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ABSTRACT
Hypoxia plays a significant role in tumor progression. This study aimed to develop a hypoxia- 
related long noncoding RNA (lncRNA) signature for predicting survival outcomes of patients with 
bladder cancer (BC). The transcriptome and clinicopathologic data were downloaded from The 
Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis and Lasso regression 
analysis were used to screened lncRNAs. Ten lncRNAs were screened out and included into the 
hypoxia lncRNA signature. The risk score based on hypoxia lncRNA signature could accurately 
predict the survival outcomes of BC patients. Immune infiltration analysis showed that six types of 
immune cells had significant different infiltration. Tumor mutation burden (TMB) analysis showed 
that the risk scores between the wild types and the mutation types of TP53, FGFR3, and RB1 were 
significantly different. Gene Set Enrichment Analysis (GSEA) showed that cancer-associated path-
ways belonged to the high risk groups and immune-related signal pathways were enriched into 
the low risk group. Then, we constructed a predictive model with the risk score, age, and clinical 
stage, which showed a robust prognostic performance. An lncRNA-mRNA coexpression network 
was constructed, which contained 62 lncRNA-mRNA links among 10 lncRNAs and 40 related 
mRNAs. In summary, the hypoxia lncRNA signature could accurately predict prognosis, che-
motherapy and immunotherapy response in patients with BC and was relevant to clinicopatho-
logic parameters and immune cell infiltration.
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Introduction

Bladder cancer (BC) is the second most common 
cancer in urinary and male reproductive system, 

and has a clear male predominance [1,2]. More 
than 90% of cases were urothelial carcinoma and 
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25% of patients with BC were presented with 
muscle invasive disease [3]. Although minimally 
invasive technology, neoadjuvant chemotherapy, 
and radiotherapy were introduced to treat BC, 
the survival rate of patients does not improve in 
the past 30 years [1,4]. Moreover, the staging 
system based on pathological parameters still 
requires improvement to predict patients’ survi-
val accurately [5]. Recently, an increasing num-
ber of researches have focused on the molecular 
biomarkers [3]. The molecular subtype’s classes 
of BC could stratify responses to treatment and 
predict the survival outcomes effectively, which 
might be incorporated into clinical management 
in the future [6,7].

The rapid proliferation of tumor cells and the 
aberrant vascularization in tumor stroma resulted 
in hypoxia status in tumor microenvironment [8]. 
Tumor cells increased transcriptional activity of 
hypoxia inducible factor-1 (HIF-1) and hypoxia 
inducible factor-2 (HIF-2) so as to adapt hypoxia 
microenvironment [9]. Hypoxia-inducible factors 
could reprogram tumor cells and improve tumors’ 
malignancy, such as proliferation, invasion, metas-
tasis, angiogenesis, immune invasion, and so forth 
[9–13]. Moreover, some researches have reported 
that hypoxia in tumor microenvironment had 
close relationships with treatment resistance, 
including radioresistance, chemoresistance, and 
immunosuppression [13–15]. Therefore, hypoxia- 
associated molecules biomarkers might be valuable 
to predict survival outcomes in patients with BC 
[16,17].

LncRNAs, a subtype of noncoding RNA family, 
have more than 200 nucleotides in their transcripts 
and play an indispensable roles in regulating initia-
tion and progression of tumors [5,18]. To date, lots 
of studies have investigated hypoxia-associated 
lncRNAs and revealed their important regulatory 
roles in cancer cells [19–23]. It was reported that 
lncRNA-RMRP, lncRNA SNHG3, lncRNA GAS6- 
AS2, lncRNA CCAT1, and lncRNA GClnc1 could 
promote proliferation, migration, and invasion of BC 
cells [24–28]. Chen once reported that lncRNA 
LNMAT1 in cytoplasm promoted lymphatic inva-
sion in BC. Meanwhile, lymphatic endothelial cell 
internalizing lncRNA LNMAT1 in exosomes could 
improve tube formation and migration in vitro 
[29,30]. It is due to the significance of lncRNA that 

Qian once conducted a meta-analysis to analyze the 
association between lncRNA expression and survival, 
and demonstrated that lncRNA could serve as diag-
nostic and prognostic biomarkers in BC.

Whether we could build a hypoxia-associated 
lncRNA signature to predict the prognosis of BC 
patients more accurately compared with tradi-
tional clinicopathologic parameters, and to pro-
vide some clinical guidance for chemotherapy 
and immunotherapy has become our goal of 
the study. Herein, we have successfully con-
structed a hypoxia-related lncRNA signature 
and investigated its performance and relation-
ships with other clinicopathological variables 
in BC. Interestingly, the hypoxia related 
lncRNA signature could accurately predict the 
chemotherapy and immunotherapy response in 
patients with different risk scores, which may 
contribute to decision-making in the manage-
ment of BC.

Materials and methods

Data collection

The transcriptome and clinical data of patients 
were downloaded from the TCGA database 
(https://portal.gdc.cancer.gov/). Patients with sur-
vival time less than 30 days were excluded. 
Finally, 396 cases were incorporated into our 
study. The Ensembl human genome browser 
(http://grch37.ensembl.org/index.html) was used 
to classify and annotate lncRNAs and protein- 
coding genes. Moreover, hallmark genes of 
hypoxia (total 200 genes) were downloaded from 
the hallmark gene sets of the Molecular 
Signatures Database (https://www.gsea-msigdb. 
org/gsea/msigdb/index.jsp). Since data of partici-
pants were acquired from the public database, 
written informed consent and approval of the 
ethics committee were waived.

