2. (B) A simulated bifurcation analysis of the model showing the stable attractors for R at different values of p (red dots). We note that the simulation
results agree with the analytical results of pc, loss of the incoherent state, and pu, the upper bound of the wave state. The estimated period of the hair
cycle is shown by the dashed line. The values corresponding to the observed hair system are highlighted, note that it is near a critical change in R
that corresponds to a sharp decrease in the period.
doi:10.1371/journal.pcbi.1003914.g003
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that the majority of expression signals were not well described by

such a simple model (Figure 5A, blue histogram); however, the

model was able to describe the majority of the variation in the

expression of the LFOs (Figure 5A, pink histogram, 50% of

probesets demonstrated a COD.0.5). As above we did not

identify such improved statistics of the LFOs in the permuted

negative control. This suggested the significance of such a model in

describing expression of the LFO subgroup. Using the estimated

expression and standard error estimates, we identified probesets

with statistically significant differential expression between the two

estimated populations (expanding and background) in the form of

a t-statistic. The t-statistic shows the expression difference relative

to the estimated error. Again more statistically significant

differential expression was found in the LFO subgroup (Fig-

ure 5B). Probesets from the LFO subgroup were assigned to the

population in which they demonstrated a statistically significant

increase in expression, 99.7% of the LFO probesets met the

statistical requirements for assignment. Figure 5C shows the

remarkable similarity between clusters 1 and 2 (recall Figure 1C)

and the expanding and background population respectively. In

fact, dividing the LFO probesets in this manner yields the same

division as achieved when considering oscillator phase (Supple-

mentary Figure S6). Ultimately, this procedure allowed us to

associate probesets and corresponding genes to two dynamically

distinct populations.

We next investigated the possibility that the estimated

populations were associated to specific biological cell types

involved in the hair cycle. We made use of two existing studies,

Rendl et al. [36] and Greco et al. [37], which dissected hair

follicles into specific, predefined cell types. For each cell type,

signature genes, genes expressed predominantly in that cell type,

were identified. We then calculated the enrichment of these

signature genes in the two estimated populations (Supplementary

Table S1). In particular, we found a significant enrichment for

epithelial MX and, to a much lower degree, ORS cells in the

expanding population, pv1E{31 and p~0:0420 respectively,

but not for the background population. Alternatively, we found a

significant enrichment for mesenchymal DP cells in the back-

ground population, pv1E{14, but not for the expanding

population. Other cell types, Melanocytes and Bulge Cells, were

found to be significantly enriched in both populations, but to a

larger degree in the background population (see Supplementary

Figure S7A for relative signature list size and overlap with

estimated populations). We also observed overlap between the

experimentally determined gene signatures, for example the

overlap between Bulge [37] and DP [36] signature genes (see

Supplementary Figure S7B) corresponds to an enrichment p-

valuev1E{11. The results show that the computationally

estimated populations do not uniquely represent a specific,

predefined cell type; however, they do have distinct associations.

Furthermore the association of epithelial MX and ORS cells to the

rapidly expanding population and DP cells to the static

background population was consistent with the known relative

population dynamics of those cell types. We emphasize that DP

population size does change throughout the hair cycle [38].

However, the DP population is not observed to undergo the

enormous expansion and apoptosis characterizing hair epithelial

cells [39–41]. Thus, conceptually the DP may be considered

considerably less dynamic than the MX derived population [2],

which is consistent with our findings here. For a full list of

significant probesets with the t-statistic indicating population

association, and other metrics, see Supplementary File S3.

These results provide us with a second biological insight: the

genes in LFO cluster 1 were associated with expanding cell

populations of the follicle that were enriched for follicle epithelial

cells as defined Rendl et al. [36], and cluster 2 was associated with

background populations that were enriched for mesenchymal DP

cells. This bolsters our previous hypothesis that an inhibitory,

possibly apoptotic mechanism, is acting on the expanding,

epithelial cell population, and that this mechanism is involved in

synchronized gene expression of the hair cycle.

Experimental follow-up on expression data and
associations to distinct cell populations

To verify specific gene expression patterns and to investigate the

localization of gene products within the hair follicle, we applied

Figure 4. Predictions on population dynamics determined by the two population model. The predicted relative size of the expanding
population for both the natural (green) and induced (light gray) hair cycle expression data. The time scale used was set relative to initiation, which
was after morphogenesis (postnatal day 23) or after depletion for the natural and induced cycles, respectively.
doi:10.1371/journal.pcbi.1003914.g004
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Figure 5. Predictions on expression dynamics determined by the two population model. (A) Histogram of the coefficient of
determination (COD) for model estimated expression, shown for all probesets (dark blue background) and probesets identified as low frequency
oscillators (LOF, light pink foreground). (B) The magnitude of the t-statistic used to estimate differential expression between the two estimated
populations, shown for all probesets (dark blue background) and probesets identified as low frequency oscillators (LOF, light pink foreground). (C)
Normalized expression data, x

maxx
, for the two model populations. The left column shows actual expression data and probesets are ordered by the

magnitude of the t-statistic. The right column shows expression estimated by the model ordered as in left column.
doi:10.1371/journal.pcbi.1003914.g005
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qRT-PCR, In Situ Hybridization (ISH), and protein antigen

staining. To generate tissue samples, we aligned the hair cycle in

10-week old mice with the shave/depilatory induction protocol.

Two animals were sacrificed for each of the five time points

considered; however, qRT-PCR was done using four technical

replicates for both samples and imaging shows results typical of

multiple follicles observed over the two biological replicates.

Phenotypic changes were quantified by melanogenesis scoring,

which is known to correspond to active hair growth. Both

biological replicates were observed to have entered anagen within

16 days of induction and to have completely finished the first

round of post induction hair growth by 29 days, as determined by

scores increasing from and then returning to zero (Supplementary

Figure S8A). Dorsal skin was sampled and prepared for RNA

analysis or antigen staining at multiple time points throughout the

cycle.

An exhaustive investigation was not within the scope of this

work; therefore, we identified a subset of candidate genes for

experimental follow-up. Candidates were chosen by considering

the significance of periodic expression and the t-statistic derived in

the 2-population model. Additionally, we considered genes that

had plausible, but not well defined connections to hair growth and

regulation as determined by the literature. We chose Signal

Transducer And Activator Of Transcription 5A (Stat5a), Fermitin

Family Member 2 (Fermt2) and Vimentin (Vim) for candidates

associated to the background population, as well as Ovo-Like 1

(Ovol1) and SMAD Family Member 6 (Smad6) for the expanding

population. In the follicle dissection study of Rendl et al. [36],

Stat5a and Ovol1 were also identified as signature genes for DP

and MX cells, respectively; however, the other candidates were

not linked to a specific cell type in the same study. The metrics

relating to these candidate genes as well as others identified in this

study are presented in Supplementary File S2. For candidate and

control genes, we confirmed the expected relative expression

profiles by qRT-PCR (Supplementary Figure S8B,C). Specifically,

we confirmed that the relative expression of background

candidates decreased during anagen onset and then increased

after completion of anagen with maximums observed in or near

the telogen phase, while the expanding population demonstrated a

reciprocal profile (recall Figure 1, cluster 2 and 1 respectively).

We investigated the localization of candidate gene products by

various imaging techniques in samples corresponding to telogen

taken before induction (day 0) and anagen taken 16 days after

induction (day 16). Here, we recall that background candidates

were determined to be markers for hair follicle cell populations

that remain relatively stable throughout the hair cycle; these were

also enriched with DP signature genes. Using ISH and fibroblast

growth factor 7 (Fgf7) as a control marker [42], we confirmed that

the signature gene Stat5a, also identified by the 2-population

model, was expressed in DP cells (Figure 6A R1). We note that

technical negative and positive controls for ISH can be seen in

Supplementary Figure S9. Interestingly, ISH imaging produced

similar expression results for background candidates in both

telogen (day 0) and anagen phases (day 16) while qRT-PCR and

microarray suggested notable differences in relative expression

between these phases. These observations were explained by the 2-

population model above, where increases in the expanding

population decreases the relative size of the background popula-

tion, resulting in notable expression changes for mixed cell

population samples, such as the whole skin samples used in qRT-

PCR. Although consistent with our expectations as described, for

completeness we add that insensitivity in ISH imaging could

provide another explanation for the observations. Furthermore,

significant changes of Fgf7 expression have been detected in DP

isolates [37], although under different conditions from the data

considered here. We observed the same localization pattern in the

novel candidate marker, Fermt2. Roles for Fermt2 have been

proposed in regulation of the extra-cellular matrix, actin

organization as well as cell-ECM focal adhesions [43]. It is also

associated with b-catenin/TCF4 complex, and knockdown of

Fermt2 leads to loss of b-catenin mediated transcription [44],

ultimately affecting myogenic development. Other effectors of the

b-catenin/TCF4 complex, such as Wnt, are known to be required

for the hair inducing property of DP cells [45]. Background

population proteins were also localized by immunofluorescence.

