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ABSTRACT
Rhizoctonia potato disease is widespread in the world and causes substantial yield and
quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic
fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhi-
zoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii
and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer,
black scrulf and other forms of manifestation on tubers) was estimated under field
conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana
decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment
with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs.
However, both fungi decreased the sclerotium index on the tubers of new crops. We
demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and
B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium
formation in cocultivation assays, and (2) indirect effect, which is associated with
increased peroxidase activity in potato roots under the influence of colonization by
entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana
can effectively manage Rhizoctonia disease during the plant vegetative season and that
both fungi significantly improve the quality of the new tuber crop.

Subjects Agricultural Science, Ecology, Mycology, Plant Science
Keywords Rhizoctonia solani,Metarhizium robertsii, Beauveria bassiana, Endophyte, Antago-
nism, Peroxidase, Biocontrol, Siberia, Yield

INTRODUCTION
Rhizoctonia solani complex disease is a widespread destructive potato disease that occurs in
all potato-growing countries (Baker, 1970; Carling, Leiner & Westphale, 1989; Wilson et al.,
2008a). The decrease in potato production resulting from this disease reach 30% (Tsror,
2010). Rhizoctonia disease develops epiphytotically, producing serious lesions on plants
every year inWestern Siberia and especially in years with stressful conditions (Shaldyaeva &
Pilipova, 1996). The disease manifests in several forms, affecting sprouts, stems, stolons and
tubers. In the underground organs, the disease manifests as dry ulcer rot. The injuriousness
of the disease is primarily associated with its effects on young potato sprouts and stems,
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which lead to the die-out of sprouts, sparseness and weakening of plants, and a reduction
in tuber numbers (Carling, Leiner & Westphale, 1989). The damage caused to potatoes by
Rhizoctonia disease under Siberian continental climatic conditions can reach 67–70.8%
with a disease prevalence of 80–100% (Shaldyaeva & Pilipova, 2017). In potato tubers, the
disease manifests as black scrulf, dry core and scab-like symptoms (Baker, 1970). In Siberia,
all of these symptoms are observed on potato tubers (Shaldyaeva & Pilipova, 1996).

The protection of potato from R. solani involves procedures aimed at both suppressing
seed infections and rehabilitating soil. The use of microorganisms that colonize the
roots and aboveground organs of plants leads to the inhibition of phytopathogens. For
example, the high biocontrol potential ofPseudomonas andBacillus spp. bacteria, arbuscular
mycorrhizal fungi and endophytic fungi can decrease plant damage caused by pathogens
and stimulate plant growth (Wilson et al., 2008b; Weselowski et al., 2016; Adam et al., 2016;
Schreiter et al., 2018; Bagy et al., 2019; Jiang et al., 2019).

Entomopathogenic fungi from genera Metarhizium and Baeuveria may engage in
mutualistic interactions with plants and suppress the infections caused by fungal and
viral phytopathogens (Moonjely, Barelli & Bidochka, 2016; Jaber & Enkerli, 2017; Jaber
& Ownley, 2018; Vega, 2018; Bamisile et al., 2018; Branine, Bazzicalupo & Branco, 2019).
The suppression of phytopathogenic fungi after the treatment of plants with different
species of Beauveria and Metarhizium fungi has been shown in the following systems:
Pythium myriotylum and Rhizoctonia solani—tomato and cotton plants (Ownley et al.,
2008), Fusarium oxysporum—onion (Flori & Roberti, 1993), powdery mildew—cucumber
(Kim, Goettel & Gillespie, 2010), yellowmosaic virus—pumpkin (Jaber & Salem, 2014), and
downymildew—grape (Jaber, 2015). The hypotheses put forth to explain the suppression of
fungal diseases include the following: competition between endophytes and phytopathogens
for a substrate (Ownley et al., 2004;Ownley, Dee & Gwinn, 2008); antagonism and synthesis
by endophytes that protect plant secondarymetabolites (Collemare et al., 2014;Ríos-Moreno
et al., 2016; Garrido-Jurado et al., 2017); and activation of protective plant systems as a
result of low-level stress (Ownley, Gwinn & Vega, 2010; Maksimov et al., 2015). However,
the mechanisms of this suppression are still not well understood.