Identification of hypoxia associated LncRNAs

The ‘limma’ package was used in the R software to 
calculate Pearson correlation coefficients, which 
were employed to analyze the correlation between 
hypoxia hallmark genes and lncRNAs in TCGA 
dataset. The hypoxia-related lncRNAs with 
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absolute value of correlation coefficient greater 
than 0.3 (|R|>0.3) and P value less than 0.05 
(P < 0.05) were screened out and used to construct 
the hypoxia-related signature [5].

Construction of the prognostic-related hypoxia 
LncRNA signature

All hypoxia-related lncRNAs were screened using 
univariate Cox regression analysis, to identify 
prognosis associated lncRNAs with P-value < 
0.05. Then, the screened prognosis-associated 
lncRNAs were used to make Gene Ontology 
(GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis with ‘clusterProfiler’ package 
and ‘enrichplot’ package in R software. Moreover, 
the screened prognosis-related hypoxia lncRNAs 
were incorporated into Lasso regression model 
[31], in which penalties were applied to all prog-
nosis-associated hypoxia lncRNAs for preventing 
overfitting effects of the model. Penalty parameter 
(λ) for the model was determined by 10-fold cross- 
validation following the criteria that error was 
within 1 standard error of the minimum. After 
that, the selected lncRNAs constituted the hypoxia 
signature and could generate risk scores in multi-
variate Cox regression model with the following 
formula:

Riskscore ¼
Xn

i¼1
coefficienti � EXP mRNAð Þi 

Evaluation of the hypoxia LncRNA signature

All BC patients were divided into two groups in 
the light of the mean risk score, and the Kaplan– 
Meier method was used to compare overall survi-
val (OS) of patients in different risk groups [32]. 
Principle component analysis (PCA) was used to 
evaluate the distribution of genes expression in 
patients with different risk levels. Stratified survi-
val analysis was performed to examine the accu-
racy and stability of the hypoxia lncRNAs 
signature. Risk scores were compared in subgroups 
stratified by clinicopathological parameters to 
explore potential relationships between the signa-
ture and clinicopathological parameters.

Immune infiltration analysis, tumor mutational 
burden analysis, and gene set enrichment 
analysis

The CIBERSORT tool was used to estimate the 
contents of 22 human immune cells in each BC 
patient. Next, we compared the infiltrating 
immune cells in the high- and the low-risk 
groups and identified the significantly different 
immune infiltrating cells [11].

The tumor mutational data were downloaded 
from TCGA and the maftools package were used 
to analyze the mutational data in both the high- 
and the low-risk groups. TMB was calculated with 
the tumor specific mutation genes [33]. We listed 
the top mutational genes and compared the risk 
scores in mutational- and wild-type cohorts.

We uploaded RNA-seq profiles to GSEA to 
investigate that differentially expressed gene- 
related signaling pathways in the high-risk group 
and the low-risk group. The enriched set were 
screened based on a FDR < 0.25 and P < 0.05 
after 1000 permutations [32].

Correlation of the hypoxia signature with clinical 
parameters

The risk score and other clinical parameters in the 
TCGA dataset were incorporated into univariate 
Cox regression and multivariate Cox regression to 
evaluate whether the risk score was an indepen-
dent prognostic predictor, and then ROC curves 
were used to calculate the predictive accuracy of 
the risk score and other clinicopathological para-
meters [33].

Development of a predictive nomogram based 
on clinical parameters and the risk score

Age, gender, AJCC-stage, grade, and hypoxia- 
related risk score were incorporated into the uni-
variate Cox regression analysis and multivariate 
Cox regression analysis, and then ROC curves 
were used to evaluate the predictive accuracy of 
the risk score and other clinicopathological para-
meters. After that, we picked up the independent 
predictive factors with P < 0.05 and AJCC-stage to 
build a Cox regression model and presented it 
with a nomogram to facilitate clinical practice 

3804 F. ZHANG ET AL.



[33]. The area under curve (AUC), Brier scores, 
and calibration plots were used to assess the dis-
crimination and calibration of the model in 1, 3, 
and 5 years. The simple bootstrap strategy was 
used to validate the model internally [32,33].

Construction of the LncRNA-mRNA coexpression 
network and function enrichment analysis

Pearson correlation analysis was used to explore 
hypoxia lncRNAs correlated mRNAs with absolute 
value of correlation coefficient greater than 0.3 (|R| 
> 0.3) and P value less than 0.05 (P < 0.05) [5]. 
Next, the Cytoscape software (Version 3.7.2) 
(https://cytoscape.org/) was applied to construct 
and visualize the lncRNA-mRNA coexpression 
network. The hypoxia lncRNA-associated 
mRNAs were uploaded to DAVID database 
(https://david.ncifcrf.gov/home.jsp) to make GO 
enrichment analysis and KEGG pathway analysis. 
P < 0.05 was deemed as statistically significant [5].

Prediction of chemotherapy response

Public pharmacogenomics database Genomics of 
Drug Sensitivity in Cancer (GDSC) was used to 
evaluate and predict the chemotherapy response 
of BC patients in different risk groups in TCGA 
database [34]. The half-maximal inhibitory con-
centration (IC50), a significant predictor of che-
mosensitivity, was compared between the high and 
low risk groups, and P < 0.05 was considered 
statistically significant.

Prediction of immunotherapy response

TMB, Programmed cell death 1 ligand 1 and 2 (PD- 
L1 and PD-L2), and microsatellite instable (MSI) in 
tumor tissue were deemed as potent biomarkers for 
predicting immunotherapy response [35]. 
Therefore, we first analyzed the TMB in both risk 
groups and explored the correlation between risk 
score and TMB. Then, the expression of CD274 
(PD-L1) and PDCD1LG2 (PD-L2) in both different 
risk groups were calculated and compared at the 
transcriptional level. Moreover, we also calculated 
and compared the transcriptional expression of sig-
nificant mismatch repair genes in tumor samples, 
including MLH1, MSH2, MSH6, and PMS2. 