The morphology, as determined by brightfield and DAPI staining,

was used to identify DP localization. We observed localization of

Stat5a protein to the DP in anagen samples; however, localization

was much more difficult to assess in telogen samples (Figure 6B

R1). Technical issues prevented antibody staining for Fermt2;

therefore, we considered an alternate candidate, Vim, which was

also associated to the background population. Immunofluores-

cence demonstrated Vim protein expression localized to the

cytoplasm of DP cells in both telogen and anagen phases. We also

observed Vim staining in the dermal sheath that surrounds the

anagen bulb (Figure 6B R2). While Vim expression in the follicle

has been reported [36,46,47], it is expressed in other dermal cells

and it is thus not specific to the hair follicle. Its expression in both

DP cells and in cells adjacent to the hair follicle, or macro-

environment, emphasizes the importance of the use of whole skin

in our study. For example, Plikus et al. [48,49] demonstrated that

the macro-environment can be the source of paracrine signals that

influence the hair cycle.

Imaging results also confirmed candidate markers for the

expanding population. Here we recall that the expanding

population candidates were determined to be markers for cells

whose relative population size increases during anagen, followed

by a sharp decline in catagen (Figure 4); these were also enriched

for MX cell genes. Using Forkhead box protein N1 (Foxn1) as a

positive control for MX cells [50], note: Foxn1 was also identified

in the current study as a candidate marker for the expanding

population), we observed mRNA expression of the signature gene

Ovol1 in the proliferating cell populations of the hair shaft in

anagen samples, as described in the literature [36,50–52], Figure 7

R1). We also observed the same expression pattern and

localization to the hair shaft for the novel candidate marker

Smad6 (Figure 7A R2, day 16). Further evidence of an association

between these candidate markers and the expanding population

was demonstrated by a general lack of staining in telogen samples.

The 2-population model attributes this lack of expression to the

absence of the expanding cells in the telogen phase (Figure 4).

Additionally, immunofluorescence confirmed the localization of

Ovol1 and Smad6 protein near the MX cell marker Foxn1

(Figure 7B). Matching the pattern of Foxn1 expression at day 16,

ovol1 and Smad6 stained the epithelial, matrix-derived inner root

sheath cells and the upper part of the matrix cells that surround

the hair bulb while Smad6 was also detected in the epithelial outer

root sheath. Although their general expression was observed,

Vimentin and Smad6 were not identified as signature genes for DP

and matrix cells respectively by Rendl et al [36]. The results here

(Figures 6 and 7) demonstrate their expression in distinct

compartments relating to follicle epithelial (Smad6) and back-

ground mesenchymal (Vim) cells. The staining results and the 2-

population model support the hypothesis that the computationally

identified expanding population was associated to follicle epithelial

cells. Currently there is no direct evidence of Smad6 in hair cycle

regulation; however, Smad6 is a well-known negative regulator of

the Tgfb signaling pathway [53,54]. Given its role in regulating
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Figure 6. Localization of selected candidate genes from the predicted static background population markers. In Situ Hybridization
(ISH; RNA) and immunofluorescence (protein) were performed on mouse skin sections taken from telogen (day0) or anagen (Day 16) phases of the
hair cycle, determined by Supplementary Figure S8 A. DAPI was used as a counterstain for cell nuclei (blue). The expression of candidate genes for ISH
is seen as bright foci (red and green) in specific cell types. Note comparisons to technical negative control and positive controls in Supplementary
Figure S9. (A) ISH: Fgf7 (red) was used as a positive control marker, which has been reported to be expressed in DP cells [42]. R1 and 2 shows RNA
expression for Stat5a and Fermt2 (green), respectively, which were predicted to be expressed in dermal papilla, or other background population
during the telogen and anagen phase. (B) Protein staining by immunofluorescence: Due to technical issues with Fgf7 and Fermt2 antibody selection,
morphology was used to determine localization and Vim was chosen as an alternate candidate marker. Vim was predicted to be expressed in dermal
papilla or other background population during the telogen and anagen phases. R1 and 2 shows protein expression for Stat5a and Vim (green),
respectively.
doi:10.1371/journal.pcbi.1003914.g006
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Figure 7. Localization of selected candidate genes from the predicted anagen expanding population. In Situ Hybridization (ISH; RNA)
and immunofluorescence (protein) were performed on mouse skin sections taken from telogen (day0) or anagen (Day 16) phases of the hair cycle,
determined by Supplementary Figure S8A. DAPI was used as a counterstain for cell nuclei (blue). The expression of candidate genes for ISH is seen as
bright foci (red and green) in specific cell types. Note comparisons to technical negative control and positive controls in Supplementary Figure S9.
Foxn1 (red) was identified as a candidate matrix derived cell marker and was used here as a positive control for localization to matrix cells [50]. (A)
ISH: R1 and 2 shows RNA expression for Ovol1 and Smad6 (green), respectively, which were predicted to be expressed in follicle cell populations that
expand during the anagen phase. No expression was observed during the telogen phase (Day 0). (B) Protein staining by immunofluorescence: R1 and
2 shows RNA expression for Ovol1 and Smad6 (green), respectively. Again, no expression was observed during the telogen phase (Day 0).
doi:10.1371/journal.pcbi.1003914.g007
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Tgfb signaling, as well as its proximity to MX cell markers, Smad6

may be an important candidate for future study in hair cycle

regulation. We also noted the periodic expression of bone

morphogenetic protein (BMP) genes, which have been document-

ed as important regulators of skin and hair development. Four

BMP genes showed periodic expression as LFOs: BMP 1 was

found in cluster 1 (dermal papilla-associated) while BMPs 2K, 8a,

and 7 were expressed in cluster 2 (matrix-associated). Other BMPs

such as 2 and 4 were present in the original data, but the

expression data contained too much variability to survive the FDR

cutoff. The complete lists of LFO genes that matched the

background and expanding population clusters, along with

statistical metrics, is in Supplementary File S3.

Identification of negative feedback targets
The coupled oscillator model suggests that out-of-phase

clustering is maintained by positive and negative coupling. The

two population model indicates that these clusters are associated to

specific cell populations. Taken together this is similar to negative

feedback, for example the expanding population may drive the

background population to produce an inhibitory signal, such as

apoptosis, that in turn depletes the expanding population.

However, if the background population is static, how is it

contributing to such a control loop? For example, when the

expanding population is relatively high, one would expect an

increase in the expression of the inhibitory genes from the

background to drive down the expanding population. One

reasonable possibility is that expression changes were occurring

within the background population. On average we found that the

assumption of static intracellular expression was reasonable

enough to estimate population dynamics (recall Figure 4);

however, many individual expression profiles were poorly

described by this assumption (recall Figure 5A). It is possible that

these poorly described genes were undergoing intracellular

changes, and could be responsible for the physical communication

of inhibitory signals from the static background to the expanding

population.

We investigated the possibility that inhibitory signaling genes

may be in the DP enriched group identified as LFO cluster 2, but

not well described by the static intracellular expression model. We

expect such signaling genes to display an increased expression 14

to 16 days after morphogenesis, near the on-set of catagen and

before the sharp decline in the expanding population (Figure 4).

Using this criterion, we identified 88 expression signals (relating to

74 unique genes; see Supplementary File S4). We observed that

these expression signals, on average, are consistent with population

driven changes until near catagen on-set, where they begin to

increase more than what was explained by static intracellular

expression assumed in the 2-population model (Supplementary

Figure S10). Of these genes, 50 were annotated as extracellular

genes which yields and enrichment p-value of 7.46E-18, improved

enrichment over cluster 2 with a p-value of 3.63E-8. For a full list

of significant enrichment categories see Supplementary File S5.

Interestingly, this relatively short list includes Tgfb2, which is

currently thought to be one of the signaling molecules produced in

DP cells to initiate apoptosis in hair epithelial cells at catagen on-

set [7].

Given the observed expression signal, membership in DP

enriched cluster 2, high enrichment for extracellular genes and

inclusion of Tgfb2, this list may contain potential targets for

molecules that communicate an inhibitory signal from the DP to

proliferating hair epithelial cells, closing a negative feedback loop.

Obviously further experiments will be required to test this

hypothesis; however, it does provide a starting point for future

validation of the conclusions drawn above and, perhaps, even

those identified in the model of Al-Nuaimi et al. [10].

General limitations to overall study
Although our approach provides novel insights and genes

associated to the hair follicle, we also recognize that there are

several limitations to this study. We studied microarray-derived

RNA expression data from developing mouse skin that included

non-periodic as well as periodic gene expression patterns. Due to

the cyclic nature of the hair cycle, we chose to focus our study on

the latter. We emphasize that our study would overlook important

regulators of the hair cycle if they were not periodically expressed.

