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Abstract
Individual biological organisms are characterized by daunting heterogeneity, which precludes describing or understanding

populations of ‘patients’ with a single mathematical model. Recently, the field of quantitative systems pharmacology

(QSP) has adopted the notion of virtual patients (VPs) to cope with this challenge. A typical population of VPs represents

the behavior of a heterogeneous patient population with a distribution of parameter values over a mathematical model of

fixed structure. Though this notion of VPs is a powerful tool to describe patients’ heterogeneity, the analysis and

understanding of these VPs present new challenges to systems pharmacologists. Here, using a model of the hypothalamic–

pituitary–adrenal axis, we show that an integrated pipeline that combines machine learning (ML) and bifurcation analysis

can be used to effectively and efficiently analyse the behaviors observed in populations of VPs. Compared with local

sensitivity analyses, ML allows us to capture and analyse the contributions of simultaneous changes of multiple model

parameters. Following up with bifurcation analysis, we are able to provide rigorous mechanistic insight regarding the

influences of ML-identified parameters on the dynamical system’s behaviors. In this work, we illustrate the utility of this

pipeline and suggest that its wider adoption will facilitate the use of VPs in the practice of systems pharmacology.

Keywords Quantitative systems pharmacology � Virtual patients � Machine learning � Bifurcation analysis �
Nonlinear dynamics � Hypothalamic–pituitary–adrenal axis

Introduction

The fields of molecular systems biology and systems

pharmacology have achieved huge success by viewing

living organisms as complex dynamical systems and uti-

lizing mechanistic models to study how systems-level

behaviors emerge from the interactions within underlying

molecular control systems. With the expanding experience

of mathematical modelers, employing powerful computa-

tional software and advanced algorithms, the complexity of

biological control systems need no longer stop us from

properly understanding how they function [1–4].

Because different patients with the same disease often

respond differently to identical treatments, the field of

quantitative systems pharmacology (QSP) has gone beyond

the presumption of ‘one disease, one model’ and intro-

duced that idea of virtual patients (VPs) to deal with the

challenge of heterogeneity. Typically, VPs comprise a

collection of mathematical models that have similar or

identical structures (equations) and different parameter

values, which are estimated from clinical data or selected

from assumed probability distributions [5–9]. By mimick-

ing a heterogeneous patient population and the different

responses to identical treatments, the study of VPs helps to

resolve the uncertainty deriving from patient heterogeneity

during the medical decision-making process. The closer

VPs are to real ones, the better they can be used to

understand and design clinical trials.

The increased utilization of VPs also brings new com-

putational challenges. For example, traditional sensitivity

analysis has been used to investigate the dependence of

model dynamics on changing parameter values. In local

sensitivity analysis, the change in some output of a model
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(say, the steady state of a dynamical variable) is measured

in response to a small change in a single parameter. In

global sensitivity analysis, multiple parameters are changed

simultaneously and the resulting changes in model behav-

ior are analysed [10, 11]. It is straightforward to carry out

sensitivity analysis for a single model with a fixed set of

parameter values; however, since each VP in a cohort has a

different set of parameter values, must we carry out a new

sensitivity analysis for each VP? This would demand a

tremendous amount of computational and human resources

when tens of thousands of VPs need to be examined.

Furthermore, how can we associate the physiological

behaviors exhibited by a population of VPs to underlying

differences in molecular control circuits? Parameter chan-

ges necessarily result in different behaviors of a mathe-

matical model, but how can these changes in system-level

behaviors be associated with the specific parameter chan-

ges? In addition to quantitative behavior changes associ-

ated with specific changes in one or more parameters, can

we also explore the qualitative potential of a dynamical

model in dependence on general movements through

parameter space?

To cope with these practical challenges, we propose an

integrated pipeline that combines machine learning (ML)

with bifurcation analysis. ML is able to efficiently explore

the behaviors of thousands of VPs and quickly discover the

parameters that are most significant in determining some

specific response of these VPs [12, 13]. In this work we

show how to supplement ML with bifurcation analysis, in

order to provide deeper, mechanistic insights into how the

qualitative dynamics of the mathematical model (i.e., the

systems-level behavior of the model) emerge from changes

of specific parameter values. Our study suggests that a

wider adoption of this pipeline may contribute to model-

informed drug development in the future by providing

efficient and rigorous analysis of VPs as representatives of

pharmacological treatments in clinical practice.

Methods

Ordinary differential equations for the model

The four differential equations governing time-dependent

changes in corticotropin-releasing hormone (CRH),

adrenocorticotropic hormone (ACTH), cortisol (COR) and

glucocorticoid receptor (GR) are all of ‘standard form’:

dXi

dt
¼ ki Fi � Xið Þ; ð1Þ

for which;Fi ¼
1

1 þ e�rWi
; ð2Þ

and Wi ¼ Ri
0 þ

X

j

Ri
j � Xj: ð3Þ

The ‘indices’ i and j are assigned to the names of the

model variables, which are CRH, ACTH, COR and GR. The

ODE file for the simulations and the parameter values used

in our simulations are given in Supplementary Tables 1 and

2. A more detailed description of the approach can be

found in the literature [14, 15] as well as in our previous

publications [16] and [17].