Finally, we used The Cancer Immunome Atlas 
(TCIA) database (https://tcia.at/) to generate the 
immunophenoscore (IPS) in each sample, which 
was a superior predictor of response to anti- 
cytotoxic T lymphocyte antigen-4 (CTLA-4) and 
anti-programmed cell death protein 1 (PD-1) [36], 
and then the IPS in different risk groups were 
compared to explore the relationships between 
risk scores and IPS. P < 0.05 was consideredstatis-
tically significant.

Statistical analysis

All statistical analyses were performed by using the 
R software (Version 4.0.2) (https://www.r-project. 
org/) and GraphPad Prism 8. Quantitative data in 
two groups were compared using Student t-test 
and quantitative data in three or more groups 
were compared with one-way analysis of variance 
(ANOVA) or Welch’s test. P < 0.05 was consid-
ered statistically significant.

Results

BC is a common cancer in urinary and male repro-
ductive system. The rapid proliferation of tumor 
cells and the aberrant vascularization in tumor 
stroma resulted in hypoxia status in tumor micro-
environment, which could enhance the invasion of 
malignancies and had closely relationships with 
treatment resistance. Along with the wide applica-
tion of next-generation sequence (NGS) in clinical 
practice, an increasing number of biomarker- 
oriented studies have become more and more pop-
ular. Herein, we aimed to build a hypoxia-associated 
lncRNA signature to predict the prognosis of BC 
patients more accurately compared with traditional 
clinicopathologic parameters, and to be helpful for 
decision-making, especially for those patients 
required chemotherapy and immunotherapy.

Selection of hypoxia-related LncRNA and 
construction of hypoxia LncRNA signature

The flowchart showed the main procedures of our 
study (Graphical Abstract). The basic characteristics 
of BC patients in the TCGA database were pre-
sented in Table 1. We classified the RNA sequencing 
data and extracted 14,142 lncRNAs in TCGA 
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database. Meanwhile, a total of 200 hypoxia-related 
genes were acquired from Molecular Signature 
Database, among which 195 genes were expressed 
in BC samples (Supplementary Table 1). Pearson 
correlation analysis were applied to analyze the cor-
relation between hypoxia related genes and 
lncRNAs, and 1423 hypoxia related lncRNAs were 
identified with the criteria that |R| > 0.3 and P < 0.05 
(Supplementary Table 2). We first analyzed 1423 
hypoxia-associated lncRNAs with GO enrichment 
and found that these lncRNAs were relevant to 
catabolic or metabolic process, which were in accor-
dance with hypoxia-related biological process 
(Supplementary Figure 1). Then, KEGG enrichment 
was applied to explore the associated enriched path-
ways, but no significant pathways were enriched due 
to the lack of noncoding RNA information in 
enriched pathways. Univariate Cox regression ana-
lysis were used to select prognosis related lncRNAs 
among the 1423 hypoxia-related lncRNAs and 248 
prognosis-related hypoxia lncRNAs were screened 
out (Supplementary Table 3). In order to further 

screen variables and prevent overfitting, lasso 
regression analysis was used and finally 10 prog-
nosis-related hypoxia lncRNAs were selected to con-
struct the hypoxia lncRNA signature (Figures 1a 
and 1b). Among them, eight lncRNAs 
(AL031775.1, USP30-AS1, AC024060.1, 
AL162586.1, AP003352.1, PSMB8-AS1, 
AC016957.2, and STAG3L5P-PVRIG2P-PILRB) 
were deemed as protective predictors with hazard 
ratio < 1. While AC105942.1 and MAFG-DT were 
regard as harmful with hazard ratio > 1 (Figure 1c).

Evaluation of the hypoxia LncRNA signature

All 10 prognosis-related hypoxia lncRNAs were 
incorporated into multivariate Cox regression analy-
sis to generate risk scores in the light of the formula 
described in Method and Materials. The patients 
with different risk scores were divided into high- 
risk and low-risk groups using the mean risk score 
as a cutoff value in the TCGA database. Kaplan– 
Meier analysis showed that patients in the low-risk 
group had better OS than that in the high-risk group, 
which demonstrated the excellent discrimination of 
this signature (Figure 2a). Principle component ana-
lysis based on gene expression showed two signifi-
cantly distinct distribution between patients in high- 
and low-risk groups (Figure 2b). As for patients with 
lower risk scores, they usually had lower mortality 
rates and longer survival time compared with ones 
with higher risk scores (Figures 2c and 2d). 
Furthermore, the expressions of AC105942.1 and 
MAFG-DT increased notably with the increment of 
risk scores, while the expressions of AL031775.1, 
USP30-AS1, AC024060.1, AL162586.1, AP003352.1, 
PSMB8-AS1, AC016957.2, and STAG3L5P- 
PVRIG2P-PILRB decreased distinctly, which were 
in accordance with hazard ratio of these predictors 
(Figure 2e).

Relationship between hypoxia LncRNA signature 
and clinicopathological parameters

First, in order to further verify accuracy of this 
hypoxia lncRNA signature, patients in the TCGA 
database were stratified according to age (≥ 60 
y and < 60 y), gender (female and male), AJCC 
stage (I+ II and III+IV), T stage (T1-T2 and T3- 
T4), N stage (N0 and N1-3), M stage (M0 and 

Table 1. Baseline Clinical Characteristics of TCGA Database.