Next, we only considered a single time course, experimental study

(Lin et al, 2009), which obviously limits the data and conditions

available to us (sparse sampling, limited technical replicate

measurements and inclusion of only early cycles), and could lead

to some important genes and cycle dynamics being excluded from

further analysis. Furthermore, biological and technical variation,

along with typical tradeoffs in sensitivity versus specificity

associated with parameter selection, such as p-value thresholds,

will further limit statistical detection of important mRNAs or

expression patterns. Due to concerns of batch effects, we did not

choose to combine additional datasets from other experimental

studies to offset these issues. Instead, we chose to limit the scope of

our investigation to describing a specific, but prevalent, dynamic

pattern observed in the data. Again, by limiting the scope in this

manner, it is likely that some important hair cycle regulators were

overlooked. For example, BMP 2 and 4 have been shown to

influence anagen initiation [48,49], but due to sample variability

these patterns fell outside the range of detection for this study.

However, our investigation did encompass over 3,000 unique

genes, where follow-up dynamic, enrichment and experimental

analyses all suggested a possible role in the hair follicle and cycle

dynamics.

Study design also limited us to time course over a single cycle of

follicle synchronized hair growth. We were not able to test if the

identified expression patterns, specifically synchronized out-of-

phase gene expression, continued for additional cycles. This is a

typical experimental limitation due to the loss of follicle

synchronization as animals mature, at latter stages of hair growth.

This is a different concept from the synchronization describing

gene expression patterns. One might still expect that similar gene

expression patterns within individual follicles, and the surrounding

microenvironment, continue with additional cycles; however,

without single follicle tracking, we cannot confirm this. Further-

more, our dynamic coupled oscillator model would never predict

such follicle-level de-synchronization, as we did not include any

mechanisms for cycle variability nor did we include the concept of

individual follicles. Accounting for stochastic variation and

spatially modeling individual follicles that are themselves coupled,

represents an additional level of complexity that may more

accurately model the rich dynamics of the hair system, but was not

considered in this study.

Finally, we modeled gene expression from whole skin, since

isolation of hair follicles prior to gene expression profiling is

resource intensive and was beyond the scope of our work. In doing

so, we relied on the 2-population model, cell type specific

enrichment (based on experimentally purified cell populations

[36,37]) and experimental imaging to make associations between

computationally derived gene groupings and distinct biological

populations. While these results were very encouraging, we would

like to emphasizes that the computationally derived populations do

not represent a specific, predefined cell type. Supplementary

Figure S7A shows that the majority of the signature genes were not
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identified, and the populations contained signature genes from

multiple cell types. However, we do note that even experimentally

derived gene signatures also demonstrate overlap (see Supplemen-

tary Figure S7B). Furthermore, it likely that cell types not

investigated by enrichment also contributed to the estimated

populations, such as endothelial cells involved in capillary network

remodeling, adipocytes or immune cells that may have active roles

in hair growth. Ultimately, we identified many associations

between the computationally derived gene groupings and distinct,

hair cycle relevant cell populations, but we cannot exclude that

gene expression unrelated to the hair follicle or hair growth may

have contributed to both false positives and negatives.

Conclusion
In this study, we focused on potentially periodic gene expression

patterns in whole skin that changed on the same time-scale as

cyclical hair growth. We identified two distinct clusters consistent

with synchronized, out-of-phase gene expression (Figure 1 and 2).

Through nonlinear-dynamic analysis, we proved that a simple,

coupled oscillator model was mathematically sufficient to recapit-

ulate this observed synchronization, and that the coupling scheme

involves both positive and negative coupling (Figure 3A). We go

on to show that these clusters can be associated with either static or

expanding cell populations (Figures 4 and 5), and that the size of

the expanding population, determined by gene expression data,

was consistent with the population dynamics of follicle epithelial

cells (Figure 4). Follow-up experimental and enrichment analyses

indicated that the corresponding genes (provided as Supplemen-

tary Information File S3) were strongly associated with biologically

distinct cell-types, such as MX or DP cells (Figures 6 and 7,

Supplementary Table S1). Taken together, these results were

consistent with regulatory mechanisms involving negative feed-

back from background mesenchymal cells to the expanding

epithelial cells (see summary Fig 8). Finally, we identified a subset

of genes that could potentially communicate the inhibitory signal

to the follicle (provided as Supplementary Information File S5).

Other aspects of the study provided interesting, but speculative,

insights on possible alternative hair cycle states that are similar to

those of miniaturized hair follicles (Figure 3B).

The model of hair cycle presented here suggests some role for

proliferating follicle epithelial cells to be regulated by a systems-

level inhibitory response, likely to emanate from the DP.

Conceptually, regulated apoptosis could be one way in which a

large number of genes from the same general population of cells

are inhibited by a second population. This mechanism has also

been explored in a kinetic model of hair cycle which shows that

negative feedback via DP regulated apoptosis is sufficient to

account for the cyclical nature of hair growth [10]. Because

mRNA expression data underlies the model presented here, we

were able to advance this idea a step further and identify candidate

signaling proteins based on the dynamics of the gene expression.

Although experimental confirmation of these candidates was

beyond the scope of the investigation, we note that the list was

highly enriched for extracellular proteins and with only 74 genes

we were still able to identify Tgfb2 as a possible candidate. For

clarity, we emphasize here that negative coupling is not the only

aspect of our model, which also includes intrinsic oscillations and

positive coupling. In fact, our model predicts that reduction of the

DP associated oscillators actually results in a shortened cycle (see

Figure 3B). Furthermore, the true physical mechanisms underly-

ing the hair cycle are likely far more complex, and studies show

that anagen length and hair size actually decrease upon depletion

of DP cells [55]. Both our computational and existing experimen-

tal results suggest that inhibitory regulation of MX derived cells

cannot describe all aspects of the hair cycle; however, it is likely to

play an important role, with one possibility being regulated

apoptosis [7,56], and the genes we have identified here could help

guide follow-up experiments.

Finally, the most intriguing aspect of this study was the

predicted proximity of the hair system to a critical phase transition

(Figure 3B). In the observed dynamics the hair system was in a

stable p-state, in which the proportion of positive and negative

oscillators may vary, or at least increase, without affecting the

overall period. However, a decrease in this proportion, for

Figure 8. Summary schematic of the hair oscillator. Synchronization (red line, corresponds to Figure 2B) is shown to follow the temporal
trajectory of the hair follicle. Rough predictions of relative size for expanding matrix cell and background dermal papillae populations are indicated at
specific times in the cycle by green and blue ovals, respectively (similar to figure 4). The arrow and bar indicate positive and negative coupling to the
mean field, respectively. The symbol is shown in bold when corresponding genes reach there maximum as estimated in Figure 1C.
doi:10.1371/journal.pcbi.1003914.g008
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example a reduction in positively coupled oscillators, would throw

the system in to a travelling wave state, where the two clusters

drive each other into higher frequency oscillations. If this

behaviour can be validated, it would have important biological

implications. Biologically the model suggests that there is a

systems-level regulation within and between genes related to

follicle epithelial and background mesenchymal cell populations,

which represents a balance of negative and positive driving forces.

Loss of regulation of the DP population, for example, would mean

a decrease in negative forces acting on the epithelial population

and would throw the system into a fundamentally different state.

This new state would be characterized by a drastically reduced

period of expression, similar to hair miniaturization resulting from

androgenetic alopecia. Unfortunately, testing of this hypothesis

could prove difficult. Removal of several genes via genetic

knockout would have consequences not accounted for here;

however, inhibition of the physical signaling between the DP and

MX derived populations may be more tractable. Excitingly, a

recent study by Rompolas et al. [57] introduced new methodology

to explore such interactions of the hair follicle in live mice using

laser ablation of DP cells. The approach not only allowed for the

elimination of a specific cell population, but also removed

technical complications associated with follicle synchronization,

as individual follicles could be monitored over time. It would be of

future interest to see if this methodology could be modified to

properly test the predictions presented herein.

To build on the insights of the present framework, we can offer

several additional directions for future work. For example, there

are several possible advancements to the coupled oscillator model,

including: analytically solving the existing coupling scheme for

excitable elements (similar to [58]) opposed to oscillators would

better capture the pulsing behavior of gene expression and hair

growth; integrating noise, known to have a major impact of

synchronization [59], could help capture both expression and

cycle variability; and coupling together multiple coupled systems

could capture associations and variation between follicles.

Experimentally, new time course data could identify new

behaviors. Performing a single extensive time course from

morphology to end of second round of hair growth would capture

anticipated transients and determine a proper time scale for

synchronization. Increasing the sampling frequency could identify

high frequency oscillators and perhaps provide a means to couple

circadian rhythm to the current system. Given that we systemat-

ically identified two clusters from whole skin data, a beneficial

advancement would be to directly collect data from follicle specific

cell types, such as MX and DP cells. Producing a time course using

purification techniques similar to Rendl et al. would be the most

direct way to prevent confounding expression signals from non-

relevant cell types and provide a specific interpretation of modeled

populations. In our experience, any additional time courses would

need to have, at a minimum, a sampling rate 3 times that of the

desired frequency for identification. However, we would strongly

suggest doubling the number of points in the time course and

including 3 replicates at each point for statistical and modeling

considerations. Our hope is, that by incremental advancement, the

framework provided here can be used to bridge the gap between

high-throughput measurement data and systems-level properties of

hair cycling.