The stress signal always starts from a low level,

Stress = 0.1. At t = 10, Stress begins to increase expo-

nentially, Stress ¼ 0:1e0:6ðt�10Þ. For t[ 15, Stress decrea-

ses exponentially at the same rate, Stress ¼ 2e0:6ðt�15Þ

(Supplementary Fig. 1).

Generation of virtual patients and virtual
populations

All time series simulations were carried out with the free

software XPPaut (http://www.math.pitt.edu/*bard/xpp/

xpp.html) using the stiff algorithm for temporal simula-

tions. VPs were generated by randomly changing the

parameters in the ODE model; parameter values were

chosen from uniform distributions over the ranges reported

in Supplementary Table 2. The computer simulations of all

VPs were analysed and plotted with MATLAB (https://

www.mathworks.com/).

For each VP, the COR level was first allowed to reach

steady state (SS before), then a transient stress signal was

applied, and the VP was allowed to reach a new steady

state after the stress signal disappeared (SS after). By

comparing the SS levels before and after, we assigned each

VP to its appropriate ‘population’: higher VPs have SS

after[ SS before, lower VPs have SS after\ SS before,

and control VPs have SS after = SS before. We generated

1000 VPs for each of the three categories (3000 VPs in

total). Early exploratory computations indicated that 1000

VPs per category are sufficient for ML analysis to deliver

robust and consistent results. The parameter distribution of

these VPs are illustrated in Supplementary Fig. 2.

Machine learning analysis

Two separate ML analyses were carried out: one compar-

ing higher VPs to control VPs, and the other comparing

lower VPs to control VPs. Both Random Forest analysis

and Decision Tree (DT) analysis were carried out in R

(https://www.r-project.org/) [18], using the parameter val-

ues of VPs as input and their identities (higher, lower, or

control) as classifiers. Classification Trees were computed

using the rpart2 algorithm in R. With recursive partition-

ing, the algorithm finds optimal threshold values of
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parameters that can be used to classify the VPs most effi-

ciently. Using these thresholds, the VPs in a mother node

were then split into two daughter nodes.

Random Forest analysis (the caret package in R) was

used to assemble multiple DTs, to avoid overfitting and to

compute a rank for each parameter’s contribution/impor-

tance to prediction accuracy. Default settings were used

along with 10-fold cross-validation. Parameter contribution

was calculated as the reduction in accuracy resulting from

permuting the predictors. The computed importances were

then normalized so that the maximal feature importance is

100 and the minimal value is 0.

Support Vector Machine (SVM) identifies hyperplanes

that classify different types of virtual populations. Since we

used only two significant parameters (RCRH
0 andRCRH

CRH when

distinguishing higher VPs from control VPs; and RACTH
0

and RCRH
0 when distinguishing lower VPs from controls)

for this classification, the SVM boundaries were identified

as curves in two-dimensional planes. The binary classifi-

cation through SVM was carried out with the fitcsvm

function of MATLAB (https://www.mathworks.com/).

Readers who are interested in additional technical

details on these ML methods are encouraged to contact the

corresponding author.

Bifurcation analysis

For bifurcation analysis, representative VPs, whose

parameter values are reported in Supplementary Table 2,

were selected. For the one-parameter bifurcation analysis,

Stress is held constant as a parameter. First, the system is

allowed to reach its steady state at a low value of Stress;

then Stress is gradually increased, and the steady state

response of the system (both stable and unstable steady

states) are computed as functions of Stress.

Loci of stable and of unstable steady states in a one-

parameter bifurcation diagram coalesce at characteristic

values of Stress, called saddle-node bifurcation points. For

values of Stress between these saddle-node points, the

systems is bistable [19]. In a two-parameter bifurcation

diagram, these saddle-node bifurcation points are followed

in dependence on Stress and some other model parameter

deemed to be ‘important’ by ML analysis.

Both one- and two-parameter bifurcation analyses were

carried out with the free software Oscill8 (http://oscill8.

sourceforge.net). After the diagrams were computed, they

were plotted with MATLAB (https://www.mathworks.

com/).

Results

Multiple interacting feedback loops contribute
to heterogeneity of virtual patients

The hypothalamic–pituitary–adrenal (HPA) axis (Fig. 1A)

plays a significant role in stress response and psychiatric

diseases [20–23]. Stress signals induce a sequential release

of CRH, ACTH, and then COR. COR then influences target

cells through the GR. The HPA axis is characterized by

negative feedback, by which the release of CRH and

ACTH are repressed once GR is activated [23–25]. The

HPA axis also includes two positive feedbacks on GR [26]

and CRH [27]. Our mathematical model of the HPA axis is

described in the ‘Methods’ section.