Variables Number

Risk score

PMean
Standard 
deviation

Total 396 1.324 1.048
Age 0.167
<60 86 1.124 0.719
60–70 126 1.317 0.951
70–80 129 1.359 0.949
≥80 55 1.439 0.963
Gender 0.467
Female 104 1.362 0.892
Male 292 1.286 0.916
Grade 3 cases missing 0.019
Low grade 18 0.855 0.497
High grade 375 1.331 0.921
AJCC- 

stage
2 cases missing <0.001

I 2 0.485 0.141
II 124 1.037 0.650
III 138 1.349 0.913
IV 130 1.527 1.046
T 33 cases missing <0.001
T1 3 0.578 0.190
T2 113 1.066 0.669
T3 190 1.418 0.966
T4 57 1.479 1.057
N 41 cases missing 0.037
N0 229 1.211 0.825
N1 44 1.529 1.170
N2 75 1.480 0.989
N3 7 1.339 0.778
M 197 cases missing 0.011
M0 189 1.180 0.855
M1 10 1.903 1.081
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M1), and pathological grade (low and high), and 
the Kaplan–Meier analysis showed that patients 
with low risk scores had better OS compared 
with ones with high-risk scores in the subgroups 

of age ≥ 60 (P = 4.742e−11), female (P = 1.932e 
−03), male (P = 1.858e−09), low T-stage (P = 2.35e 
−03), high T-stage (p = 5.685e−08), nodal metas-
tasis-free (p = 2.597e−09), nodal metastasis 

Figure 1. The selection of hypoxia-related lncRNA utilizing Lasso regression analysis. (a, b) The prognosis-related hypoxia lncRNAs 
screened by univariate Cox regression were incorporated into Lasso regression analysis. Penalty parameter (λ) for the model was 
determined by 10-fold cross-validation following the criteria that error is within 1 standard error of the minimum. (c) Ten prognosis- 
related hypoxia genes were incorporated into multivariate regression model and used to generate hypoxia-associated risk scores.
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Figure 2. Construction and validation of hypoxia-associated prognostic lncRNA signature. (a) Kaplan–Meier analysis showed that the 
overall survival of patients in the low-risk groups were longer than those in the high-risk groups in the TCGA database. (b) Principal 
components analysis based on the hypoxia lncRNAs signature demonstrated that two distinctly different distribution patterns 
between high-risk and low-risk groups. (c) Distribution of risk scores of patients with different risk scores based on the hypoxia- 
related lncRNA prognostic signature (d) Scatter plot showed that patients with lower risk scores had better survival and lower 
mortality risk. (e) Multigroup heatmap of the hypoxia lncRNA signature showed that AC105942.1 and MAFG-DT increased notably 
with the increment of risk scores, while the expressions of AL031775.1, USP30-AS1, AC024060.1, AL162586.1, AP003352.1, PSMB8- 
AS1, AC016957.2, and STAG3L5P-PVRIG2P-PILRB decreased distinctly.
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(P = 3.052e−03), metastasis-free subgroup 
(P = 9.086e−06), high AJCC-stage (P = 7.127e 
−03), low AJCC-stage (P = 7.776e−04), and high 
pathological grade (P = 2.224e−11) (Figure 3b-l), 
while the difference of OS time was not significant 
in subgroups of age ≤ 60 (P = 1.286e−01), metas-
tasis subgroup (P = 2.802e−01), and low patholo-
gical grade (P = 1e+00) (Figure 3a and 
Supplementary Figure 2).

Secondly, we compared the risk scores in differ-
ent subgroups stratified by clinicopathological 
parameters and found that the risk scores were 
significantly higher in subgroups of advanced 
T stage (T3 and T4), nodule-metastasis (N1–N3), 
metastasis (M1), high pathological grade, and 
advanced AJCC stage (Stage III and Stage IV) 
(Figure 4c-g). It suggested that the risk score 
based on the hypoxia lncRNA signature had 
a correlation with pathologic parameters. 
Moreover, we observed that the difference of the 

risk score in different age subgroups and gender 
subgroups were not significant (Figures 4a 
and 4b).

Tumor mutational burden analysis

The maftool package in R software was employed 
to summarize and analyze the mutational data in 
the TCGA database. In order to compare different 
mutational genes, the top 20 mutational genes 
were listed in high- and low-risk groups 
(Figures 5a and 5b). We found that TP53, TTN, 
ARID1A, MUC16, KMT2D, SYNE1, PIK3CA, 
KDM6A, MACF1, HMCN1, RYR2, KMT2C, 
OBSCN, and FAT4 were the most frequent muta-
tional genes in both risk groups. RB1, EP300, 
CREBBP, AKAP9, ERCC2, and SYNE2 belonged 
to top 20 frequent mutational genes in the high- 
risk group, while FGFR3, ATM, STAG2, SPTAN1, 