Methods

Ethics statement
This study was performed in strict accordance US Animal

Welfare Regulations at an AAALAC accredited site. The research

protocol was approved by the Institutional Animal Care and Use

Committee of Procter & Gamble. Every effort was made to

minimize suffering of all animal subjects.

Data acquisition
We employed data originally generated in Lin et al. [11]. The

authors profiled both second, naturally synchronized and deple-

tion-induced hair cycles. Samples were collected from the upper-

mid region of C57Bl/6 mice and analyzed using Affymetrix

Mouse Genome 430 2.0. For additional experimental details

please refer to the original article.

The raw intensity data was collected from the NCBI Gene

Expression Omnibus as accession number GSE11186. The data

was uploaded in CEL file format and preprocessed for quality

control. Sample GSM281802 was removed based on suspected

RNA degradation, a mean correlation coefficient less than 0.95,

multiple outliers determined by the MA plot, and high background

error and variation determined by RMA. The remaining samples

were summarized and normalized using the RMA function from

the Bioconductor ‘affy’ library in R, applying quantile normali-

zation and RMA background correction from affy version 1.1. A

log base 2 transform was applied to the expression data for all

subsequent analysis except for the 2-population mixture model. An

R script containing the general QC and RMA methods used can

be found in the Supplementary File S6.

The two experimental conditions corresponding to the natural

and induced hair cycles, were combined into a single time course

as suggested by the original authors. The five sampled time points

for the induced cycle, {3,5,8,12,17} days, were mapped to time

points in the natural cycle, {24,25,27,29,37} days, based on the

morphology of skin sections. Hair morphogenesis during synchro-

nous growth was established by histologic criteria [11]. Combining

samples with similar morphologies, and therefore in similar hair

cycle phases, we expect to limit the variability of gene expression

that is associated to the hair cycle phenotype.

Visualization of expression data
We visualized the expression data using standard heat maps.

Multiple values at a given time point were averaged. For

visualizing expression values of different scales in a single image

it was necessary to normalize the data. Two different normaliza-

tion schemes were used. Figure 1 focuses on relative levels of

periodically expressed genes, here we used a 0–1 normalization:
x{minx

maxx{minx

. The associated time scale is ‘days postnatal’ and

corresponds to the natural second cycle; the induced cycle was

matched to time points as discussed above. In Figure 5 and the 2-

population mixture model, we applied a fraction of max

normalization,
x

maxx

, to capture information of relative fold

change in expression. The associated time scale was days from

initiation to emphasize differences in the natural and induced

cycle, which is assumed to begin after morphogenesis, which is

<23 days, and depletion, respectively. The normalization schemes

described here were for visualization purposes, and were not used

in any statistical analysis. For all time series, we present a color bar

to roughly indicate the corresponding phase of the hair cycle, the

timing for the color bar was taken from [11].

Periodic identification
Fourier Series Decomposition of expression signals. To

identify periodic signals in the mRNA expression data, we applied

a robust regression method described in the literature [29]. This

method allowed us to properly account for non-uniformly sampled
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time points, handle outliers in noisy expression data and estimate

the Fourier series decomposition of the signal. The method attempts

to estimate a frequency representation of the discrete signal,

equivalent to a discrete Fourier Series Decomposition (FSD),

yk~a0z
Xq

i

½a1,icos(witk)za2,isin(witk)�, ð4Þ

by fitting the coefficients a0, a1,i and a2,i using robust linear

regression over q pre-selected frequencies, wj . We applied an M-

estimator with Tukey’s biweight for the robust linear regression as

suggested by the literature [29,60]. Given the coefficients, we

estimated the power spectrum defined as

B(wi)~
K

4
a2

1,iz
K

4
a2

2,i,i~1,:::,q, ð5Þ

where K is the total number of discrete points that make up the

signal. The power spectrum was then used to calculate Fisher’s g-

statistic [61]

g~
maxi½B(wi)�Pq

i B(wi)
: ð6Þ

The g-statistic summarizes the relative power of the principal

periodic component (PPC), the strongest contributing frequency of

the signal. We also estimated the goodness-of-fit using the standard

coefficient of determination, r2, (see Supplementary Figure S1) and

the mean absolute deviation (see Supplementary Figure S11) for

both the FSD and the PPC. Python code for estimating the FSD and

calculating the g-statistic can be found in the Supplementary File S6

(at time of submission updates were maintained at https://github.

com/Rtasseff/robustFourierSeries).

Estimation of statistical significance of periodicity in

expression signals. A permutation strategy was used to find the

p-value for the g-statistic. To improve p-value estimation, we

applied a Generalized Pareto Distribution (GPD) to the tail of the

permutation distribution when possible as described in the literature

[62]. In some cases this can greatly reduce the number of

permutations needed to approximate low p-values. We used one

thousand to one hundred thousand permutations as needed to apply

the GPD or find ten excedents to the g-statistic for calculation of the

p-values. Finally, the false discovery rate was calculated over all

probesets and a threshold of 0.10 was applied [63].

The complete periodic identification procedure was performed

on each of the normalized expression signals. No pre-filtering or

pre-selection of probesets was applied. We note that the selection

of frequencies is not obvious for non-uniformly spaced time points;

however, false positives due to improper frequency selection are

mitigated by subsequent p-value calculations. We did find that the

inclusion of very high frequencies, near or greater than 1
2

the

minimum sampling rate, or very low frequencies, corresponding to

periods much greater than the range of the time course, tended to

‘mask-out’ other frequencies in the signal when calculating the g-

statistic (EQ 6), resulting in an increase of false negatives. This was

due to choosing a frequency for the g-statistic before, and

independently from, the p-value estimation. The frequencies

investigated along with the number of probesets identified are

shown in Supplementary Figure S1. Python module for the

application of the GPD can be found in the Supplementary File S6

(at time of submission updates were maintained at https://github.

com/Rtasseff/gpdPerm).

Characterization of periodic signals as oscillators
Calculation of instantaneous state variables for

individual oscillators. To describe the expression dynamics

in terms of oscillators, we calculated the instantaneous phase and

frequency. If we imagine an oscillator as a point revolving around

the unit circle in the complex plane, then we can describe its

trajectory by finding its phase (or angle) and frequency (or rate of

change). Here, trajectories are a result of the microarray time

course data for samples of mouse skin, and therefore represent

averages over this tissue. Given an analytical, or continuous,

representation of the signal, we can use common methods applied

in signal processing to calculate these properties [64–66]. Above,

we estimated FSD of the periodic expression signal which can be

further simplified by only considering the term associated with the

PPC. Both the FSD and PPC provide us with an analytical

representation of the signal, and Supplementary Figure S1 and 10

shows that both are reasonable fits to the data in terms of the

coefficient of deviation and the median absolute deviation. Next,

we move to the complex plane by calculating the so called analytic

signal, sa(t), defined as:

sa(t)~x(t)ziy(t)~r(t)eih(t), ð7Þ

where the real part, x(t) is the original signal at time t and the

imaginary part, y(t), is the Hilbert transform of the signal, i is the

imaginary unit, r(t) and h(t) are the instantaneous amplitude and

phase, respectively. For x(t) we can use the discrete expression

values (shifted by a0 from EQ 4) or one of the continuous

approximations FSD or PPC (also determined by EQ 4). To solve

for y(t), we can simply replace sin(wt) with {cos(wt) and cos(wt)
with sin(wt) in the FSD or PPC from EQ 4. From this we can

easily see that h~arctan2
y

x

� �
. Where arctan2 is the standard

variation of the arc tan function that provides sign information.

Finally, we can calculate the instantaneous frequency by taking the

derivative:

_hh~
x _yy{ _xxy

x2zy2
, ð8Þ

where the dot indicates differentiation with respect to time. We

note that this formulation avoids discontinuities at the 2p intervals.

We also note that the instantaneous amplitude can also be

calculated, but will not be used in subsequent analysis. Python

code for calculating oscillator properties can be found in the

variables module in the Supplementary File S6 (at time of

submission updates were maintained at https://github.com/

Rtasseff/oscillator).

Calculation of complex order parameters for a system of

oscillators. We calculated a set of complex order parameters to

quantify the collective behavior of the system. In oscillatory

systems it is common to use the order parameters Zj defined as:

Zj(t)~Rj(t)e
iWj (t)

~
1

N

XN

n~1

eijhn(t), ð9Þ

where N is the number of oscillators (gene expression trajectories

identified as periodic) and hn(t) is the instantaneous phase or the

position of oscillator n on the unit circle at time t [31,32]

calculated using EQ 7. Here the subscript j on the left hand side

indicates which order parameter is being calculated, higher values

of j consider higher harmonics of synchronization in the system.

