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Abstract: Benthic biofilms are pioneering microbial aggregates responding to effluent discharge from
wastewater treatment plants (WWTPs). However, knowledge of the characteristics and linkage of
bacterial communities and water-soluble organic matter (WSOM) of benthic biofilms in effluent-
receiving rivers remains unknown. Here, we investigated the quality of WSOM and the evolution of
bacterial communities in benthic biofilm to evaluate the ecological impacts of effluent discharge on a
representative receiving water. Tryptophan-like proteins showed an increased proportion in biofilms
collected from the discharge area and downstream from the WWTP, especially in summer. Biofilm
WSOM showed weak humic character and strong autochthonous components, and species turnover
was proven to be the main factor governing biofilm bacteria community diversity patterns. The
bacterial community alpha diversity, interspecies interaction, biological index, and humification index
were signally altered in the biofilms from the discharge area, while the values were more similar in
biofilms collected upstream and downstream from the WWTP, indicating that both biofilm bacterial
communities and WSOM characters have resilience capacities. Although effluent discharge simplified
the network pattern of the biofilm bacterial community, its metabolic functional abundance was
basically stable. The functional abundance of carbohydrate metabolism and amino acid metabolism
in the discharge area increased, and the key modules in the non-random co-occurrence network
also verified the important ecological role of carbon metabolism in the effluent-receiving river. The
study sheds light on how benthic biofilms respond to effluent discharge from both ecological and
material points of view, providing new insights on the feasibility of utilizing benthic biofilms as
robust indicators reflecting river ecological health.

Keywords: biofilm resilience; water-soluble organic matter; microbial community; co-occurrence network

1. Introduction

The ecological health of urban rivers and internal lakes have been cumulatively
affected by anthropogenic activities. A major impact of urbanization is inputs from wastew-
ater treatment plants (WWTPs) [1]. With the increasing scale of treated sewage, effluent
discharge has become one of the most important sources of river replenishment. WWTPs
release a multitude of nutrients, dissolved organic matter (DOM), and micropollutants, e.g.,
pharmaceuticals and personal care products [2,3]. Synthetic chemicals and nutrients mix
and enter the receiving waterbodies, triggering eutrophication and altering biogeochemical
cycling in fluvial ecosystems [4]. Effluent-receiving waterbodies have been regarded as
environmental sensitive regions and have attracted intensive research concerns [5].

Effluent discharge has multidimensional impacts on the ecosystem and functioning
of receiving waters. Primarily, effluent input alters the trophic level and constituents of
DOM molecules [6], whereafter pelagic algae and communities change in response to
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trophic level variation and affect primary production. The effects of effluent discharge
on other biota, including benthic biofilm, macrophytes, and invertebrates, have also been
reported [7]. These effects are likely to be governed by hydrological parameters such as
wetting/drying alteration [8], seasonal variation [9]. and dilution of effluent discharge [10].
IN the study [11], the impacts of effluent and hydrological stresses on river functioning
were investigated, and it was observed that even highly diluted WWTP effluents can affect
the structure of the biofilm community and river ecosystem functions.

Benthic biofilms are assemblages of living and dead algae, microbes, and organic
debris, constituting the basis of the benthic food web [12,13]. Benthic biofilms have been
considered pioneer microbial aggregates in response to effluent discharge [12]. The architec-
ture and functioning of biofilms are constantly changing following variations in dissolved
oxygen, organics, hydrodynamics, etc. [14]. The total biomass, microbial composition,
photosynthesis of algae, and assimilation of organic matter are accordingly modified as a
consequence [15]. Existing studies have shown that benthic biofilms can restrain pollutants,
e.g., heavy metals, pharmaceuticals and brominated flame retardants released from histori-
cal events and transfer the contaminants to higher trophic levels [16,17]. Hence, biofilms
are often used as indicators to evaluate ecological changes in aquatic environments by
assessing their respiratory rate [18] or soluble reactive phosphorus uptake capacity [11].
Biofilms adapted to anthropogenic disturbances typically show higher resistance to effluent
discharge [4,11]. Water-soluble organic matter (WSOM) is the most active component in
biofilm organic matter, comprising carbohydrates, amino acids, and organic acids. Efflu-
ent discharge has been verified to promote extracellular enzyme activities, e.g., leucine
aminopeptidase and amino glucosidase in benthic biofilms, facilitating the conversion of
complex organic matter and its subsequent uptake and utilization by microbes [19,20].