Simulations of the model with random combinations of

parameter values resulted in three populations of VPs with

divergent behaviors in response to stress. In all three

populations, COR level increases transiently in response to

a brief pulse of stress. In ‘control’ VPs, COR level then

falls to the same level as before stress (Fig. 1B); in ‘higher’

VPs, COR level after stress is sustained higher than before

stress (Fig. 1C); in ‘lower’ VPs, COR level after stress is

lower than before (Fig. 1D). The simulated VPs mimic real

patients, who are characterized by heterogeneous COR

responses to stress [22, 28–30]. We consider control VPs to

represent the normal physiological response of the HPA

axis, and the higher and lower VPs to represent various

degrees of ‘pathological’ responses.

In this way, our VPs exhibit heterogeneous dynamical

behaviors due presumably to complex regulation of the

HPA axis by the interactions of multiple feedback loops.

How to map such heterogeneity to the underlying regula-

tory system is a general challenge when we try to under-

stand the responses of VPs, and we illustrate how to cope

with this challenge in the following paragraphs.

Machine learning identifies the most significant
parameters, RCRH0 and RCRHCRH, in distinguishing
higher VPs from control VPs

To analyze the simulation data using a ML approach, we

assembled the parameter values and identifier (higher,

lower or control) for each VP of the population into the

rows of a matrix. ML analysis uses the parameter values as

input features and the population identity as output. The

parameters in our mathematical model (see ‘Methods’

section) are of the form: Ri
j = influence of species j on the

pseudo-steady state value of species i, and ki = rate con-

stant for approach of species i to its pseudo-steady state

value. Parameters of the form Ri
0 determine the pseudo-

steady state of species i when all variables Xj ¼ 0: The
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indices i and j are assigned the ‘values’ CRH, ACTH, COR

and GR, in accordance with Fig. 1A.

The ‘control’ VPs serve as the control group for ML.

Adopting a strategy of ‘divide and conquer’, we first

compared the higher VPs with the control group and later

the lower VPs with controls. One thousand control VPs and

one thousand higher VPs were subjected to Random Forest

analysis, which could distinguish higher VPs from control

VPs with high accuracy (Supplementary Table 2). Random

Forest’s feature-importance analysis (parameter-contribu-

tion) indicated that the parameters RCRH
0 , RCRH

CRH and RGR
0

play the most important roles in distinguishing between the

two populations (Fig. 2A).

In order to cross validate the results of Random Forest

analysis, the same patient data and input features were

subjected to DT analysis. Indeed, the key parameter fea-

tures identified by Random Forest play significant roles in

the DT to distinguish higher VPs from controls (Fig. 2B).

In the root node of the tree (top node), there are equal

numbers of control VPs and higher VPs (50% each). Most

of the VPs with RCRH
CRH\4:5 are control (the orange node at

the bottom left, 91% control VPs). On the other hand, if

RCRH
CRH � 4:5, then 66% of the VPs are higher (green node,

upper right). A better classification of higher VPs can be

achieved by requiring that RCRH
0 \� 2:3 and RGR

0 \� 1:2,

in which case 91% of the VPs (green node at bottom right)

were characterized by higher COR levels after stress.

A further cross validation was carried out with SVM

analysis (Fig. 2C). In order to illustrate these results, we

performed SVM analysis with the same VP data and two

key components (RCRH
CRH and RCRH

0 ) as input features.

Though SVM and DT drew different boundaries in the two-

dimensional plane defined by RCRH
CRH and RCRH

0 (Supple-

mentary Table 2), both methods reached the consistent

conclusion that the majority of VPs at the top left

(RCRH
CRH � 4:5 and RCRH

0 \� 2:3) are characterized by higher

COR levels after stress, while the majority of VPs outside

this region are controls.

Cross-validation of these results with three different ML

methods boosted our confidence that the important roles

attributed to RCRH
CRH and RCRH

0 are unlikely due to algorithm

or computational bias, but more likely to be consequences

of some hidden characteristics of the VPs.

Following the clues provided by ML analysis, we ran-

domly chose a sample VP (VP1) with higher COR level

after stress and generated a second VP (VP2) by reducing

its value of RCRH
CRH . The time dependent trajectories of VP1

and VP2 were shown as grey solid curves and red dashed

curves in Fig. 3, respectively. In VP1 (grey solid curves in

Fig. 3A–D), the level of CRH increased and then stayed

high after the stress was relieved, which resulted in a

higher level of ACTH and COR after stress. On the other

hand, the level of GR remained low throughout the stress

response. In VP2 (red dashed curves in Fig. 3A–D), CRH

started inactive and COR was moderate. Upon the eleva-

tion of the stress signal, CRH and ACTH were activated

and COR was released. The release of COR was only

transient, though. After the stress signal returns to normal,

the level of COR drops back to its original level. Hence, a

simple decrease of the value of RCRH
CRH can move a VP from

the higher population (VP1) to the control population

(VP2). The simulation results were consistent to the

A B 

D C 

Stress

CRH ACTH Cortisol

GR

Activation

Positive 
feedbackInhibition

Fig. 1 A Interaction diagram of

the HPA model. CRH
corticotropin-releasing

hormone, ACTH
adrenocorticotropic hormone,

GR glucocorticoid receptor.