Note that EQ 9 is identical to EQ 1 presented in the Results and
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Discussion, and was included here only to maintain the continuity

of the method descriptions. Figure 2A shows the magnitude of the

first and second order parameter calculated over the low

frequency oscillators (period corresponding to 31 days) and

randomized signals. We computed random signals by adding in

a phase shift chosen uniformly at random over 0–2p for all

oscillators. We note that the magnitudes are similar when

calculated over all signals found to be periodic and not limited

to the low frequency oscillators (Supplementary Figure S12). In

this analysis, we also considered individual order parameters for

each cluster. This was done by doing the sum in equation 9 over

the oscillators associated to a specific cluster. We used lowercase

letters, for example zj , to distinguish these from the global order

parameters. Figure 2B shows the first order parameter for the full

system as well as the two clusters. Python code for calculating

order parameters can be found in the metrics module in the

Supplementary File S6 (at time of submission updates were

maintained at https://github.com/Rtasseff/oscillator).

Coupled oscillator model
We employed a mathematical description of coupled oscillators

to study general features of the synchronization observed in the

hair cycle data. We considered a modified version of the simple

Kuramoto model [16] suggested by Hong and Strogatz [33].

Hong and Strogatz show that a two group model, one positive and

one negative, is sufficient to spontaneously produce two out-of-

phase clusters. Oscillators which are positively or negatively

coupled will be drawn towards or pushed away from other

oscillators on the unit circle, respectively. After some simplification

and incorporation of EQ 9 the governing equations reduce to

_hh
k

n~vnzKkRsin(W{hk
n),n~1,:::,N ð10Þ

where hk
n is the phase of the nth oscillator, calculated by EQ 7,

which is assigned to group k, vn is the natural or intrinsic

frequency for hk
n , Kk is the coupling constant for group k, R~R1

and W~W1 from EQ 9 where the subscript is dropped for

simplicity. The dot denotes change with respect to time, and _hh can

be calculated using EQ 8. Recall that oscillators represent

probesets with expression patterns identified as periodic. Here

we assume two groups k~(z,{) where K (z)~{1 �Q � K ({)

and Qw0, K (z)
w0, K ({)

v0. Introducing these two groups to

EQ 10 we have

_hh
z

n ~vnzKzRsin(W{hz
n ),n~1,:::,M

_hh
{

n ~vnzK{Rsin(W{h{
n ),n~Mz1,:::,N

ð11Þ

where M is the number of positively coupled oscillators. We note

that EQ 11 is identical to EQ 2 presented in the Results and

Discussion, and was included here only to maintain the continuity

of the method descriptions. We also reemphasize several

simplifications in this formulation. First, the model is a mean field

approximation in which each individual oscillator is connected to

all other oscillators through the order parameter, W. This is

derived from an assumed all to all connectivity, which is obviously

not expected in a gene network; however, the mean field

approximation works well if the effective coupling on the

oscillators (or genes) is well described by an average of the

individual couplings. Such models have successfully described high

level properties of many large, complex systems including

statistical mechanics (overview of several models [17]), economics

[18,19] and even social networks [20]. Second, we note that the

variables here are considered independent, for example the model

assumes that the proportion of oscillators can be varied without

affecting other independent variables, such as the ‘intrinsic’

oscillations, vn. However, in reality removal of genes from the

system will have an impact not captured in the model, such as an

alteration or even cessation of the assumed ‘intrinsic’ oscillations.

Finally, we emphasize that the coupling describes oscillator

interactions and not necessarily the underlying driving force for

oscillation, which is typically attributed to vn. With this level of

abstraction and simplification it was not possible to describe most

of the details of the hair cycle including mechanistic molecular

connectivity; however, we were able to describe more general

aspects of the system such as a stable, synchronized state.

To solve the system, we follow the original paper [33], and

summarize the process here for the reader’s convenience. We can

reduce the model to a low dimensional system in terms of the first

order parameters for each group. First, we consider a system

where N??, we validate the use of this assumption later. Second,

we assume the vn were randomly distributed via a Lorentzian

probability distribution g(v)~c(p(v2zc2)). Importantly, we note

that use of a single frequency, opposed to a distribution, will not

recapitulate the distributed phases observed in Figure 1C [67].

Here, we have moved to a rotating frame such that the mean of

g(v) is zero; in our system this was done by subtracting the

principal periodic component,
2p

31
radians per day. Finally, we can

apply the ansatz of Ott and Antonsen [68] which yields

_zz(z)~{2 � cz(z)z(p � z(z)zqz({)){(p�zz(z)zq�zz({))z(z)2,

_zz({)~{2 � cz({){Q½(p � z(z)zqz({)){(p�zz(z)zq�zz({))z({)2�,
ð12Þ

where z(z) and z({) are the first order parameters (similar to EQ 9

with j~1) for the two oscillator groups related to positive and

negative coupling, respectively; p is the proportion of positively

coupled oscillators and q~1{p. The bar denotes complex

conjugate. We note that EQ 12 is identical to EQ 3 presented

in the Results and Discussion, and was included here only to

maintain the continuity of the method descriptions. Using EQ 12

we can solve for the critical value of pc such that only the

incoherent state is stable when pvpc and is, therefore, the lower

bound for observing synchronization. We can also estimate other

bifurcation points of the system, pl and pu. For more details see

[33].

We solved for various properties of the hair cycle system using

EQ 12 and the oscillator state variables solved for above. We

assumed the observed period of the hair cycle system was at a

quasi-steady-state, where the magnitude of the first order

parameter is constant and the rate of change of the phase is also

constant. This was demonstrated by R1 observed in Figure 2A.

Given the quasi-stead-state, we solved EQ 12 in a rotating frame

described above, allowing us to set the left hand side to zero. We

considered two possible configurations of assigning clusters (from

Figure 1C) to positive or negative coupling groups. After coupling

assignment, we calculated p, q, z({) and z(z) from the data and

solved EQ 12 for the unknown parameters Q and c. Then Q and c
were used to solve for pc. We note that EQ 12 was solved by letting

z({) and z(z) lie on the real axis so they were equivalent to {r({)

and r(z), respectively. This assignment can be done, without loss

of generality, for a quasi-steady-state, out-of-phase system. For the

configuration with (clust1) = (+) and (clust2) = (2), we found that

the system was unstable (Figure 3A purple dashed line). We

calculated pvpc and cv0 which is not physically realizable.

However, we found the opposite configuration, with (clust1) = (2)
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and (clust2) = (+), to be a stable solution with c~0:0057w0
radians per day and p~0:64wpc~0:39 (Figure 3A red solid line,

recall actual data in Figure 2A red, see Supplementary File S2 for

a simulation describing individual oscillators with these properties).

The bifurcation diagram was solved numerically (Figure 2B).

We found the long time solutions to the system of ordinary

differential equation (EQ 12) for various values of p while holding

all other variables constant. We found t~10000 to be sufficient.

We verified the assumption of N?? by simulating the low

dimensional system, EQ 12, and comparing that to simulations of

the high dimensional, EQ 10, with N~3988 (Supplementary

Figure S13). Given noise, due to initial configurations, associated

with the finite, high dimensional system, 100 iterations were

calculated and the mean and standard deviation were reported.

The two representations are sufficiently similar and have nearly

identical steady-states. All numerical simulations were performed

in Matlab [69] using ‘ode45’. All Matlab scripts necessary to solve

for model variables and reproduce simulations found in figures

and movies are available in the folder ‘meanField’ in Supplemen-

tary File S6.

Estimating relative size and expression of two cell
populations

Observations of two distinct gene expression clusters motivated

us to explore possible relationships to different cell populations

within the hair follicle. We considered the scenario in which

observed expression changes are due to changes in relative cell

population size as opposed to intracellular changes. In Supple-

mentary Figure S3, we showed a simple example in which X and

Y had a high and low concentration in pop 1, respectively, and

reciprocal concentrations in pop 2. While varying the size of pop

1, holding the pop 2 size constant and holding all internal

concentration level constant, we can see that the observed

concentration of X and Y change, and do so in an out-of-phase

manner. To explore this in our system we wished to reverse the

process and estimate the relative sizes and intracellular expressions

given the observed mixed expression. To achieve this we applied

in silico microdissection [35].

Briefly, in silico microdissection works by applying a simple

linear model of mixed samples

x
j
i~ajy

p1
i z(1{aj)y

p2
i , ð13Þ

where x
j
i is the observed expression of gene i in mixed sample j; y

indicates the intracellular expression in populations p1 and p2; and

aj is the cell fraction of p1 in mixed sample j. Given the cell

fraction, a, for each sample we can solve EQ 13 for the internal

concentration in the two populations. In this situation each gene i
is an independent problem, each solved via simple linear

regression over all mixed samples j. This is an overdetermined

system if the number of populations considered is less then the

number of samples. We can also recast the problem to solve for a
given the internal concentration for each population. In this

situation each mixed sample j is now an independent problem,

each a constrained linear problem over all genes i. Here a is

constrained between 0 and 1, the problem is convex and can be

solved efficiently. An iterative process, similar to expectation-

maximization, can be used to solve for both a and the y’s

simultaneously.