Figure 3. The Kaplan–Meier analysis showed that bladder cancer patients with lower risk scores still had better OS than the ones 
with higher risk scores in subgroups of age ≥ 60 (b), female (c), male (d), low T-stage (e), high T-stage (f), nodal metastasis-free (g), 
nodal metastasis (h), metastasis-free subgroup (i), high AJCC-stage (j), low AJCC-stage (k), and high pathological grade (l). While the 
difference of OS was not significant in the subgroups of age ≤ 60 (a).
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Figure 4. The risk scores of patients in different subgroups stratified by clinicopathologocal parameters. The risk scores were 
significantly different in subgroups of (c) advanced T stage (T3 and T4), (d) nodule-metastasis (N1-N3), (e) metastasis (M1), (f) high 
pathological grade, and (g) advanced AJCC stage (Stage III and Stage IV). Moreover, the difference of the risk score in different age 
subgroups and gender subgroups was not significant (a and b). *P < 0.05; **P < 0.01; *** P < 0.001; **** P < 0.0001; ns: not 
significant.
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Figure 5. Tumor mutational burden analysis and immune cells infiltration analysis. The top 20 mutational genes were listed in high- 
risk group (a) and low-risk group (b). The risk scores between the wild type and the mutation type of the top frequent mutational 
genes were compared (c). The vioplots showed that 22 immune cells content in the high-risk and low-risk groups (d). *P < 0.05; 
**P < 0.01; *** P < 0.001; ns: not significant.
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DNAH11, and FLG were parts of the top 20 fre-
quent mutational genes in the low-risk group. 
Furthermore, the risk scores between the wild 
type and the mutation type of the top frequent 
mutational genes were compared. The risk scores 
in the mutation types of TP53 and RB1 were sig-
nificantly higher than that in the wild types, while 
the risk scores in the wild type of EGFR3 were 
higher than that in the mutational type 
(Figure 5c).

Relationship between hypoxia signature and 
immune cells infiltration

Twenty-two immune cells types were evaluated in 
the TCGA database, and six sorts of immune cells 
types were significantly different between the high- 
risk group and the low-risk group, including CD8+ 

T cells, activated memory CD4+ T cells, follicular 
helper T cells, regulatory T cells, eosinophils, and 
neutrophils (Figure 5d). The contents of CD8+ 

T cells, activated memory CD4+ T cells, follicular 
helper T cells, and regulatory T cells were signifi-
cantly higher in the low-risk group, while the 
contents of eosinophils and neutrophils were 
much higher in the high-risk group.

Gene set enrichment analysis

We collected the top 50 KEGG molecular path-
ways that differentially expressed genes enriched 
to in high-risk groups. Interestingly, some can-
cer-associated pathways were enriched into the 
high risk groups, including acute myeloid leuke-
mia, basal cell carcinoma, BC, chronic myeloid 
leukemia, colorectal cancer, endometrial cancer, 
ERBB signaling pathway, MAPK signaling path-
way, glioma, melanoma, nonsmall cell lung can-
cer, P53 signaling pathway, pancreatic cancer, 
pathways in cancer, prostate cancer, renal cell 
carcinoma, small cell lung cancer, TGF-β signal-
ing pathway, thyroid cancer, and WNT signaling 
pathway (Figure 6a). Moreover, there were only 
six irrelevant KEGG pathways with FDR < 0.25 
and P < 0.05 enriched into the low-risk group, so 
we made a Gene Ontology (GO) enrichment 
analysis and collected the top 50 GO molecular 
pathways in low risk group. Some immune- 
related signal pathways were enriched into the 

low-risk group, which suggested that activation 
of immune regulation and response related path-
ways might contribute to better OS (Figure 6b).

The hypoxia related LncRNA signature is an 
independent prognostic factor

Age, gender, clinical stage, T stage, N stage, and 
the risk score were all incorporated into univariate 
Cox regression and multivariate Cox regression to 
screen out the independent prognostic factors. 
Due to the lack of metastatic data in more than 
half of patients, we ignored metastasis as an inde-
pendent prognostic factor to minimize data loss in 
the TCGA database.

Age, clinical stage, T stage, N stage, and the 
risk score based on hypoxia lncRNA signature 
were all prognostic-associated factors with 
P < 0.05 in univariate Cox regression 
(Figure 7a). Multivariate Cox regression analysis 
showed that age and the hypoxia lncRNA-related 
risk score were independent prognostic factors 
(Figure 7b). The multivariate ROC showed that 
AUC of the risk score, age, gender, clinical stage, 
T stage, and N stage were 0.733, 0.672, 0.470, 
0.649, 0.615, and 0.623 in 1 year time; 0.808, 
0.633, 0.480, 0.668, 0.639, and 0.631 in 3 year 
time; 0.818, 0.610, 0.515, 0.693, 0.654, and 0.654 
in 5 year time (Figure 7c-e). It suggested that 
compared with traditional pathological prognos-
tic factors, the hypoxia lncRNA-related risk 
scores had a preeminent prognostic performance.

Prognostic nomogram construction

We constructed a prognostic model presented 
with a nomogram, including the independent 
prognostic factors (age and the risk score) and 
traditional clinical stage in multivariable Cox 
regression analysis (Figure 8a). The 
Concordance index was 0.722 for the predictive 
model. AUC and Brier scores of the prognostic 
model in 1, 3, and 5 years were 73.7 [67.4;80.1] 
and 18.7 [16.3;21.1], 79.4 [72.5;86.2] and 19.0 
[16.7;21.2], 77.8 [69.2;86.5] and 19.3 [16.4;22.3] 
in the whole TCGA database (training set), 
respectively (Figure 8b–d). Similarly, we used 
1000 times bootstrap strategy to validate the 
model internally and the AUC and Brier scores 
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in 1, 3, and 5 years were 73.6 [65.5;83.5] and 19.1 
[15.3;22.6], 78.6 [68.7;88.8] and 19.5 [15.7;24.2], 

78.1 [66.6;88.3] and 19.3 [13.5;25.4] in internal 
validation set (Figure 8e–g).