Black arrows denote activation;

blue arrows, positive feedback;

red links, negative feedback. B–
D Typical time-course

simulations (using a different

color for each simulation) of

control VPs (virtual patients),

higher VPs (virtual patient

whose cortisol levels are higher

after stress than before), and

lower VPs (virtual patients

whose cortisol levels are lower

after stress)

120 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:117–131

123



Fig. 2 A Parameter ranking by Random Forest analysis.

RCRH
0 and RCRH

CRH are the most important parameters that distinguish

higher VPs from control VPs. B. Decision Tree analysis of higher VPs

and control VPs. The percentage of dominant VPs (whose percent-

age C 50%), either control or higher VPs, is indicated in each node.

Orange nodes indicate that the percentage of control VPs C higher

VPs; green nodes, otherwise. Starting from the top, VPs in a mother

node are split into two daughter nodes based on comparing the value

of a control parameter to a threshold value. All VPs meeting the

splitting criteria are sorted to the left node, while those not meeting

the criteria go to the right node. C. Support Vector Machine (SVM)

analysis cross validates the results of Decision Tree (DT) analysis.

Red and blue dots represent the higher- and control VPs, while the

black and green curves sketch out the boundaries identified by SVM

analysis and DT analysis (panel B)

Fig. 3 Time-course simulations

of two VPs: VP1 (grey solid

curves) has higher cortisol level

after transient stress, while VP2

(red dashed curves) is identical

to VP1 except for a lower value

of RCRH
CRH . Notice that the level of

CRH (A), low before stress, is

elevated by the stress and then

either remains high in VP1 or

drops in VP2 after the stress

signal disappears. ACTH

(B) follows the trend of CRH,

due to its activation by CRH,

and cortisol (COR, C) follows

the pattern of ACTH. GR (D),

on the other hand, remains low

during the whole time in both

VPs; it does not get activated to

any great extent by the stress

stimulation. The parameter

values for all VPs are provided

in Supplementary Table 2
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significant role of RCRH
CRH identified by ML in distinguishing

the population of higher VPs from the population of control

ones.

One-parameter bifurcation analysis explains
the higher (pathological) cortisol level
after transient stress stimulation

Though the ML analysis efficiently identifies the parame-

ters that most effectively distinguish higher VPs from

control VPs, it does not explain how these particular

parameters account for the responses of higher VPs. To

investigate this question, we proceeded with a refined

dynamical analysis of these two ‘sample’ VPs, VP1 and

VP2.

The sustained activation of CRH is due to its positive

feedback, which is not counteracted by negative feedback

from GR (Fig. 1A) in cases when GR remains low

throughout the stress response. With appropriate parameter

settings, the positive feedback on CRH results in a

bistable switch, indicated by the S-shaped curve of CRH

steady state (Fig. 4A) as a function of stress level. The

lower and upper branches of the S-shaped curve correspond

to stable steady states (‘nodes’) of CRH abundance, and the

middle branch (dashed) corresponds to unstable steady

states (‘saddle points’). For Stress\ 0.7, CRH level can be

either low or high. For Stress[ 0.7, the HPA control

system settles on a unique steady state of CRH level. At

Stress = 0.7, the unstable steady state of intermediate CRH

level and the stable steady state of low CRH level coalesce

and disappear at a ‘saddle-node’ bifurcation point, leaving

only the stable steady state of high CRH.

For an unstressed patient (Stress = 0.1), we assume that

CRH resides on the lower branch (position 1 in Fig. 4A).

Following a sufficient elevation of stress (Stress[ 0.7, in

this case), CRH is activated (i.e., brought to the upper

branch of the switch), as illustrated by the red trajectory in

Fig. 4A. The stress is temporary, and, as it drops, CRH

level stays on the upper branch of the bistable switch

(position 2 in Fig. 4A). As a consequence of this bistabil-

ity, positions 1 and 2 had identical stress level (Stress =

0.1), but their CRH response levels are dramatically

different.

Although ACTH is not subject to positive feedback

itself, it also exhibits bistable response due to its activation

by CRH. Before stress is applied, inactive CRH results in a

low level of ACTH (position 1 of Fig. 4B); after transient

stress stimulation, the sustained activation of CRH sustains

a high activity of ACTH (position 2 of Fig. 4B). In the

same manner, COR also inherits a bistable response due to

activation of ACTH (Fig. 4C). The level of GR, however,

remains low, both before and after stress stimulation,

because the inactivation rate of GR (RGR
0 \� 1:2) is too

strong to be overcome by the released COR (Fig. 4D).

With a lower rate of inactivation (i.e., RGR
0 less negative),

GR would be activated, as discussed later.