We consider a model of an expanding cell population mixed

with a constant background population. We treated the hair cycle

expression chips as independent mixed samples each with possibly

different cell fractions. No information of cycle type or time was

needed, nor any strategy for combining samples as in the previous

periodic identification. For later comparisons of the induced and

natural cycle, we set the time relative to cycle initiation, which we

assumed to be after morphogenesis (postnatal day 23) or after

depletion. This time scale was only used for graphical representa-

tion, and was not used in any calculations. A linearly increasing

function from 0 to 1 was used as the initial conditions for a, the cell

fraction of the expanding population. We also included the

expression of all 45k+ probesets without the log2 transform, as

suggested in [35], all other preprocessing was the same. Given this,

over determined, model we implemented the above iteration

strategy to solve for a and the relative size (Figure 4) and the internal

expression (Figure 5C). We note here that it is not reasonable to

expect all intracellular expression to remain constant over the whole

hair cycle; however, if the relative population change is large, as

seen here, compared to the intracellular expression change for many

genes then it is a reasonable assumption.

While calculating the internal expression for the two popula-

tions, we also estimated the corresponding standard error using

common methods associated with linear regression. The standard

error was used to produce a t-statistic and p-value for each

probeset, which indicated the extent to which a gene was

differently expressed between the two populations (Figure 5B).

The probesets for the LFO subgroup with a t-statistic above a 0.10

false discovery rate were assigned to the population in which they

were predicted to have higher expression. We note that nearly all

of the LFOs met the statistical requirements, 3975 out of 3988.

This was equivalent to separating the probesets into two groups

based on the estimated t-statistic, and was found to be equivalent

to separation of LFOs by phase (Supplementary Figure S6).

We also considered a computational negative control. In the

above analysis, we inherently assumed that expression is related to

time, after morphogenesis or after depletion. Our population

analysis allowed us to then associate expression to relative

population size, and therefore, plot relative population size as a

function of time. Here we considered a negative control, that

expression is random with respect to time, and not related to hair

cycle. To achieve this, we randomly permuted (or shuffled) the

time courses for each probeset. For a proper comparison the

depletion and naturally induced time courses were not intermixed,

and kept separate. After permutation, we employed the exact same

analysis and plotting procedure as above (used to produce Fig. 4

and 5). The results are shown in Supplementary Figures S4 and

S5. In our negative control, we could see that there was no

indication of expansion and depletion corresponding with anagen

and catagen, respectively (Supplementary Figure S4). Further-

more, we did not observe improved statistics, as in coefficient of

determination or the t-statistic (Supplementary Figure S5). We

considered this sufficient evidence that the negative control

produced only random population changes with respect to time,

as expected.

All code for estimating the two populations was written in

Matlab and implemented by the scheme discussed in [35]. The

constraint linear problem was solved using Matlab Optimization

Toolbox function ‘lsqlin’ with default options. Standard errors

were estimated using the Matlab Statistics Toolbox function

‘regstats’. Matlab scripts for running all analysis described above

and for generating the data in associated figures are available in

the ‘2pop’ folder in Supplementary File S6.

Functional, hair related, and cell type enrichment analysis
We used the online tool DAVID 6.7 to perform basic

enrichment analysis [70]. We used the full mouse genome as the

background gene set. For biological process enrichment, we used
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the Gene Ontology annotations under ‘GOTERM_BP_FAT’ and

for pathway enrichment, we used KEGG annotations under

‘KEGG_PATHWAY’. The enrichment was done using different

target sets indicated in the main text.

We used the Normalized Google Distance (NGD) to estimate

enrichment of genes related to hair. The NGD is a semantic

similarity measure [71], which for two terms x and y is defined as

NGD~
max½log(Mx),log(My)�{log(Mx,y)

log(M){min½log(Mx),log(My)� ð14Þ

where Mx and My are the numbers of pages the terms x and y are

found in, respectively, Mx,y is the number of co-occurrences and

M is the total number of pages considered. We note that the more

frequent x and y co-occur the lower NGD will be, and that if

Mx,y~0 then NGD = inf. Here we applied the search to all

abstracts in the NCBI PubMed database. We calculated the NGD

between the term ‘hair’ and all mouse gene symbols. All genes with

an NGD to ‘hair’ of less than 1.0 were used as the final set of Hair

related genes. We applied a standard enrichment test using a

hypergeometric distribution. The target set was the list of all

periodic genes and the background set was the full mouse genome.

The threshold of 1.0 was chosen as it is the NGD of the expected

value for independent or unrelated terms. Briefly, given a set

number of occurrences for a term x then the probability of finding

term x in M pages is p(x)~Mx=M . Assuming that two terms, x and

y are independent, we have Mx,y~Mp(x)p(y)~
MxMy

M
. Plugging

these values into EQ 14 we find that NGD = 1.

A cell type enrichment analysis was used to link model

populations to specific cell types. Two existing studies, Rendl et al.
[36] and Greco et al. [37], dissected hair follicles into specific,

predefined cell types relating the the hair follicle: dermal papilla,

melanocytes, matrix cells and outer root sheath cells from [36] and

Bulge cells from [37]. Using mRNA microarray data the studies

defined gene signatures for each population as sets of probesets and

corresponding genes with expression nearly exclusive to a particular

cell type. Using these signatures to annotate probesets with a

particular cell type, we applied standard enrichment tests using a

hypergeometric distribution. The target set was the list of genes

determined to be in the expanding or background population (seen

in Figure 5C) and the background set was the full mouse genome.

Induction of hair cycle in C57Bl/6 mice
Male mice, C57Bl/6 (Charles River Laboratories, Portage, MI)

at 62-66 days of age, in the telogen phase of the hair cycle [5] are

shaved in the dorsal area (area of 1.5 inches62 inches) followed by

treatment with Nair (Church & Dwight Co.) to the same area for

1 hour before washing off to initiate the hair cycle. Nair depletion

induces a similar response as wax by damaging the hair shaft to

start a homogenous re-entry into anagen [72]. Mice were collected

at various timepoints after induction treatment.

mRNA localization by in situ hybridization (ISH)
ISH was performed using QuantiGene ViewRNA protocols

(Affymetrix, Santa Clara, CA). Five mm formalin fixed paraffin

embedded (FFPE) sections were cut, fixed in 10% formaldehyde

overnight at room temperature (RT) and digested with proteinase

K (Affymetrix, Santa Clara, CA). Sections were hybridized for

3 hours at 40uC with custom designed QuantiGene ViewRNA

probes against specific target genes and the positive control genes

used were Fgf7 for dermal papilla cells and Foxn1 for matrix cells

(Affymetrix, Santa Clara, CA).

Bound probes were then amplified per protocol from Affymetrix

using PreAmp and Amp molecules. Multiple Label Probe

oligonucleotides conjugated to alkaline phosphatase (LP-AP Type

1) were then added and Fast Red Substrate was used to produce

signal (red dots, Cy3 fluorescence). For two color assays, an LP-AP

type 6 probe was used with Fast Blue substrate (blue dots, Cy5

fluorescence) followed by LP-AP type 1 probe with Fast Red

Substrate (red dots, Cy3 fluorescence) to produce a dual

colorimetric and fluorescent signal. The probes sets used for ISH

are described in Table S2. Slides were then counterstained with

hematoxylin. Serial sections were also subjected to hematoxylin

and eosin staining per standard methods to confirm the identity of

cells in the region of ISH signals. Images were collected using a

Deltavision microscope (Applied Precision), and the fluorescent

images were created using softWoRx 5.0 (Applied Precision).

The in situ hybridization assay in this study utilizes branched

DNA (bDNA) technology, which offers near single copy mRNA

sensitivity in individual cells. The bDNA assay uses a sandwich-

based hybridization method which relies on bDNA molecules to

amplify the signal from target mRNA molecules. Each probe set

hybridizing to a single target contains 20 oligonucleotides pairs.

This was followed by sequential hybridization with the final

conjugation of a fluorescent dye. Thus, each fully assembled signal

amplification ‘tree’ has 400 binding sites for each labeled probe.

Finally, when all target specific oligonucleotides in the probe set

have bound to the target mRNA transcript, the resulting

amplification of signal approaches 8000-fold (20 oligonucleotides

times 400 binding sites = 8000 fold).

Protein antigen detection by immunofluorescence assays
Immunofluorescence staining was performed on fresh frozen

cryosections (10 mM thickness) or FFPE sections (5 mM thickness)

of mouse skin to visualize the hair follicles present at Day 0 and

Day 16. Cryosections were stored at 280uC until use. Cryosec-

tions were dried for 30 min at room temperature and fixed by

immersion in ice-cold acetone for 10 mins. Cryosections were then

air-dried for 5 mins and washed three times with PBS. For FFPE

sections, deparaffinzation was performed using xylene and series of

alcohol changes. Antigen retrieval for performed using 0.05%

trypsin at 37uC for 20 mins. Both cryosections and FFPE sections

underwent the same treatment after this step. The sections were

blocked for 1 hour using normal donkey serum (NDS, dilution

1:10; Sigma-Adhrich) in PBS. Sections were then incubated with

specific primary antibodies (as described in Table S3) in 1:5

dilution of blocking solution for overnight at 4uC and then washed

three times with PBS. Next, sections were incubated with

Alexafluor-488-conjugated donkey anti-rabbit and Alexafluor-

594-conjugated donkey anti-goat antibodies (Vector Laboratories,

1:500) for 1h at 37uC, washed three times with PBS. Final wash

was performed with DAPI and the sections were mounted using

Flurosav (Calbiochem). Images were collected using a Deltavision

microscope (Applied Precision), and the fluorescent images were

created using softWoRx 5.0 (Applied Precision). Foxn1 was used as

a positive control for matrix cells based on previous literature [50].