A number of studies have demonstrated the complicated and bidirectional relationship
between organic carbon and bacteria communities in rivers. River organic carbon serves
as a carbon source and nutrient for heterotrophic bacteria and some algae, and can be
metabolized by micro-organisms in the aquatic environment [21]. Different from the organic
contents in other matrices, such as sediments, the organic compounds in biofilm may affect
the microbial community structure and modify the food web character and energy transfer
efficiency [12]. Chromophore DOM (CDOM) is an optically active part in the bulk DOM
pool that can intensely absorb light in the ultraviolet and blue spectral regions, and exhibits
remarkable changes in the quantity and quality of diverse biogeochemical processes [6].
Avila et al. unveiled the dynamic succession between CDOM and the microbial community
in a small river dominated by effluent discharge and confirmed a remarkable response
of actinomycetes and protein components [22]. Zhang et al. explored the relationships
between phytoplankton communities and CDOM in a tropical lake and found that CDOM
could affect bacterial community structure by participating in the metabolism of specific
bacterial communities. Similar results were observed by analyzing the connection between
phytoplankton community and CDOM in a eutrophic lake [23]. Nonetheless, most studies
have focused on the characteristics and association between planktonic communities and
DOM in streams, while the bacterial community structure and interspecific interactions
of organic compounds in adherent aggregates, e.g., benthic biofilms, have been largely
ignored. An analysis linking the microbial community and WSOM components in benthic
biofilms may help to bring forward biological indicators for assessing freshwater quality
and ecosystem fitness.

In the past decade, the rapid development in bioinformatics has afforded technical
support to decipher responses of microbial community assembly and metabolic functions
to environmental stresses [23,24]. Burdon et al. confirmed the resilience of microbial
communities to effluent discharge and found that the buffering capacity of microbial
communities is vulnerable to impact by environmental fluctuations [2]. Recently, co-
occurrence network analysis has been employed to explain the interspecific interactions
of microbial communities in suspended particulates, soils, and sediments. These studies
manifest that microbial communities usually have non-random co-occurrence patterns
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and a modular structure, implying the vital role of biological interactions in adjusting the
fluvial ecosystem functioning [25–27]. Unfortunately, no studies have been performed to
evaluate microbial interactions in river biofilms in response to effluent discharge; thus, the
co-occurrence patterns between bacterial communities and biofilm WSOM have not been
elucidated yet.

In this case study, we investigated how benthic biofilm bacterial communities and
biofilm WSOM alter in response to effluent discharge in an effluent-receiving river. We
hypothesized that the stress of effluent discharge has a considerable impact on the co-
occurrence patterns of benthic biofilm bacterial communities, as well as their linkage
with WSOM, especially CDOM. We also hypothesized a higher proportion of metabolic
functions on account of nutrient and micropollutant inputs in the discharging area. These
results will contribute to unraveling the overall impacts of allochthonous inputs such as
effluent discharge on river biofilm properties and ecological functions, providing insights
in the search for appropriate pollution indicators in effluent impacted areas and revealing
the potential of benthic biofilm as an indicator of the ecological response of effluent-
receiving rivers.

2. Materials and Methods
2.1. Study Site, Experimental Design, and Water Characteristics

The North City WWTP of Jiangning District (31◦58′ N, 118◦50′ E) uses an oxidation
ditch process that treats the sewage of >40 thousand P.E. from domestic sources. On average,
70 thousand cubic meters of wastewater are treated per day and the effluent is discharged
into the Qinhuai River, located in Nanjing, Jiangsu Province, China, as illustrated in Figure 1.
The water level and temperature of the Qinhuai River show significant seasonal differences
(Table S1). Nearly 75% of the annual precipitation is concentrated during the May-to-
September rainy season (summer) [28]. The area of interest has a straight channel with few
tributary confluences, and the WWTP effluent discharge is the main external input to the
reach, endowing the area with superiority for evaluating the effects of wastewater effluent
on ecosystem functioning.
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Figure 1. Location of sampling sites in Qinhuai River receiving effluent from North City wastewater
treatment plant (WWTP) in Jiangning District, Nanjing, China.

Eleven sampling sites were selected along the reach. The sites were categorized into
three areas according to their relative positions to the effluent outfall shown in Figure 1.
U1 to U3, 1, 0.5, and 0.2 km upstream from WWTP effluent discharge, are referred to
as the Upstream group; D1 to D4, 0, 0.2, 0.5, and 0.7 km downstream the discharge, are
referred to as the Discharge area group; D5 to D8, 1, 1.5, 2, 3 km, downstream from
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the discharge, are referred to as the Downstream group. The values of pH, temperature
(T, ◦C). and dissolved oxygen (DO) were measured using a portable meter (HQ30d, HACH
Company, Loveland, CO, USA) at each sampling site in December 2019 and September
2020, respectively. Water and benthic biofilms were collected on 26 December 2019 (winter,
averaged water temperature: 10.3 ◦C) and 8 September 2020 (summer, averaged water
temperature: 26.8 ◦C) (Table S1). Total nitrogen (TN) and total phosphorus (TP) were
measured to reflect the trophic conditions at varying sampling sites [29]. Three parallel
water samples were collected and analyzed at each site.