1 

2 

1 

2 

1 

2 

Same notation 
for all panels

1 

2 

A B 

D C 

Fig. 4 A–D One-parameter

bifurcation diagrams for CRH,

ACTH, COR and GR,

respectively. In these

bifurcation diagrams, grey solid

curves indicate stable steady

states, grey dashed curves

indicate unstable steady states,

and red dotted curves trace

time-course simulations (see

Fig. 3) across the relevant

bifurcation diagrams. Position 1

indicates the system’s state

before stress begins; position 2

after stress ends. In panels A–C,

positions 1 and 2 are

characterized by the same low

level of stress before and after

the transient stimulus, but a

higher level of response after

the stress disappears. Panel

D (note the change in scale of

the vertical axis) indicates that

GR remains ‘inactive’ during

the whole process
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One-parameter bifurcation diagram reveals
how the reduction of RCRHCRH alters the dynamical
behaviors of the VPs

As discussed above, the bistable activation of COR by the

stress signal is essential for the higher VPs to sustain higher

COR levels after transient stress stimulation. Bearing this

in mind, we proceeded to examine how such bistable acti-

vation is regulated by the significant parameters identified

by ML analysis.

For this purpose, we again computed the one-parameter

bifurcation diagram with Stress, with the value of RCRH
CRH

reduced to that in VP2 (Fig. 5). The red trajectory of VP2

in Fig. 5 was taken from VP2, whose dynamics were

plotted in Fig. 4. Due to its lower value of RCRH
CRH , VP2 no

longer resides in the bistable region at normal stress level

(Stress = 0.1). Its COR level increased transiently upon a

transient stress stimulation. Then, after the stress signal

decreased to normal, its COR level returned to normal

level.

Comparing Figs. 4 and 5, we can extract the take home

message: a pathological attractor (i.e., the stable steady

state labelled by a red 2 in Fig. 4) is responsible for the

pathological COR level observed in higher VPs, e.g.,

patients with post-traumatic stress disorder (PTSD). If this

pathological attractor is removed (as in Fig. 5), the patient

can be cured.

Machine learning identifies RACTH0 as the most
significant parameter in distinguishing lower VPs
from control VPs

We next carried out an ML comparison of populations of

lower VPs and control VPs. For cross validation purpose,

several ML methods were utilized. The input features and

performance of these methods are summarized in Supple-

mentary Table 3. Random Forest analysis identified

RACTH
0 and RCRH

0 as the most important parameters in dis-

tinguishing these two populations (Fig. 6A). This result

was further supported by DT analysis and SVM analysis,

which showed that if RACTH
0 is smaller than a critical

threshold (- 2.3), most of the VPs meeting this criteria are

control VPs (bottom left orange node in Fig. 6B, C).

We then double checked the role of RACTH
0 with time

series simulations (Fig. 7). For this purpose, we chose a

sample (VP3) from the population of lower VPs and

reduced its RACTH
0 value (while keeping other parameter

values unchanged) to create VP4. The simulation of VP3

(grey solid curves in Fig. 7) behaves as categorized:

starting with an intermediate value of COR, its COR level

elevates temporarily upon stimulation by the stress signal,

then the level of COR decreases and stays at a lower level

compared with that before stress. Consistent with the sig-

nificant role of RACTH
0 , the reduction of RACTH

0 alone makes

VP4 behave as a control VP. After the transient stress

stimulation, VP4’s COR level returns to the same level that

1 

1 

1 
1 

A B 

D C 

Fig. 5 One-parameter

bifurcation analysis for the

‘control’ VP2 in Fig. 3, which

was derived from ‘higher’ VP1

by reducing the value of RCRH
CRH
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it had before stress (red dashed curves in Fig. 7). Reduction

of RACTH
0 changes the dynamics of CRH, ACTH, and COR;

meanwhile, the time-dependent trajectory of GR is barely

altered by the change (Fig. 7).

The ‘cure’ exhibited by VP4 (Fig. 7, red dashed curves)

is spurious: VP4 is ‘control’ (SS after = SS before) because

COR level ‘before’ is very low to start with! This case can

hardly be considered a cure. If low COR level caused the

symptoms in VP3, these symptoms would not disappear in

VP4; indeed, VP4 would experience those symptoms in the

resting, unstressed state. So, reduction of RACTH
0 does not

result in a satisfactory cure. Next, we turned to bifurcation

analysis to investigate why reduction of RACTH
0 does not

cure VP3.

Bifurcation analysis reveals the systems-level
properties of lower VPs

We next carried out bifurcation analysis (Fig. 8) for the

sample lower VP3, whose time series simulations were

shown as the grey curves in Fig. 7 and replotted as the red

dotted curves in Fig. 8. This VP started with intermediate

levels of CRH, ACTH and COR before stress stimulation

(position 1 in Fig. 8A–C), and low GR activity (position 1

in Fig. 8D).

Stress stimulation results in elevation of all four com-

ponents (Fig. 8A–D). After the stress signal returns to

normal, GR activity is sustained high by its positive

feedback (position 2 in Fig. 8D). The sustained activation

of GR then inactivates CRH and ACTH through the neg-

ative feedback (position 2 in Fig. 8A, B), which conse-

quently results in the inactivation of COR (position 2 in

Fig. 8C).