Morphology, as determined by brightfield and DAPI staining, was

used to identify DP localization. We considered Fgf7 [42] as a

positive control for DP localization; however, all antibodies tested

showed significant non-specific staining.

RNA extraction and quantitative Real Time PCR
Total RNA was extracted from mouse skin samples at days 6,

16, 23, 29, 38, 44 and 59 using Agilent’s Total RNA isolation mini

kit (Agilent Technologies). Reverse transcription reaction was

performed with 500 ng of total RNA using the Superscript VILO
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cDNA synthesis kit (Life technologies). A 1:25 dilution of cDNA

was used in the QRT PCR reaction. QRT-PCR was carried out in

a 10 ml reaction mixture with gene-specific primers and b-Actin

using RT2 SYBR Green ROX qPCR Mastermix (Qiagen). The

PCR conditions were 95uC for 10 min, and 40 cycles of 95uC for

15 s, 59uC for 30 s, 72uC for 30 s on the ABI HT 7600 PCR

instrument. All samples were assayed in quadruplicate. The

differences in expression of specific gene product were evaluated

using a relative quantification method where the expression of

specific gene was normalized to the level of b-Actin. Primer

sequences available in Supplementary Table S4.

Supporting Information

Figure S1 Details on the periodic identification by frequency.

Probesets were separated into groups based on the frequency of

the Principal Periodic Component, a combined group was shown

at the far left. (Top) Box plots of the Coefficient of determination,

also known as R-Squared values, to indicate goodness of fit. Boxes

show the Interquartile range. Results were shown for the complete

fit (Fourier Series Regression) and for the simplified fit involving

only the Principal Periodic Component. (Bottom) Histogram to

show number of probesets at each frequency, not the y-axis is in

log scale.

(EPS)

Figure S2 Schematic of possible levels of synchronization and

the corresponding first and second order parameters. Referring to

EQ 9 in the Methods section of the main text, the direction of the

arrows corresponds to Wj and the magnitude corresponds to Rj .

These order parameters would represent the full system and not

tracking of individual clusters, noted in the main text by lowercase

z and r. (A) Incoherent state, (B) complete synchronization, (C)

asymmetric, out-of-phase, synchronization, (D) symmetric, out-of-

phase, synchronization.

(EPS)

Figure S3 Schematic of a possible two-population expression

profile resulting in out-of-phase expression. Here, X and Y had

high and low concentration in pop 1, respectively, and reciprocal

concentrations in pop 2. The size of pop 1 was varied while

holding the size of pop 2 constant.

(EPS)

Figure S4 Negative control for the estimated relative population

size in the two-population model. We shuffled the gene expression

for each time course so that it did not associate to the hair cycle,

see Methods in main text for more details. Importantly, no

significant changes in expanding population size were observed

with respect to time. The difference between the two time courses

may be related to biological or technical batch effect.

(EPS)

Figure S5 Negative control for the two-population model model

fits and estimated differential expression. We shuffled the gene

expression for each time course so that it did not associate to the

hair cycle, see Methods in main text for more details. Considering

all probesets, left shows coefficient of determination for 2-

population model of expression (negative control for Figure 5A),

right shows t-statistic for estimated differential expression (negative

control for Figure 5B). Importantly, probesets corresponding to

Low Frequency Oscillators (LFO) did not show improved results

compared to other probesets.

(EPS)

Figure S6 Two phase histograms shown together with separa-

tion determined by different methods. Top (same as in Figure 1C)

shows separation directly considering phase. Bottom shows

separation determined by the estimated differential expression in

the two-population model. Grouping by estimated cell population

or by approximated phase produced nearly identical results.

(EPS)

Figure S7 Overlap with hair cell type specific gene signatures.

Signatures in the form of probeset IDs were taken from the

literature (Lit.) for Matrix (MX), Dermal Papilla (DP), melanocytes

(MC) and outer root sheath (ORS) from [36] and Bulge cells (Blg)

from [37]. (A) Overlap with this list from both the computationally

derived expanding (Exp.) and background (Bkgd.) populations is

shown. Corresponding enrichment results are shown in Supple-

mentary Table S1. (B) Overlapping probesets between the two

experimentally derived signatures.

(EPS)

Figure S8 Quantification of hair growth and validation of

selected microarray results by QRT-PCR. Two biological

replicates are shown (points), for visual assistance a line is drawn

through the mean of each replicate. (A) Melanogenesis graph for

samples at time points for which QRT-PCR was performed. High

scores were indicative of anagen. Both biological replicates showed

the same behavior. (B) QRT-PCR analysis for background, DP

enriched, candidate genes. A cyclic pattern in the expression was

observed with low expression in the mid to late anagen phase and

increasing in telogen onset (day 29), a slight decrease was observed

in late telogen. (C) QRT-PCR analysis for matrix derived cell

candidate genes. Maximum expression was observed during the

anagen phase (day 23) and the expression declined to a minimum

from catagen to telogen phase (Day 29 to 39). The reaction for

each biological replicate was performed in quadruplicate (average

was reported) and normalized to b-Actin.

(EPS)

Figure S9 Technical controls for RNA imaging by In Situ

Hybridization (ISH). We show two replicates of both negative, in

the absence of any RNA probe, and positive, addition of the

Ubiquitin C (UBC) RNA probe, controls for both day 0 and day

16 time points. UBC was the positive control suggested by the

manufacturer. STAT5A was added to positive controls for

comparison purposes.

(TIF)

Figure S10 Expression trajectories that matched the criterion

for possible drivers of negative feedback. Probesets identified as

low frequency oscillators and increased expression near catagen

onset that was not captured by a population model with static

intracellular expression. The 88 expression signals meeting this

criterion are shown relative to the static population model, for

example values above one indicate increases above what could be

expected by static intracellular expression.

(EPS)

Figure S11 Similar to Supplementary Figure S1, we show the

error between the estimated Fourier Series to the actual data. Here

the error measurement used was median absolute deviation

(MAD), which may be more suitable considering the model was

estimated using robust regression. We show standard Interquartile

range box plots for MAD over all oscillators as well as individual

frequencies.

(EPS)

Figure S12 Similar to Figure 2A in the main text, we show the

magnitude of the first and second complex order parameter for the

hair cycle system. Figure 2A was limited to only low frequency

oscillators; however, here we show results that included all gene
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expression profiles identified as periodic. Even considering all

oscillators, we still observed asymmetric, out-of-phase synchroni-

zation. This pattern dominates the expression due to the size of the

low frequency oscillating group.

(EPS)

Figure S13 Comparison simulations of the high and low

dimensional coupled oscillator systems. The high dimensional

system simulates all N~3988 individual oscillators (see EQ 10 in

Methods of the main text) and the low dimensional system

simulates only the order parameters corresponding to the two

clusters (see EQ 12 in Methods of the main text), which is

technically valid as N??. Here, we considered the stable

coupling configuration from Figure 3A, red solid line. Given the

uncertainty of the high dimensional system (unknown initial

conditions of individual oscillator before synchronization) we show

the 1 standard deviation envelope about the mean in the shaded

blue region, as determined over 100 simulations with random

initial conditions. The high dimensional system of individual

oscillators has the same behavior as the low dimensional system,

and most importantly, we observed little quantitative variation at

long times.

(EPS)

Table S1 Cell type enrichment for model populations. P-values

derived from hypergeometric distribution to test enrichment of cell

type specific probesets from lists reported in the literature [36,37].

Fraction indicates number of overlapping probesets relative to the

total reported cell type specific probesets.

(PNG)

Table S2 Target probe set information.

(PNG)

Table S3 Immunofluorescence antibody information.

(PNG)

Table S4 QRTPCR primer information.

(PNG)

File S1 Periodic genes with a Normalized Google Distance

(NGD) to the term ‘hair’ of less than one for abstracts in PubMed.

Genes were considered periodic if they had a symbol that mapped

to at least one probeset shown in figure 1A. As mentioned in

methods NGD,1 is indicative of a better than random chance of

term co-occurrence.

(TXT)

File S2 Movie showing the trajectories of individual oscillators in

the coupled oscillator system (for details see EQ 10 in Methods of

the main text and section Expression modeled as a system of coupled
oscillators). Oscillators were started from a random, incoherent

state and parameter values for the stable configuration were used

(z({)~zclust1
1 ; related to figures 3A and S12). As in Figure 1C,

green and blue was used to indicate cluster 1 and 2, respectively.

(ZIP)

File S3 Table of probesets considered as low frequency

oscillators (see section Identification and characterization of
periodic expression signals) and estimated to have differential

expression between the expanding and background populations

(see section Associating gene clusters to hair specific cell
populations). Statistics and metrics, described in the methods,

were included.