2.2. Biofilm Harvesting and Water-Soluble Organic Matter (WSOM) Extraction

Benthic biofilms were collected following the protocols reported by Wang et al. [30].
The main steps of collection include: rock selection, biofilm scraping, sample preservation,
and transportation. The detailed collection method is available in SI. Prior to extraction,
20 g of biofilm samples in wet weight were lyophilized using a freeze dryer (Christ ALPHA
1-2 LD plus, Marin Christ Co., Osterode am Harz, Germany). To improve the extraction
efficiency, we ground the lyophilized biofilm and passed it through a 100-mesh sieve to
remove impurities. Biofilm WSOM was extracted using a leaching-centrifugation method
according to the protocols of previous studies [31,32]. Pre-treated biofilm was packed
into sterilized conical bottles at a material-to-water (g:g) ratio of 1:3. Then the samples
were shaken for 16 h at ambient temperature. Afterwards the leachate was transferred to
50 mL sterilized centrifugal tubes and then centrifuged at 4000× g r/min for 30 min. The
supernatant was filtered through a 0.45 µm sterile acetate membranes, and the generated
filtrate was defined as biofilm WSOM and stored at −4 ◦C prior to analytical approaches.

2.3. Spectral Analyses of Biofilm WSOM

Dissolved organic carbon (DOC) concentrations in bulk WSOM solutions were mea-
sured using a total organic carbon analyzer (Multi N/C2100, Analytik Jena, Jena, Germany).
The DOC concentration in biofilm WSOM were normalized to mg/g shown in Table S2.
UV-vis absorption spectra were measured by a spectrophotometer (UV-1800, Shimadzu,
Japan). The excitation–emission matrices (EEMs) of CDOM in WSOM were measured using
a fluorescence spectrophotometer (F7000, Hitachi, Japan). Detailed information on spectral
analysis is provided in SI. Parallel factor analysis (PARAFAC) was performed using the
DOM Fluor toolbox in MATLAB (R2017a) software [33]. The relative contents of fluorescent
components were obtained via Fmax values analyzed by PARAFAC. Several UV-visible
spectra-derived parameters were calculated to demonstrate the aromaticity (SUVA254), hy-
drophobicity (E254/E204), and molecular weight (SR) of biofilm WSOM. We also calculated
parameters including biological index (BIX), humification index (HIX), and fluorescence
index (FI) to describe the fluorescent characteristics of biofilm WSOM as described in the
Table S3.

2.4. Microbial Community Analysis
2.4.1. DNA Extraction and PCR Amplification

For each biofilm sample, DNA extraction was executed through the E.Z.N.A.® Soil
DNAKit (Omega Bio-tek, Norcross, GA, USA), following the manufacturer’s instruc-
tions. Agarose gel electrophoresis was used to analyze the quality of the extracted
DNA. 16S rRNA gene amplification and Illumina MiSeq sequencing were performed
at Biozeron Science and Technology Ltd. (Shanghai, China). The bacterial primers 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′) were
used to amplify the V3−V4 regions of the bacterial 16S rRNA gene. The PCR conditions
were as follows: DNA denaturation for 5 min at 95 ◦C with 27 cycles, at 95 ◦C for 30 s,
55 ◦C for 30 s, and 72 ◦C for 45 s, with a final extension of 10 min at 72 ◦C.
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2.4.2. Sequence Analyses and Functional Prediction

Sequence analyses were carried out via Quantitative Insights Into Microbial Ecology
version 2 (QIIME2 version 18.6) software [34]. A single-end sequence data denoising
method called the Divisive Amplicon Denoising Algorithm program (DADA2, v1.10) was
implemented for processing valid data from BIOZERON Co., Ltd. (Shanghai, China) [35].
We then used the ‘classify-sklearn’ option to assign classification identities to these represen-
tative sequences via the ‘qiime feature-classifier’ command, referred to here as Amplicon
Sequence Variants (ASVs). These ASVs have more than 99% similarity to the SILVA128
reference comparison database used in classification identities. Information on the sequence
reads corresponding to each sample has been uploaded to the NCBI SRA database for public
access (bioengineering number: PRJNA717165). Prediction of potential microbial function
was performed by an improved metagenome inference method of PICRUSt [36]. Functional
gene predictions were performed based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The Nearest Sequenced Taxon Index (NSTI) was used to evaluate the
prediction accuracy of PICRUSt, with lower values indicating higher prediction accuracy.

2.5. Statistical Analyses

The richness, Pielou, and Shannon indices were calculated in R (version 3.6.2) using
the vegan and picante packages. Non-metric multidimensional scaling (NMDS) based
on Bray–Curtis distance was performed to decipher the clustering of benthic biofilm bac-
terial communities among different groups, together with non-parametric multivariate
analysis of variance (Adonis) analyzing the significant differences of microbial commu-
nities. The dissimilarity indices including the Sørensen dissimilarity index (βSOR), the
Simpson dissimilarity index (βSIM), and the nestedness resultant dissimilarity index (βNES)
of benthic biofilm bacterial communities were calculated in R, employing the function
‘beta-multi.R’ [37]. The null model was used to quantify the contribution of ecological
processes to the microbial assemblage by vegan, ape, and picante packages [38,39].