A reduction of RACTH
0 alters these bifurcation diagrams

(Fig. 9): less significantly for the CRH and GR diagrams,

more significantly for the ACTH and COR diagrams. The

altered bifurcations diagrams explain the altered time series

dynamics in VP4 with reduced RACTH
0 (red curves in

Figs. 7, 9). Starting from a low level, GR is activated by the

stress signal and sustained by its positive feedback

Fig. 6 Machine learning analysis of lower VPs compared to control

VPs. For notations, refer to legend of Fig. 2. A Parameter ranking by

Random Forest analysis. RACTH
0 is the most important parameter in

distinguishing these two populations. B Decision Tree analysis of

higher VPs and control VPs, which showed that 91% of VPs with

RACTH
0 \� 2:3 are control VPs. C Support Vector Machine analysis

and Decision Tree cross-validated each other. SVM and DT drew

similar boundaries in this two-dimensional plane and consistently

concluded that RACTH
0 and RCRH

0 are the key parameters distinguishing

lower VPs from control ones
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(Fig. 9D). Through the negative feedbacks, activated GR

then represses CRH and reduces its level (Fig. 9A). On the

other hand, the reduced value of RACTH
0 results in a low

level of ACTH even before stress stimulation. ACTH is

transiently activated by the stress signal, then it returns to

an even lower level after stress is relieved (Fig. 9B).

However, since such low levels of ACTH are insufficient to

activate COR, COR levels both before and after the stress

stimulation are low and do not show detectable difference

(Figs. 7C, 9C).

In this way, bifurcation analysis reveals that for VPs to

have lower pathological COR levels after stress stimula-

tion, their physiological COR levels must be sufficiently

high before stress. This insight generally holds for multiple

VPs (Supplementary Fig. 3). In these individuals, high GR

activity sustained by its positive feedback can then reduce

Fig. 7 Time-course simulations

of two distinct VPs: VP3 (grey

solid curves) is a sample VP

with lower cortisol level after

stress; VP4 (red dashed curves)

is identical to VP3 except for a

lower value of RACTH
0 . The time-

dependent changes of CRH (A),

ACTH (B), cortisol (C), and GR

(D) are illustrated. See text for

elaboration of the dynamics of

VP3 and VP4

1 

2 
1 

2 

1 

2 

1 

2 
Bifurca�on 
of VP3

A B 

D C 

Fig. 8 One-parameter

bifurcation analysis for the

‘lower’ VP3 in Fig. 7. The four

panels show the bifurcation

diagram for CRH, ACTH, COR

and GR. For notation see the

legend to Fig. 4. In panels A–D,

positions 1 and 2 are

characterized by the same low

level of stress before and after

the transient stimulus, but a

lower level of CRH (A), ACTH

(B), and cortisol (C), and a

higher level of GR (D)
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the COR level through its negative feedback effects. This

analysis leads to a testable prediction. Individual patients

who are characterized by higher COR levels under physi-

ological conditions before stress should be more likely to

experience lower (pathological) levels of COR after stress.

On the other hand, individuals whose COR levels are low

under physiological conditions should be less likely to

develop lower-COR pathology post stress.

What is more, the bifurcation analysis revealed the

reason why reduction of RACTH
0 could not cure VP3.

Though VP4 has reduced level of RACTH
0 and its bifurcation

diagram is quantitively altered, the qualitative features of

its bifurcation diagram remained unchanged. VP4, like

VP3, still has the pathological attractor (labelled as red 2 in

Figs. 8, 9). Consequently, both VP3 and VP4 are stuck in

this pathological attractor and would experience symptoms

that would result from low COR level.

Bifurcation analysis reveals that a reduction
in the level of RGRGR could remove the pathological
attractor

In order to design a better cure, we then carried out

bifurcation analysis with the other control parameters.

Bifurcation analysis suggests that a reduction of RGR
GR would

be able to remove the pathological attractor (Fig. 10):

starting from a stable steady state, CRH, ACTH, COR and

GR enter an oscillatory region when stress increases

(indicated by dashed curves in Fig. 10). Importantly, only

one stable attractor exists when stress is at its low, resting

level.

Time series simulation confirmed that the reduction of

RGR
GR resulted in a more satisfactory COR response to stress.

Transient increase of stress results in oscillation of all four

components (VP5, Fig. 11A–D). After the stress signal

returns to normal, all four components returned to their

normal, resting value. Hence though VP5 could still suffer

from transient symptoms associated with fluctuating COR,

the symptoms would eventually disappear after COR

returns to its normal state.

Discussion

Currently, there is great interest in combining mechanistic

modelling and ML, as evidenced by the literature [31–37]

and by this special issue. In this work, we have proposed a

computational workflow for the efficient and robust anal-

ysis of heterogeneous populations of VPs (Fig. 12) and

provided a proof of principle example based on stress

responses of the HPA axis. By a combination of ML and

dynamical analysis, this computational pipeline can reveal

rigorously computed, interpretable insights into the

behavior of VPs governed by a complex molecular regu-

latory network. Such insights will not only help model

developers to calibrate and validate VP populations but

1 

2 

1 

2 

1 2 

1 

2 

A B 

D C 

Fig. 9 One-parameter

bifurcation analysis for the

‘control’ VP4 in Fig. 7, which

was derived from ‘lower’ VP3

by reducing the value of RACTH
0 .