(XLSX)

File S4 List of gene symbols corresponding to possible negative

feedback targets (see section Identification of negative feedback
targets).
(TXT)

File S5 GO term enrichment for gene symbols corresponding to

possible negative feedback targets (see section Identification of
negative feedback targets).
(XLSX)

File S6 Compressed folder of code and scripts used in this study

(see contained readme.txt).

(ZIP)
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coupled phase oscillators with delayed coupling. Phys Rev Lett 108: 204101.
25. Arenas A, Vicente CJP (1994) Phase locking in a network of neural oscillators.

EPL (Europhysics Letters) 26: 79.

26. Frank T, Daffertshofer A, Peper C, Beek P, Haken H (2000) Towards a
comprehensive theory of brain activity:: Coupled oscillator systems under

external forces. Physica D: Nonlinear Phenomena 144: 62–86.
27. Kourtchatov SY, Likhanskii VV, Napartovich AP, Arecchi FT, Lapucci A

(1995) Theory of phase locking of globally coupled laser arrays. Phys Rev A 52:

4089–4094.
28. Oliva RA, Strogatz SH (2001) Dynamics of a large array of globally coupled

lasers with distributed frequencies. International Journal of Bifurcation and
Chaos 11: 2359–2374.

29. Ahdesmaki M, Lahdesmaki H, Gracey A, Shmulevich L, Yli-Harja O (2007)
Robust regression for periodicity detection in non-uniformly sampled time-

course gene expression data. BMC Bioinformatics 8: 233.

30. Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, et al. (2013) Human
epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell

13: 745–753.
31. Daido H (1992) Order function and macroscopic mutual entrainment in

uniformly coupled limit-cycle oscillators. Progress of Theoretical Physics 88:

1213–1218.
32. Skardal PS, Ott E, Restrepo JG (2011) Cluster synchrony in systems of coupled

phase oscillators with higher-order coupling. Phys Rev E Stat Nonlin Soft
Matter Phys 84: 036208.

33. Hong H, Strogatz SH (2011) Kuramoto model of coupled oscillators with
positive and negative coupling parameters: an example of conformist and

contrarian oscillators. Phys Rev Lett 106: 054102.

34. Erguler K, Stumpf MPH (2011) Practical limits for reverse engineering of
dynamical systems: a statistical analysis of sensitivity and parameter inferability

in systems biology models. Mol Biosyst 7: 1593–1602.
35. Lahdesmaki H, Shmulevich L, Dunmire V, Yli-Harja O, Zhang W (2005) In

silico microdissection of microarray data from heterogeneous cell populations.

BMC Bioinformatics 6: 54.
36. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-

epithelial interactions in the hair follicle. PLoS Biol 3: e331.
37. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, et al. (2009) A two-step

mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4:
155–169.

38. Tobin DJ, Gunin A, Magerl M, Paus R (2003) Plasticity and cytokinetic

dynamics of the hair follicle mesenchyme during the hair growth cycle:
implications for growth control and hair follicle transformations. J Investig

Dermatol Symp Proc 8: 80–86.
39. Philpott MP, Green MR, Kealey T (1990) Human hair growth in vitro. J Cell

Sci 97 (Pt 3): 463–471.

40. Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, et al.
(1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol

151: 1601–1617.
41. Chang CH, Tsai RK, Yu HS (2005) Apoptosis coordinates with proliferation

and differentiation during human hair follicle morphogenesis. J Dermatol Sci

39: 9–16.
42. Rosenquist TA, Martin GR (1996) Fibroblast growth factor signalling in the hair

growth cycle: expression of the fibroblast growth factor receptor and ligand
genes in the murine hair follicle. Dev Dyn 205: 379–386.

43. Larjava H, Plow EF, Wu C (2008) Kindlins: essential regulators of integrin
signalling and cell-matrix adhesion. EMBO Rep 9: 1203–1208.

44. Yu Y, Wu J, Wang Y, Zhao T, Ma B, et al. (2012) Kindlin 2 forms a

transcriptional complex with b-catenin and tcf4 to enhance wnt signalling.
EMBO Rep 13: 750–758.

45. Kwack MH, Kim MK, Kim JC, Sung YK (2013) Wnt5a attenuates wntb-
catenin signalling in human dermal papilla cells. Experimental Dermatology 22:

229–231.

46. Rendl M, Polak L, Fuchs E (2008) Bmp signaling in dermal papilla cells is

required for their hair follicle-inductive properties. Genes Dev 22: 543–557.
47. Schirren CG, Burgdorf WH, Sander CA, Plewig G (1997) Fetal and adult hair

follicle. an immunohistochemical study of anticytokeratin antibodies in formalin-

fixed and paraffin-embedded tissue. Am J Dermatopathol 19: 335–340.
48. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, et al. (2008) Cyclic

dermal bmp signalling regulates stem cell activation during hair regeneration.
Nature 451: 340–344.

49. Plikus MV, Baker RE, Chen CC, Fare C, de la Cruz D, et al. (2011) Self-

organizing and stochastic behaviors during the regeneration of hair stem cells.
Science 332: 586–589.

50. Mecklenburg L, Nakamura M, Sundberg JP, Paus R (2001) The nude mouse
skin phenotype: The role of foxn1 in hair follicle development and cycling.

Experimental and Molecular Pathology 71: 171–178.
51. Hu B, Lefort K, Qiu W, Nguyen BC, Rajaram RD, et al. (2010) Control of hair

follicle cell fate by underlying mesenchyme through a csl-wnt5a-foxn1 regulatory

axis. Genes Dev 24: 1519–1532.
52. Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, et al. (1998) The ovo

gene required for cuticle formation and oogenesis in flies is involved in hair
formation and spermatogenesis in mice. Genes Dev 12: 3452–3463.

53. Osawa H, Nakajima M, Kato H, Fukuchi M, Kuwano H (2004) Prognostic

value of the expression of smad6 and smad7, as inhibitory smads of the tgf-beta
superfamily, in esophageal squamous cell carcinoma. Anticancer Res 24: 3703–

3709.
54. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in tgf-beta

signal transduction. J Cell Sci 114: 4359–4369.
55. Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size,

shape and cycling and its reduction causes follicular decline. Development 140:

1676–1683.
56. Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R (2005) Towards

dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid
induces premature hair follicle regression (catagen) by upregulation of

transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol

124: 1119–1126.
57. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, et al. (2012) Live

imaging of stem cell and progeny behaviour in physiological hair-follicle
regeneration. Nature 487: 496–499.

58. Daido H, Kasama A, Nishio K (2013) Onset of dynamic activity in globally
coupled excitable and oscillatory units. Phys Rev E Stat Nonlin Soft Matter

Phys 88: 052907.

59. Lai YM, Porter MA (2013) Noise-induced synchronization, desynchronization,
and clustering in globally coupled nonidentical oscillators. Phys Rev E Stat

Nonlin Soft Matter Phys 88: 012905.
60. Tatum LG, Hurvich CM (1993) High breakdown methods of time series

analysis. Journal of the Royal Statistical Society Series B 55: 881–889.

61. Fisher RA (1929) Tests of significance in harmonic analysis. Proceedings of the
Royal Society of London Series A, Containing Papers of a Mathematical and

Physical Character 125: 54–59.
62. Knijnenburg TA, Wessels LFA, Reinders MJT, Shmulevich I (2009) Fewer

permutations, more accurate p-values. Bioinformatics 25: i161–i168.
63. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical

Society Series B 57: 289–300.
64. Gabor D (1946) Theory of communication. Electrical Engineers - Part III:

Radio and Communication Engineering, Journal of the Institution of 93: 429–
441.

65. Taner M, Koehler F, Sheriff R (1979) Complex seismic trace analysis.

GEOPHYSICS 44: 1041–1063.
66. Barnes A (1992) The calculation of instantaneous frequency and instantaneous

bandwidth. GEOPHYSICS 57: 1520–1524.
67. Hong H, Strogatz SH (2011) Conformists and contrarians in a kuramoto model

with identical natural frequencies. Phys Rev E 84: 046202.

68. Ott E, Antonsen TM (2008) Low dimensional behavior of large systems of
globally coupled oscillators. Chaos 18: 037113.

69. MATLAB (2010) version 7.11.0.584 (R2010b). Natick, Massachusetts: The
MathWorks Inc.

70. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative
analysis of large gene lists using david bioinformatics resources. Nat Protoc 4:

44–57.

71. Cilibrasi RL, Vitanyi PM (2007) The google similarity distance. IEEE
Transactions on Knowledge and Data Engineering 19: 370–383.

72. Tang T, Tang JY, Li D, Reich M, Callahan CA, et al. (2011) Targeting
superficial or nodular basal cell carcinoma with topically formulated small

molecule inhibitor of smoothened. Clin Cancer Res 17: 3378–3387.

Modeling Mouse Hair Cycle Gene Expression Dynamics

PLOS Computational Biology | www.ploscompbiol.org 21 November 2014 | Volume 10 | Issue 11 | e1003914