One-way ANOVA and Tukey’s post hoc test were performed to uncover the differences
between groups using SPSS v26 software. STAMP (v.2.1.3) software was used to perform a
two-sided Welch’s t-test on the functional abundance map predicted by KEGG to discover
the metabolic pathways with significant differences between groups. The ‘ggcor’ package
was applied to test the correlation between microbial community and spectral indicators
via mantel analysis. To integrate spectral information and biological data in the biofilm,
redundancy analysis (RDA) was performed using the vegan package in R.

Molecular ecological networks (MENs) corresponding to different seasons were con-
structed to elucidate the correlation between CDOM fluorophores and bacterial communi-
ties using an online MENA pipeline based on a Random Matrix Theory (RMT) bioinformat-
ics approach. To reduce the network complexity, we only selected ASVs that are present in
all samples of the same group for network construction. A random network of 100 ASVs
corresponding to each empirical network was built to test the statistical significance of
the empirical networks [40,41]. The details of network construction are referred to in [42].
Gephi was applied for analyzing network visualization and modularity.

3. Results
3.1. Spectral Characteristics of Biofilm WSOM

Table S2 summarizes the organic carbon concentrations in biofilm WSOM at varying
sampling sites. The normalized DOC concentration of biofilm WSOM ranged from 141.4
to 360.4 mg C/g. The averaged DOC concentration of biofilm WOSM in the Upstream
group, Discharge area group, and Downstream group were 175.5, 223.9, and 296.3 mg C/g,
respectively. In terms of the UV-visible spectra-derived parameters, the averaged values of
SUVA254 and SR were 2.96 and 1.91 in winter and were 0.52 and 1.27 in summer, respectively,
with significant seasonal differences (p < 0.05 and p < 0.001) (Table S4).

PARAFAC modeling can identify and verify four fluorescent components, providing
a total of 95.72% variability within the data (Figure 2a). The model was compared with
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available models in the Openflour database, finding a 95% similarity. We found that C1
presented characteristics such as terrestrial humic-like fraction, with high-molecular-weight
and photo-labile character [43,44]. C2 also exhibits humus-like properties associated with
microbial activity and can be reprocessed in situ by the microbial community [45]. C3
was classified as an intermediate, between humic-like and amino acid-like moiety [46]. C4
serves as a tryptophan-like protein material associated with microbial activity or wastewa-
ter discharge [47]. The variation of the percentage of each fluorescent component is shown
in Figure 2b. In winter, humic-like fraction (C1 and C2) dominantly accounted for 70% of
the total fluorescent components, while in summer, the Upstream group was dominated by
humic-like and amino acid-like intermediates (63%), and the Discharge area and Down-
stream groups were dominated by tryptophan-like proteins (45% and 39%). The percentage
of tryptophan-like proteins (C4) in the three areas was 12%, 45%, and 39% in winter and
11%, 14%, and 27% in summer, respectively.
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Figure 2. (a) Four main components of the spectrum identified by parallel factor analysis (PARAFAC).
Insets visualize the excitation and emission loadings of the four components and (b) the relative
percentages of each component based on Fmax value.

The fluorescent characters of biofilm WSOM exhibit different variations in response to
effluent discharge shown in Figure 3a–c. BIX and HIX are significantly different among
three areas (p < 0.001 and p < 0.05), but FI is not. In addition, we found that there was a
distinct boundary of BIX-HIX values among three areas (Figure 3d), with the Upstream
group clearly isolated from the other two areas, while overlapping was observed between
the Discharge area and Downstream groups.
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3.2. Dynamics, Diversity and Assembly Mechanisms of Bacterial Communities

Figure S1 illustrates the taxonomic composition and relative abundance of bacterial
communities at the phylum level in biofilm collected in varying seasons. The results show
that Proteobacteria (42.7–65.9%), Actinobacteria (4.8–16.1%), Bacteroidetes (5.2–19.0%) and
Chloroflexi (3.6–12.6%) represent the dominant phyla. The microbial α-diversity aspects in
Figure 4a,b indicate that the Richness and Shannon indexes are remarkably different among
the Upstream, Discharge area, and Downstream groups (p < 0.05), with the highest values
in the Discharge area group. The averaged Peilou index was highest in the Discharge area
group, with no remarkable difference observed among the three areas (Figure 4c). NMDS
analysis presented the differences in bacterial communities grouped by sampling time
(Figure 4d). Additionally, the Adonis analysis exhibited statistically significant differences
in bacterial communities among sampling areas (F = 0.02) and between different seasons
(F = 0.031).