In panels A–D, positions 1 and 2

are characterized by the same

low level of stress, but a lower

level of CRH (A) and ACTH

(B), and a higher level of GR

(D); the level of cortisol (C) is

very low both before and after

stress
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also help model users (who are not necessarily model

developers themselves) to gain a deeper understanding of

both the advantages and limitations of complex models, to

modify the models to meet their own purposes, and to

properly utilize the models in making critical decisions.

We believe that this approach will promote the develop-

ment of new, effective tools for systems pharmacology

[33].

Fig. 10 One-parameter

bifurcation analysis for a newly

designed ‘control’ VP5, which

was derived from ‘lower’ VP3

by reducing the value of RGR
GR.

The stress-dependent changes in

steady state levels of CRH (A),

ACTH (B), cortisol (C) and GR

(D) are plotted. At low stress,

each component is characterized

by a stable steady state (black

solid curve). At higher levels of

stress (above * 0.4), the steady

state of each component

becomes unstable (indicated by

grey dashed curves)

Fig. 11 Time-course

simulations of two distinct VPs:

VP3 (grey solid curves) is the

same sample VP used in Fig. 7;

VP5 (red dashed curves) is

identical to VP3 except for a

lower value of RGR
GR. The time-

dependent changes of CRH (A),

ACTH (B), cortisol (C), and GR

(D) are illustrated. Note how the

cortisol level of VP5 starts at a

moderate value (0\ t\ 10),

shows transient oscillations as

stress builds up (10\ t\ 15),

and then returns to its initial

value after stress is relieved

(t[ 20)
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Our workflow

Our workflow takes advantage of the distinct strengths of

ML and mechanistic modelling, allowing each method’s

strengths to overcome the other’s limitations. ML is a

‘black-box’ method that quickly identifies features of sig-

nificant impact and provides targets for a refined analysis

by dynamical systems theory. On the other hand, bifurca-

tion analysis is an ‘open-box’ method that reveals how

underlying molecular mechanisms account for the features

identified by ML. Together, these two methods provide

timely and understandable analysis of the heterogeneity of

VPs.

However, it would be a mistake to think of ML algo-

rithms or dynamical systems models as ‘genies’ that

magically transform data streams into reliable suggestions

for pharmaceutical treatments of some human pathology.

Rather, these analytical methods help us to think more

clearly about the molecular underpinnings of cell and

organismal physiology and to trace more rigorously the

consequences of interfering with these mechanisms

pharmacologically [38]. For instance, as our example (the

HPA axis) illustrates, machine-learning classifications

suggest sensible interventions for restoring ‘higher’ VPs to

normality, but for ‘lower’ VPs, they direct us to completely

unreasonable treatments that put the ‘patient’ in a patho-

logical state before as well as after the stress. Dynamical

models, on the other hand, might avoid such pitfalls, but

they are stymied by the sheer immensity of the parameter

space that must be sampled in searching for reasonable

interventions. (For example, to solve the HPA model for all

integer values of the parameters over the ranges specified

in Supplementary Table 2, we would have to do 3 9 1014

simulations, which would take 10 years at 106 simulations

per second.) But the two methods can be usefully combined

by supplementing the rapid-but-superficial correlations

identified by ML algorithms with the deep mechanistic

insights provided by dynamical models. (For example, we

have shown here how one-parameter bifurcation diagrams

can reveal how pharmaceutically inducible changes of

specific kinetic parameters of a control system may alter its

dynamical behavior in beneficial directions.) The broad and

deep understanding of complex QSP models afforded by

our computational workflow has the potential to contribute

significantly to drug development, provided these models

are rigorously validated and verified [39].

The hypothalamic–pituitary–adrenal axis

The example described here—the HPA axis—indicates

that complex QSP models can be effectively understood

with a combination of ML and bifurcation analysis.

Although the HPA axis may seem simple, both its structure

(the interaction of multiple positive and negative feedback

loops) and its dynamical behaviors (combined

bistable switches and oscillations) are complex enough to

illustrate the power of our analytical workflow.

Nonlinear feedbacks—both positive and negative—po-

tentially result in complex behaviors (switches and oscil-

lators) within distinct regions of parameter space, and these

complex dynamical behaviors may—or may not—be

observed in the corresponding physiological context

[40, 41]. Our workflow identifies the parameter regions

where these behaviors occur. If the behaviors are observed,

as in the case of heterogeneous COR levels in patients with

stress disorders [12, 18–20], our approach can provide

strong constraints on the parameter values that should be

used to construct representative VPs. On the other hand, if

the behaviors are not observed, then model developers can

use this knowledge to avoid parameter regions that would

construct unacceptable VPs.

QSP model Parameter 
distributions

Heterogeneous Virtual Patients

Machine learning analysis
identifies most important parameters

WHY? 
Dynamical analysis 

reveals mechanistic insights

WHAT? 