Figure 6. Multiple GSEA pathways in the high- and low-risk groups. GSEA results showed that significant enrichment of cancer- 
related signaling pathways in the high-risk group (a), and significant enrichment of immune-related signaling pathways in the low- 
risk group (b).
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Construction of the LncRNA–mRNA coexpression 
network and functional enrichment analysis

We used Pearson correlation analysis to screen out 
40 hypoxia lncRNA-related mRNAs with |R|>0.3 
and P < 0.05. An lncRNA-mRNA coexpression net-
work were constructed, which contained 62 
lncRNA-mRNA links among 10 lncRNAs and 40 
related mRNAs (Figure 9a and Supplementary 
Table 4). Then, we summarized and presented 
eight lncRNA-mRNA links with correlation coeffi-
cient larger than 0.4 (Figure 9b–i). As shown in the 
Figure 9, all seven lncRNA-mRNA links were posi-
tive correlation except AC024060.1 negatively cor-
related with ANXA2. The Sankey plot showed the 
relationships between 40 mRNAs and 10 hypoxia 
lncRNAs and clearly classified lncRNAs in the light 
of their biological functions (protect or risk) 
(Figure 9j). Top 10 GO enrichment terms were 
presented in Figure 9k and KEGG pathway analysis 
showed that metabolism and biosynthesis pathways 
were enriched, which were in concordance with 
hypoxia and reprogramming (Figure 9l).

Prediction of chemotherapy response

We used the ‘pRRophetic’ package to explore the 
GDSC database, and to investigate whether the 
risk score based on hypoxia lncRNAs could predict 
chemotherapy response in different risk groups. 
Gemcitabine (G), cisplatin (C), methotrexate (M), 
vinblastine (V), and doxorubicin (A) were selected 
to evaluate chemotherapy response in both risk 
groups, for they constituted fundamental GC or 
MVAC protocol in muscle-invasive BC [32]. 
Moreover, camptothecin, docetaxel, and thapsigar-
gin were also used to evaluate response, for thap-
sigargin could induce endoplasmic reticulum 
stress-associated apoptosis in BC and camptothe-
cin and docetaxel were widely used for intravesical 
chemotherapy in nonmuscle-invasive BC [37]. 
Interestingly, IC50 of camptothecin (Figure 10A), 
vinblastine (Figure 10B), and methotrexate 
(Figure 10C) in the high-risk group were signifi-
cantly higher than that in the low-risk group, 
which meant that the chemotherapy response 
rates of these drugs were lower in the high-risk 

Figure 7. The predictive performance of the risk score and traditional clinicopathological parameters. (a and b) The univariate and 
multivariate Cox regression suggested that the risk score was an independent prognostic factor. The multiple ROC curves of the risk 
score and other clinicopathological parameters in 1, 3, and 5 years (c, d, e) demonstrated the excellent discrimination of the risk 
score based on hypoxia lncRNA signature.

3814 F. ZHANG ET AL.



Figure 8. Construction and internal validation of the nomogram with the risk scores based on hypoxia lncRNA signature and other 
traditional clinicopathological parameters. The predictive model was presented with a nomogram (a), and the predictive perfor-
mance of the nomogram in 1, 3, and 5 years in the training set (b, c, d), internal validation set (e, f, g).
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Figure 9. Construction of the hypoxia-related lncRNA–mRNA coexpression network and functional enrichment analyses. (a) The 
lncRNA-mRNA co-expression network showed that 62 lncRNA-mRNA links among 10 lncRNAs and 40 related mRNAs. (b-i) 8 lncRNA- 
mRNA links with correlation coefficient larger than 0.4 were presented. Except the negative correlation between AC024060.1 and 
ANXA2, all 7 lncRNA-mRNA links were positive correlation. (j) The Sankey diagram shows the connection between the 40 mRNAs and 
10 hypoxia-related lncRNAs and also illustrated their protective or risk properties. (k) Gene Ontology (GO) analysis showed the top 10 
terms associated with the mRNAs that coexpressed with the 10 hypoxia-related lncRNAs. (l) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis showed the top 10 enriched signaling pathways associated with the mRNAs that coexpressed 
with the 10 hypoxia-related lncRNAs.
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group. On the contrary, IC50 of cisplatin 
(Figure 10D), docetaxel (Figure 10E), and thapsi-
gargin (Figure 10F) were lower in the high-risk 
group, which indicated that the application of 
these drugs could be more beneficial for patients 
with higher-risk scores. Furthermore, the 
differences of IC50 in Gemcitabine and doxorubi-
cin in both groups were not significant.

Prediction of immunotherapy response

TMB, PD-L1/PD-L2, and MSI in tumor tissue 
were deemed as potent biomarkers for predicting 
immunotherapy response [33,35]. We first ana-
lyzed the expression of CD274 (PD-L1) and 
PDCD1LG2 (PD-L2) in both different risk groups 
and found that PD-L1 and PD-L2 were slightly 
higher in the high-risk group, but the difference 
was not statistically significant (Figures 11A and 
11b). Then, we calculated and compared the tran-
scriptional expression of significant mismatch 

repair genes in tumor samples and found that all 
four mismatch repair genes (MLH1, MSH2, 
MSH6, and PMS2) expressed significantly higher 
in the high-risk group (Figure 11C–F), which sig-
nified that the microsatellites might be more stable 
in the high-risk group. Moreover, we also explored 
the relationship between the risk score and TMB, 
for an increasing number of studies showed that 
higher TMB predicted a better immunotherapy 
response [33]. Along with the increment of risk 
scores, the TMB decreased slightly with R = −0.075 
and P = 0.13 (Figure 11G). The Kaplan–Meier 
curves showed that patients with higher TMB 
and low-risk scores tended to have the best OS 
and those with lower TMB and high-risk scores 
usually had worst survival probabilities 
(Figure 11H). Finally, we used the TCIA database 
to generate the IPS in each sample, which was 
a superior predictor of response to anti-CTLA-4 
and anti-PD-1, and then the IPS of anti-CTLA-4 
(Figure 11I), anti-PD-1 (Figure 11J), and anti- 