The process of biodiversity change was clarified via two patterns of biome beta diver-
sity: nestedness and turnover. The discrepancy indices of bacterial communities grouped
by sampling area and season are shown in Table S5. The mean βSOR value among the
three areas was 0.82, with a strong contribution of spatial turnover (βSIM = 0.79) and a
small contribution of nestedness (βNES = 0.02). Similar results were also observed for
samples grouped by season. We subjected the samples from the Discharge area group and
the Downstream group to a resampling procedure in which 100 random samples were
taken from six inventories and the mean value β value was calculated, so that the different
number of samples from different areas (eight vs. six) was comparable (Table S6). β’SOR
in the Upstream group (0.76) is lower than that in the Discharge area group (0.81) and
the Downstream group (0.82), which is mainly systematic in the difference of β’SIM, while
β’NES is almost constant (Table S6). Additionally, we quantified the relative contribution of
each microbial ecological process in the assembly among seasons (Figure S2a) and areas
(Figure S2b). The ecological processes include homogeneous selection, variable selection,
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dispersal limitation, homogenizing dispersal, and ecological drift. In winter, variable selec-
tion (45.5%) and homogeneous selection (52.7%) accounted for a comparable proportion,
while in summer there was lower variable selection (27.3%) and higher homogeneous
selection (69.1%). In the grouping by area, homogeneous selection was the dominant factor
driving the assembly of bacterial communities in the Upstream group (73.3%) and the
Discharge area group (78.6%), whilst in the Downstream group, variable selection (46.4%)
and homogeneous selection (50.0%) performed comparably.
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3.3. Functional Prediction of Bacterial Communities

The average NSTI value of all samples was 0.18, indicating that these samples provided
an appropriate data set for accurate predictions. By comparing the abundance of KEGG
categories predicted by PICRUSt in level-2 metabolic pathways, significant functional dif-
ferences in distinct sampling areas could be observed (Figure S3). Amino acid metabolism,
carbohydrate metabolism, and membrane transport were the three predicted functions with
the highest abundance in benthic biofilms, and the values were higher in the Discharge area
group than in the groups collected upstream and downstream. We performed a two-by-two
comparison of the predicted functions in metabolic pathways at level-3 and discovered
that the carbohydrate metabolism (TCA cycle, C5-branched dibasic acid metabolism, and
inositol phosphate metabolism), biosynthesis of other secondary metabolites (clavulanic
acid biosynthesis), and metabolism of cofactors and vitamins (nicotinate and nicotinamide
metabolism) in the Upstream group were significantly different from those in the Discharge
area group and the Downstream group (p < 0.05, Figure 5a–c). In contrast, only the amino
acid metabolism (phosphonate and phosphinate metabolism) was significantly different
between the Discharge area group and the Downstream group.
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3.4. Key WSOM Parameters Affecting Bacterial Community Composition

Mantel and RDA analysis were employed to determine the association of biofilm
WSOM parameters with bacterial community composition. As shown in Figure 6a, WSOM
parameters show more diverse and remarkable correlations with taxonomic compositions
in winter. FI and C3 have been confirmed as key factors affecting the composition of
bacterial communities in winter (p < 0.05), while in summer the key factors are SUVA254,
SR, and C4 (p < 0.05, Figure 6b). RDA analysis manifested similar results, as shown in
Figure 6c,d.

The results of the both RDA models proved to be significant (p < 0.05) based on the
screening of VIF < 5. In winter, humic-like and amino acid-like intermediates (C3) posed the
greatest influence on bacterial community composition, while in summer, tryptophan-like
proteins (C4) exhibited the strongest impact. We also found that FI was a common key
factor influencing the composition of bacterial communities in both seasons.
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3.5. Co-Occurrence Network Analysis

An RMT-based model was employed to analyze the phylogenetic characters and to
determine the symbiotic relationship between bacterial communities and fluorophores. A
total of 2564 edges and 443 nodes were obtained in the network derived from samples
collected in winter, with a 0.515 modularity encompassing six modules (Figure 7a,b). For
the network derived from samples collected in summer, 330 nodes and 1692 edges with
a modularity of 0.434 was observed encompassing seven modules (Figure 7c,d). Positive
correlations prevailed in both networks derived from winter (76%) and summer (74%). The
parameters of the topological network and the random network are shown in Table S7,
and the reliability and non-randomness of the empirical network structure is verified by
comparing it with the random network analysis [48]. In both networks, Proteobacteria,
Bacteroidetes, Acidobacteria, and Chloroflexi occupy the dominant nodes in the network
(Figure 7a,c), and are also the predominant bacterial phylum in benthic biofilm bacterial
composition, as shown in Figure S1.

Modularity reflects the connectivity within and between clusters, and nodes have
closer interactions with each other within the module than with nodes in other modules.
There are six modules in the winter network, among which C1, C2, and C4 belong to
Module IV, and C3 is affiliated with Module III. Among the seven modules in the summer
network, C1, C2, and C3 are grouped into Module IV, and C4 belongs to Module III. By
integrating the observations in Figures 6 and 7, we speculate that Module II containing C3
in winter, and Module III comprising C4 in summer serve as the key modules reflecting the
impacts of effluent discharge on benthic biofilms.
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4. Discussion
4.1. Effluent Discharge Alters the Nature of Biofilm WSOM

To date, the response of biofilm WSOM to effluent discharge in receiving waterbod-
ies remains unknown. The content of WSOC in biofilm matrix in the discharge area
displayed an increase in both seasons (Table S2), implying that effluent discharge could
facilitate carbon storage in benthic biofilms. During conventional wastewater treatment
processes, high-molecular-weight and aromatic substances are difficult to degrade and a
certain amount will be stored in the effluent and discharged to receiving waterbodies [49].
Combined with the variations of SUVA254, E254/E204, and SR, it can be inferred that the
effluent discharge changed the nature of benthic biofilm WSOM in the Discharge area and
the Downstream groups, whereas there are no clear patterns of changes seasonally nor
regionally (Table S4). It is difficult to explain such results within the context of an absence
of knowledge about the nature of the effluent; therefore, we speculate that the phenomenon
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could be ascribed to the fluctuating operating conditions of the WWTPs [6,12,49]. Taken
together, the findings confirm that the aromaticity, molecular weight, and hydrophobicity
of biofilm WSOM in the Downstream group have difficulty recovering to the original state
of the Upstream group after receiving effluent.