Real Patients: 
Physiology

Pharmacology
Biochemistry

Fig. 12 How our computational workflow fits into the current practice

of virtual patient analysis. Data from real patients (physiology,

pharmacology and biochemistry) suggests a quantitative systems-

pharmacology (QSP) model, such as the proposed mechanism of the

HPA axis in Fig. 1A and its mathematical formulation in ‘Methods’

section. By subjecting the mathematical model to random adjustments

of its parameters, we create a population of virtual patients. Applying

machine learning algorithms to this population, we quickly identify

the most important parameters governing some relevant response of

the VPs (i.e., what’s in charge?). This information can be fed back to

the data, to see if the influential features of the model, identified by

ML, correspond to influential features in the real-patient data. For a

better understanding of patient responses, we address the why
question by dynamical systems theory. Bifurcation theory can provide

significant insights into the mechanisms behind the most important

features. These insights offer further feedback to the real-patient data.

To the extent that this workflow is successful, we make progress in

treating real diseases. If the features identified by this workflow do not

correspond well with patient experiences, the discrepancies will

suggest ways to modify the QSP model in order to improve the

predictions of ML and bifurcation analyses
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Post-traumatic stress disorder

We chose to illustrate our workflow with the HPA axis

because it is intimately involved in PTSD, a sustained

pathological response to an acute stressful experience.

Patients experiencing PTSD can be classified into low-

COR and high-COR cohorts [42, 43], and there is consid-

erable discussion among clinicians as to the significance of

these differences [44–46]. Our analysis of how the HPA

axis may respond to stress can help to clarify the origins of

PTSD and suggest practical interventions in the clinic. First

of all, our mathematical analysis of the HPA axis makes

clear that pathologically high or low COR levels after acute

stress are related to heterogeneities among individual

patients in the dynamical parameters that characterize the

stress response. Some individuals are resistant to PTSD,

some are prone to low-COR PTSD, and some to high-COR

PTSD. ML methods can identify the most important

parameters associated with each of these three responses in

populations of VPs. Most importantly, dynamical systems

analysis of these VP populations points compellingly to

‘bistability’ of the HPA response as the origin of patho-

logical COR responses in PTSD. A dynamical system is

bistable if it may persist in two different, stable steady

states of response for the same level of an input signal; e.g.,

a low level of stress may be consistent with either a normal

or a pathological level of COR in the blood stream. An

acute and sufficiently high level of stress may push an

individual from the normal state into the pathological state,

and the patient remains in the stable, pathological state

even after the stress disappears.

Our simulation analysis has defined PTSD pathology as

the difference between COR level before and after stress.

With this practical definition, we have classified the VPs to

be either of higher (COR increases after stress), lower

(COR decreases after stress), or control (COR does not

change upon transient stress stimulation).

Dynamical analysis with these VPs suggests that bista-

bility underlies the pathological COR changes of PTSD

patients. If this understanding of the origins of PTSD is

true, it suggests three different possibilities for clinical

intervention. First of all, our analysis suggests that the

pathological state coexists with the normal state, but the

patient is trapped by the local stability of the pathological

state. In this case, it might be possible to kick the patient

out of the pathological state and into the ‘domain of

attraction’ of the normal state by a transient perturbation of

the HPA axis, say, by COR injection (if COR level is low

in the pathological state) or by inhibiting CRH (if the COR

level is too high). Secondly, it should be possible to per-

manently treat PTSD patients by drugs that interfere with

the ‘important’ parameters identified by ML analysis and

whose modes of action are revealed by one-parameter

bifurcation diagrams. For example, Fig. 2C suggests that

high-COR PTSD could be treated by drugs that impair the

positive feedback on CRH by decreasing RCRH
CRH . For

patients with low-COR PTSD, Fig. 6C suggests increasing

RCRH
0 (making CRH more responsive). Alternatively, one

might give preventative doses of appropriate drugs to

persons prone to PTSD (e.g., soldiers) before they are sent

into stressful circumstances. The drug cocktail used will

depend, of course, on the person’s PTSD-class: high- or

low-COR response after transient stress.

Conclusion

Both ML methods and bifurcation analysis are applicable,

in principle, to models of arbitrary complexity; hence, it is

possible (again, in principle) to apply our workflow to

models of commercial interest, with many more differen-

tial equations and parameters than our example of the HPA

axis. In practice, however, there are limits to the com-

plexity of systems that can be handled by present-day

computational tools. Our workflow could be enhanced by

combining it with model-simplification methods, such as

time scale separation and modularity. In this way, we could

approach a fuller understanding of realistic QSP models of

human diseases.

Clearly, mathematical tools need continuous improve-

ments to meet the ever-growing needs of biomedical and

pharmaceutical industries. To deal with a variety of dis-

eases in real patients with different genetic backgrounds

and environments, treated by diverse sets of drugs, it will

be necessary to improve and refine both our modelling

framework and our analytical pipeline [12, 13, 47].

Assiduous improvements of the pipeline will provide the

QSP community with powerful analytical tools to under-

stand mechanisms, to make sense of data, and to guide our

challenging endeavour to identify and optimize treatments

for complex human diseases.
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