Figure 10. Prediction of chemotherapy response. IC50 of camptothecin (a), vinblastine (b), and methotrexate (c) in the high-risk 
group were significantly higher than that in the low-risk group. On the contrary, IC50 of cisplatin (d), docetaxel (e), and thapsigargin 
(f) were lower in the high-risk group.
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Figure 11. Prediction of immunotherapy response. The expressions of PD-L1 and PD-L2 were slightly higher in the high-risk 
group with P > 0.05 (a and b). The expression of mismatch repair genes in tumor samples, MLH1 (c), MSH2 (d), MSH6 (e), and PMS2 
(f), expressed significantly higher in the high-risk group. Moreover, with the increment of risk scores, TMB decreased slightly with 
R = −0.075 and P = 0.13 (g) and the Kaplan–Meier curves showed that patients with higher TMB and low-risk scores tended to have 
the best overall survival and those with low TMB and high risk scores usually had worst survival probabilities (h). The IPS of anti-CTLA 
-4 (i), anti-PD-1(j), and anti-(CTLA-4 plus PD-1) (k) in the high-risk group was significant lower than that in the low-risk group, 
predicting that patients with higher risk scores had a worse immunotherapy response.
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(CTLA-4 plus PD-1) (Figure 11K) in the high-risk 
group was significant lower than that in the low- 
risk group, which powerfully predicted that 
patients with higher risk scores had a worse 
immunotherapy response. Taken together, the all 
biomarkers above predicted that patients with 
higher risk scores tended to have worse immu-
notherapy response.

Discussion

BC ranks the 11th among all diagnosed cancers in 
the world, which caused more than 16,000 deaths 
in the United State and have a clear male predo-
minance [2,3,38]. While the 5-year survival has 
improved for many other malignancies, such as 
melanoma and hepatocellular carcinoma, it has 
remained largely unchanged in BC [1]. To date, 
an increasing number of researches have focused 
on hypoxia, a hallmark of tumor microenviron-
ment, for it is closely related to reprogramming, 
invasion, and metastasis of tumor [8–10]. 
Hypoxia-related lncRNAs have been studied to 
seek out potential therapeutic targets. It was 
reported that lncRNA-RMRP, lncRNA SNHG3, 
lncRNA GAS6-AS2, lncRNA CCAT1, and 
lncRNA GClnc1 could promote proliferation, 
migration, and invasion in BC [24–28].

It is due to the significant roles of hypoxia- 
related lncRNAs that we first constructed 
a signature with hypoxia lncRNA to predict 
patients’ survival outcomes in BC. We used 
AC105942.1, AL031775.1, USP30-AS1, 
AC024060.1, AL162586.1, AP003352.1, PSMB8- 
AS1, AC016957.2, STAG3L5P-PVRIG2P-PILRB, 
and MAFG-DT to construct a hypoxia signature 
with a robust performance. The AUC of our sig-
nature in 1, 3, and 5 years were 0.733, 0.808, and 
0.818, respectively, which were much higher than 
the AUC of AJCC-stage, T stage, and N stage 
(Figure 7). Then, we constructed a predictive 
model with risk score, age, and stage in TCGA 
database and presented it with a nomogram. 
1000 times simple bootstraps were used to validate 
the nomogram internally. The Concordance index 
and AUC were used to evaluate the model’s dis-
crimination, and calibration plot and Brier scores 
were applied to estimate the calibration of this 

model, which all demonstrated the model’s robust 
predict performance (Figure 8).

Next, we studied each lncRNA in our signature 
and found that AC024060.1, AC105942.1, 
AL031775.1, USP30-AS1, and MAFG-DT-LNC 
were merely reported once in BC predictive signa-
tures, like immune-related lncRNA signature [39], 
epithelial mesenchymal transition-related lncRNA 
signature [40], tumor-infiltrating B lymphocytes 
lncRNA signature [41]. PSMB8-AS1 has been stu-
died in other malignancies. Zhang and Giulietti 
reported that lncRNA PSMB8-AS1 could contrib-
uted to pancreatic cancer progression via modulat-
ing miR-382-3p/STAT1/PD-L1 axis and might 
enable to serve as a prognostic biomarker for pan-
creatic cancer [42,43]. Shen once reported that 
ELK-1 could activate PSMB8-AS1, which could 
modulate miR-574-5p/RAB10 and promote cell 
proliferation in glioma. As for AL162586.1, 
AP003352.1, AC016957.2, and STAG3L5P- 
PVRIG2P-PILRB, there have been no related stu-
dies reported to date.

We further verified the accuracy of this hypoxia 
lncRNA signature in subgroups stratified by clin-
icopathological parameters and found that, to 
a large extent, it could still distinguish the survival 
difference for patients in the high- and low risk 
groups (Figure 3). As for the subgroups of age ≤ 60 
(p = 1.286e−01), metastasis subgroup (p = 2.802e 
−01) and low pathological grade (p = 1e+00), 
limited sample size in the subgroups might result 
in an underestimated accuracy of the hypoxia 
lncRNA signature to distinguish the patients with 
different risk scores. Moreover, we compared the 
risk scores in different subgroups stratified by 
clinical parameters. It was worth noting that the 
subgroups with higher pathological stages or 
grades usually had higher risk scores, which illu-
strated that our molecular signature closely related 
to pathological parameters and had the potential 
to be an important prognostic indicator (Figure 4).