It is interesting to observe that the fluorescent properties of the biofilm WSOM exhib-
ited a clear resilience responding to effluent discharge. HIX values were signally higher
(p < 0.05) and BIX values were significantly lower (p < 0.001) in the Discharge area group
than in the Downstream group (Figure 3). The effluent discharge increased the humifica-
tion state and decreased the proportions of autochthonous component in benthic biofilms.
Changes in protein-like and aliphatic fractions degraded by micro-organisms have been
reported to facilitate the humification processes of organic compounds [50]. Meanwhile, the
enzymatic processes during biodegradation may promote the enhancement of condensed
aromatic structures or the production of structures with increased conjugation, bringing on
an increase in HIX [51]. However, unlike the response of DOM in receiving waterbodies,
the BIX values of biofilm WSOM exhibited a significant decrease, implying a decline in the
input of autochthonous DOM sources [52]. The distinct change between the BIX values in
these two studies can be attributed to the adsorption features of biofilm, implying that the
biofilm may store allochthonous DOM from effluents. Although the discharge increased the
HIX values while decreasing the BIX values, the biofilm in the effluent-receiving river was
found to exhibit weak humic character and strong autochthonous components dominated
by microbial metabolism [52]. Interestingly, the changes in BIX and HIX indices in the
Downstream group show opposite trends (Figure 3d), suggesting that the benthic biofilm
WSOM in the downstream area is inclined to recover to the original state in the absence of
effluent discharge.

The fluorescent properties of biofilm WSOM differed significantly in response to sea-
sonal changes. The benthic biofilm CDOM in winter is dominated by humic-like materials,
whereas intermediate humic-like and amino acid-like dominate in the Upstream group and
tryptophan-like proteins occupy the highest fluorescent fractions in the Discharge area and
the Downstream groups in summer. The relatively lower proportion of humic-like fractions
might be attributed to the high temperature and humid conditions in summer, during
which humic-like substances are easily to be released from biofilm WSOM, and winter
provides a perfect ecological niche for micro-organisms to release DOM characterized by
native protein-like compounds [53]. The protein components of the effluent entrainment
increased the amount of tryptophan-like proteins in the benthic biofilm, and this tendency
was more pronounced in the warm season. Previous studies have shown that microbes
can change the composition of DOM, and the proportion of humic substances is increased
through the conversion of protein-like substances [54]. The higher microbial activity in
summer may facilitate the conversion process and favor the release and detachment of
humic-like fractions. Meanwhile, tryptophan-like proteins are usually associated with an-
thropogenic activities [6] and some studies have demonstrated a higher removal efficiency
of tryptophan-like proteins by WWTP in warmer condition than in colder ones [55]. It
must be pointed out that tryptophan-like compounds still dominate the biofilm WSOM in
summer, so we consider that the impacts of effluent discharge on the ecological health of
rivers cannot be ignored, especially in warmer seasons.

4.2. Response of Biofilm Bacterial Communities to Effluent Discharge

The bacterial diversity indices were found to increase in the discharge area and
experienced a decrease downstream (Figure 4), with significant changes in the richness
and Shannon indices (p < 0.05). Studies regarding the effects of effluent discharge on
biofilm bacterial communities gave contradictory results, possibly due to either increasing
or decreasing microbial diversity and enzyme activity [5,56,57]. In this study, the Discharge
area and the Downstream groups had distinct responses to effluent discharge, reflected
by the more vulnerable diversity and abundance of bacterial communities, while the
diversity of bacterial communities in the Downstream group approached to the status
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observed in the Upstream group, implying that microbial ecological reconstruction of
bacterial community occurred responding to effluent discharge [4]. Additional evidence
on the effects of effluent discharge could be found in the co-occurrence network analysis
(Figure S4). The discharge increased the diversity of the biofilm bacterial community,
interfered with microbial interactions, and reduced the modularity in the Discharge area
group. In the Downstream group, there was a recovery in both bacterial interspecies
interaction and network modularity.

Figure 4d shows a specific clustering mode among seasons and sampling areas.
Pascual-Benito et al. [57] reported a higher microbial diversity in effluent-receiving rivers
under high-flow and low-temperature conditions in winter. However, we describe the
results of greater differences in bacterial communities across areas under the influence of
effluent discharge than seasonal differences (Figure 4d). Considering the relatively lower
value of F (0.02) among sampling areas than among seasons (0.031), the ecological impacts
of effluent discharge on biofilms in different areas are worthy of being discussed. The
assembly pattern analysis suggests an estimated beta diversity βSOR value of bacterial com-
munities among different areas or seasons, with a strong contribution of spatial turnover
and a small contribution of nestedness (Table S5). The results suggest that diversity patterns
of biofilm in effluent-receiving rivers are primarily caused by species turnover rather than
species loss [58]. Turnover is achieved through migration, attachment, and growth, and
dispersal refers to the movement of microorganisms in space, especially those absorbed
into the biofilms [59]. Typically, the attachment of planktonic cells to the media surface
triggers biofilm formation and fundamentally regulates the microbial assembly process [60].
The higher beta diversity can be explained by more diverse environmental conditions. For
example, water flow, turbulence, and bottom landscape topography regulate microbial dis-
persal and colonization patterns, while also producing microhabitats with distinct stresses
and mass transfer efficiencies [13]. The increase in βSOR suggests that effluent-borne mi-
croorganisms, DOM, and nutrients may be partially adsorbed into the benthic biofilm,
resulting in the formation of more complex microhabitats in the discharge area and the area
downstream WWTP.

4.3. Variations in Metabolic Functions of Bacterial Communities

Effluent discharge affects the original ecosystem functions of rivers, altering the
availability of genes related to the carbon cycle and possibly carrying foreign co-energy
genes, bringing unknown pressures to riverine ecosystems [23]. The metabolic function of
bacteria communities in effluent-receiving rivers is more stable; however, it is important
to note that the predicted functional abundance of carbohydrate metabolism and amino
acid metabolism increased in the Discharge area group (Figure S3). This may imply that
the benthic biofilm bacterial community has a higher rate of carbon turnover and enhanced
utilization of carbon sources in areas directly receiving effluent [61]. The membrane
transport function was also proven to exhibit a high abundance in this area, suggesting
that bacterial cells had active transporter proteins that can transport organic matter and
nutrients to facilitate bacterial metabolic processes [24].

In this study, significant differences were observed between alanine/aspartate/glutamate
metabolism and nicotinate/nicotinamide metabolism in Upstream group and Discharge
area group (Figure 5). Both metabolic pathways are closely related to the degradation
of carbohydrates [62]. The involvement of carbohydrate metabolism, cofactors and vita-
min metabolism, and other secondary metabolites was higher in the Discharge area and
Downstream groups compared to the Upstream group, indicating that the biodegradation
activity was higher in areas less affected by effluent discharge [61]. However, the effluent
discharge ultimately enhanced the carbohydrate and amino acid metabolism in the Dis-
charge area group, suggesting that the adverse effects of WWTP discharge on the metabolic
functions of the benthic biofilm bacterial community may be limited to specific metabolic
functions. Another promising finding was that little difference in the metabolic functions of
the bacterial community could be found between the Discharge area and the Downstream
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groups. The results could be ascribed to the partial adaptation of biofilms in response to
effluent discharge.

4.4. Roles of Bacteria in Shaping Biofilm WSOM

Here, we found significant seasonal patterns, including commonalities and anisotropies,
associated with effluent discharge on biofilm WSOM properties and bacterial community
composition. In winter, humic-like and amino acid-like intermediates were significantly
correlated with bacterial community composition (Figure 6a,b). C3 is mainly comprised of
low-molecular-weight and highly aromatic substances [63]. Existing studies have found
that bacterial communities are inclined to utilize low-molecular-weight substances [6],
and aromaticity is significantly associated with community succession dynamics [64]. The
aforementioned two points may help explain why the C3 fraction acts as a key factor shap-
ing the composition of the biofilm bacterial community harvested in winter. In summer,
tryptophan proteins, aromaticity, and molecular weight were significantly associated with
bacterial community (Figure 6c,d). The aromaticity and molecular weight of biofilm WSOM
were remarkably lower in summer compared to winter (p < 0.01 and p < 0.001) (Table S4).
We speculate that the seasonally variable biofilm WSOM properties may determine their dis-
tinct capacities in shaping biofilm bacterial community composition. The close association
of tryptophan proteins with microbial activity has been reported in previous studies [6,47].
At this stage of understanding, we believe that certain factors, e.g., molecular weight and
aromaticity in biofilm WSOM, might govern the bacteria community structure, regardless
of the sampling seasons.

It is worth noting that FI values showed a significant correlation with changes in
bacterial community composition in both seasons, although FI values did not show signal
variations among seasons and areas. The results provide additional evidence that the
microbial-derived organic matter of biofilm WSOM remains largely stable [65]. The value of
FI has been strongly correlated to the relative contribution of microbial-derived versus plant-
derived organic matter. The FI values of all samples ranged from 2.40 to 3.04, indicating that
biofilm WSOM predominantly originated from microbial activity [66]. It can be assumed
that microbial-derived organic matter produced by microbial metabolism occupies an
important position in biofilms, especially in the process of shaping microbial communities.