Immune cells infiltration and immune check-
point in tumor tissue played a significant role in 
promoting or prevent the proliferation, invasion, 
and migration of cancer cells, so that the immu-
notherapy have become a new management in 
cancer, such as urothelial carcinoma [8,12]. To 
explore the relationships between the hypoxia 
lncRNA signature and immune cells infiltration, 
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we compared the immune cells content of differ-
ent risk score groups and found that the contents 
of CD8 + T cells, activated memory CD4 + T cells, 
follicular helper T cells, and regulatory T cells were 
significantly higher in the low-risk group, while 
the contents of eosinophils and neutrophils were 
much higher in the high risk group. Recent 
researches reported that CD4 + T lymphocytes 
and CD8 + T lymphocytes infiltrating in tumor 
could improve the efficacy of tumor-targeted vac-
cine or adoptive immune cell therapy, which had 
been proved effective in patients with melanoma, 
head and neck cancer, breast cancer, and lung 
cancer [44–46]. Moreover, Jóźwicki once reported 
that BC patients with decreased infiltration of 
CD4 + T cells had shorter OS and CD4 + T cells 
were an important prognostic index of BC [47]. 
Follicular helper T cells signature signified orga-
nized antitumor immunity and could robustly pre-
dicted better survival or preoperative response to 
chemotherapy [48]. All the three immune infiltrat-
ing cells discussed above played significant roles in 
immune-related antitumor effect and were signifi-
cantly infiltrated into tumor microenvironment of 
patients with low risk scores, which also demon-
strated close relationship between hypoxia lncRNA 
and infiltrating immune cells. It was believed that 
regulatory T cells (Tregs) were a type of immuno-
suppressive cells and could potentially regulate 
invasiveness in BC [49]. Unexpectedly, Treg cells 
significantly infiltrated into tumor microenviron-
ment of patients with low-risk scores according to 
the findings of our study. Whether there was 
a potential certain relationship between hypoxia 
level and Treg cells in microenvironment of BC 
remained unclear. Similarly, eosinophils and neu-
trophils infiltrating in tumor microenvironment 
were seldomly studied in BC.

It was demonstrated that TMB was closely 
related to the immunotherapy response [50,51]. 
The more the mutational genes existed in tumor 
cells, the more the mutation-associated RNA and 
protein might be generated, which could be recog-
nized and targeted by immune system [52]. In our 
study, we listed the top 20 mutational genes in the 
low- and high-risk groups, and then compared risk 
scores between the wild types and the mutation 
types of top mutational genes. We found that the 
risk scores in the wild type of FGFR3 were 

significantly higher than that in the mutation 
type. While the risk score in the mutational type 
of TP53 and RB1 was higher than that in the wild 
type (Figure 5). FGFR3 was a carcinogenic driver 
and the mutation, activation, and overexpression 
of FGFR3 was common in BC [53,54]. Ahmad 
once explored the frequency of FGFR3 mutation 
in Indian BC patients and found that FGFR3 
mutations were more common in earlier patholo-
gical stage and low-grade tumors [55]. TP53 and 
RB1 played a role of suppressor genes in all cancer, 
which encoded p53 and rb1 protein involved in 
regulating numerous target genes. Mutations in 
TP53 and RB1 were frequently observed and 
were closely related with poor prognosis of 
patients with BC [7,56,57]. Taken together, the 
effects caused by mutation of TP53, RB1, and 
FGFR3 were in accordance with the risks predicted 
by hypoxia risk scores in our study.

Furthermore, we enriched different genes in 
high- and low-risk groups and found that cancer 
associated pathway were enriched in the high-risk 
group, while the immune-related pathway 
belonged to the low-risk group. The cancer- 
associated pathways were enriched in the high- 
risk group, which might imply poor prognosis of 
patients with high score, and the immune response 
associated pathways in the low-risk groups usually 
suggested an improved prognosis. Similarly, 
hypoxia lncRNA-correlated mRNA functional 
enrichment analysis showed that metabolism and 
biosynthesis pathways were enriched, which were 
in concordance with hypoxia and reprogramming.

Along with the rapid development of drug deliv-
ery vehicles, an increasing number of ingredients 
were used in clinical anticancer, including chemical 
drugs, immune drugs, and even some fungal-derived 
materials [58]. Finally, we explored the signature’s 
predictive ability of chemotherapy and immu-
notherapy response and found that patients with 
higher risk scores tended to have lower response 
rates of camptothecin, vinblastine, and methotrex-
ate. Conversely, application of cisplatin, docetaxel 
and thapsigargin could be more beneficial for 
patients with higher risk scores. Next, TMB, PD-L1 
/PD-L2, MSI, and IPS were employed to evaluate 
patients with different risk scores, and it showed that 
patients with higher risk scores tended to have worse 
immunotherapy response. Taken together, our 
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hypoxia-associated lncRNA signature could accu-
rately predict chemotherapy and immunotherapy 
response in patients with BC, which may be helpful 
for clinical medical decision-making. Since develop-
ment and validation of the signature in our study 
was based on TCGA database and TCIA database, it 
has not been verified in large-scale clinical samples. 
However, we believe that with the wide application 
of NGS and intelligent equipment in clinic practice, 
noncoding RNA detection based on tumor samples 
will become more and more feasible [59].

Conclusions

This is the first hypoxia lncRNA-related signature 
in BC, which could accurately predict the overall 
survival in patients with BC compared with the 
traditional pathological parameters. Moreover, the 
molecular signature has close relationships with clin-
icalpathological parameters, some certain infiltrating 
immune cells, and mutational genes in tumors. More 
verifications are required in future to validate the 
stability and practicability of the present signature.

Research Highlights

(1) A hypoxia 10-lncRNA signature was estab-
lished to predict BC patients’ prognosis.

(2) The signature could predict chemotherapy 
and immunotherapy response accurately.

(3) Functional enrichment analysis revealed 
potential effects of 10 lncRNAs in BC.
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