4.5. Co-Occurrence Patterns Relate to Seasonal and Spatial Variation

The interactions between microbial communities in turn affect their adaptation to
external environmental changes, and the co-occurrence networks constructed based on
different areas can reveal the ecological interactions between biofilm bacterial communi-
ties [25]. In different areas of the network (Figure S4), the average path distance followed
the sequence: Upstream group < Discharge area group < Downstream group (Table S8),
reflecting more efficient information processing and material transfer among bacteria in-
fluenced by discharge [27]. The value of modularity was highest in the Upstream group
and lowest in the Discharge area group, demonstrating that microbial interactions are
stronger in the Upstream group and effluent discharge disrupts original interspecies in-
teractions of bacteria, as in [67]. Compared to the Upstream group, the networks from
the Discharge area and Downstream groups had fewer nodes and edges, and the average
degree decreased along the effluent-receiving river, demonstrating that effluent discharge
simplified the network pattern of benthic biofilms [48]. Previous studies have suggested
that a more connected network could improve the efficient utilization of carbon and that a
highly connected network may also provide more functional redundancy [68,69]. Effluent
contains plentiful carbon, nitrogen and some toxic substances, which might possibly limit
the complexity of microbial co-occurrence networks in the Discharge area and the Down-
stream groups. Consequently, effluent discharge may potentially diminish the stability and
disturbance resistance of benthic biofilm communities.

Positive correlations in Figure 7 suggest that the interactions are chiefly symbiotic or
mutually beneficial. The microbe-organic networks in different seasons were dominated by
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positive correlations. Generally speaking, a more positive microbe-organic correlation is
beneficial for the degradation of refractory substances [70]. Proteobacteria, one of the domi-
nant phyla in the network, can degrade humic substances and tend to form filamentous
structures, facilitating the growth of such bacteria in biofilms [71]. Bacteroidetes, another
dominant phylum, generally hold special importance for benthic biofilms and some mem-
bers of these phylum can degrade biopolymers, contributing to the high-molecular-weight
fraction of organic matters [72].

Moreover, modules can be considered as functional units, in which the same functional
unit can perform the same ecological function with a high degree of in-connection between
microbial communities within the same module [73]. Here, bacterial communities and
biofilm WSOM components formed a strong network of modules, with a total of six
modules in winter and seven modules in summer (Figure 7). By taking advantage of
the key modules, we can acquire more information on the interactions between bacterial
communities and fluorescent compounds. For example, in Module III of the network
derived from samples collected in winter, genus Kineosporiaceae was able to convert cellulose
and glucose to acetate, butyric acid, and carbon dioxide under anoxic conditions [74]. Genus
Lacihabitans was proven capable of degrading a multitude of organic compounds including
cellulose, chitin, and starch [75]. Similarly, in the network derived from samples collected
in summer, genus Nocardioidaceae in Module IV was capable of depredating toxic pollutants,
alkanes, crude oil, and derivatives [76]. The family Beijerinckiaceae is able to fix nitrogen
and metabolize carbon. As a consequence, the pollutant degradation capacity of benthic
biofilm bacterial communities in summer may also be amended in response to effluent
discharge [77]. Genus Aeromans is an important pathogenic agent for fish and is harmful to
aquatic ecosystems [78]. These findings support the notion that carbon metabolism remains
a key ecological function of benthic biofilms in effluent-receiving rivers, and we speculate
that there is an enhancement of the degradation of toxic pollutants in summer. Meanwhile,
the production of pathogenic bacteria needs to be guarded against. Note that due to the
lack of controlled experiments, these results need to be treated with caution. Simulation
experiments need to be conducted to clarify the ecological impact of effluent discharge on
effluent-receiving rivers in future work.

5. Conclusions

In highly urbanized areas, river benthic biofilms are pioneering microbial aggregates
responding to effluent discharge from WWTPs. Our study reveals the optical properties
of benthic biofilms WSOM in a representative effluent-receiving river. The diversity, func-
tion, and assembly of bacterial communities and their co-occurrence patterns were also
investigated. After receiving effluent, WSOM in benthic biofilms showed weak humic
character and strong autotrophic components. In the Discharge area, the fluorescence
characteristics of CDOM and bacterial community diversity exhibited a signal alteration.
Both the interspecies interaction of bacteria and the fluorescent nature of biofilm WSOM
gradually recover to the conditions exhibited when less affected by effluent discharge.
Species turnover was the main factor governing the formation of biofilm diversity patterns.
Functional predictions showed that amino acid metabolism and carbohydrate metabolism
increased significantly after receiving effluent discharge. Additionally, amino acid-like
and humic-like intermediates and tryptophan proteins were found to be key factors af-
fecting bacterial community composition in winter and summer, respectively. The key
ecological functions present in the benthic biofilm in the effluent-receiving river were
further elucidated by combining the key modules in co-occurrence networks. Future
studies will be performed with a focus on WWTPs with different effluent standards to
demonstrate the universality of benthic biofilms as an indicator of the ecological response
of effluent-receiving rivers.
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