The generation of reactive oxygen species on the cell surface is one of the early responses
to abiotic and biotic stress (Bolwell, 1999;Van Doorslaer et al., 1999). Superoxide dismutase,
peroxidase and catalase are the most important high-molecular-weight plant antioxidants
(Alscher, Donahue & Cramer, 1997). In particular, peroxidase participates in the formation
and lignification of plant cell walls (lignin and suberin formation), ethylene biosynthesis,
the regulation of auxin levels, and tissue protection against different damages and infections
caused by pathogenic microorganisms (Wiesel et al., 2014). In addition, this enzyme plays
an important role in plant resistance against abiotic stresses (Gaspar et al., 1991; Zhang &
Kirkham, 1994; Yang, Cheng & Liu, 2007; Muratova et al., 2015). The level of peroxidase
activity depends on the different external and internal influences; therefore, many authors
use the assessment of peroxidase activity as a test for the determination of plant immune
status during colonization by endophytic fungi and bacteria (Hirano et al., 2008; Senthilraja
et al., 2013;Maksimov et al., 2014;Maksimov et al., 2015).
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The decrease in plant injury by phytopathogens after treatment with entomopathogenic
fungi is likely caused by a combination of different mechanisms depending on both
the environmental conditions and the studied species. It is important to note that most
studies of the interactions between endophytic entomopathogenic fungi, plants and
phytopathogens have been conducted in laboratory conditions. However, the results
obtained from laboratory assays are not always consistent with the results obtained from
field experiments due to the influence of a large number of environmental factors. There
have been no studies on the effect of entomopathogenic fungi on the interaction between
potato and Rhizoctonia in field conditions. The present investigation was focused on the
interactions of M. robertsii and B. bassiana with R. solani. The study was performed under
both in vitro and Western Siberian field conditions in potato plants subjected to the
preplanting treatment of seed tubers withM. robertsii and B. bassiana conidia. The damage
to the plants caused by Rhizoctonia disease, plant growth and peroxidase activity were
estimated during the growing season. In addition, the crop characteristics of the potatoes
treated with the fungi were analyzed.

MATERIALS & METHODS
Fungal isolates
We used isolates of the entomopathogenic fungiM. robertsii (isolate P-72) and B. bassiana
(isolate Sar-31) from the collection of microorganisms of the Institute of Systematics and
Ecology of Animals (Siberian Branch of the Russian Academy of Science). The fungal
species were identified on the basis of the sequence of the translation elongation factor
(EF1α) region (Kryukov et al., 2017). To prepare conidia for the field experiments, the
fungi were cultivated on twice-autoclaved millet and then sifted through a 1 mm sieve.
Conidium concentrations were determined with a Neubauer hemocytometer. R. solani
(anastomose group—AG3) from the laboratory of the Department of Plant Protection
(Novosibirsk Agricultural State University) was used in the work. The fungus was isolated
from infected potato tubers in Western Siberia.

Antagonistic action of M. robertsii and B. bassiana toward R. solani
The antagonistic interactions between the entomopathogenic fungi (M. robertsii and
B. bassiana) and R. solani were estimated using the dual culture method on potato dextrose
agar (PDA) in the 90 mm Petri dishes (Sobowale et al., 2010). Ten-millimeter mycelium
plugs from 5-day-old cultures of R. solani and one of the antagonists (M. robertsii or
B. bassiana) were placed in the Petri dishes 3 cm from each other.M. robertsii or B. bassiana
were plated two days before R. solani due to high growth rate of R. solani growth. Dishes
inoculated with R. solani alone were used as controls. The plates were incubated at 25 ◦C
for 20 d in darkness, and the interaction types between the entomopathogenic fungi and
R. solani were estimated at 5, 10, 15, and 20 d. The differences between the diameter of
the M. robertsii or B. bassiana colonia growth (10, 15, 20d) and diameter at the cultures
contact time (5d) was used for estimation of the entry of entomopathogenic fungi into the
colony of R. solani. Interactions between mycelia in the contact area of fungi were observed
by light microscopy (Axioskop 40, Carl Zeiss, Germany) and electron microscopy (Hitachi
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TM-1000, Japan). Each treatment included five replicates, and the entire experiment was
conducted twice.

Field experiment
Locality, soil and Rhizoctonia infectious background
Field experiments were carried out in 2018 on Priobskoe Farm in the Novosibirsk region
of Russia (55◦06′N, 82◦77′E). The field permit was not required, since all experiments were
carried out at the field sites of the Institute of Systematics and Ecology of Animals. The soil
type was sod-podzolic. The soil organic matter content was 2.18%, and the pH was 5.1.
Previously, white cabbage was cultivated in the field.

The natural soil-borne and seed-borne loads of R. solani have been used during the field
studies. The count of R. solani in the soil of experimental field was determined via the
multiple soil tablet method (Henis et al., 1978) using selective medium (Ko & Hora, 1971).
The soil population of the pathogen was below the biological threshold of harmfulness:
0.2 propagules per 100 g of soil before planting (May 26, 2018). The seeds of tubers (‘‘Red
Scarlet’’ line) exhibiting high levels of seed-borne infection (black scab, dry core symptoms,
scab-like symptoms). The 60% of tubers had black scurf at the time of planting.

Treatments and planting
The field experiment included three treatments: (1)M. robertsii, (2) B. bassiana and (3) the
control. The conidia of the fungi were suspended in a water-Tween 20 solution (0.04%) at
a concentration of 5 × 107 conidia/mL. Potato tubers were immersed in the suspensions
for 30 min immediately before planting. Control tubers were treated with the water-Tween
solution alone. The applied volume of the suspensions was 10 L per 50 tubers (the average
weight of one tuber was 80-90 g). Tubers were planted according to Dutch technology
(https://en.blabto.com/1565-dutch-potato-growing-technology.html) with a distance
between plants of 30 × 70 cm. Four plot areas with randomized placement of plants (10
m2, 50 plants per plot) were subjected to each treatment. Potatoes were planted on May 28
and harvested on August 24 in 2018.

Weather conditions in the growth season
The 2018 growth season was characterized by high precipitation (241% of the long-term
average) and low temperatures in May (4.8 ◦C lower than the long-term average) (Fig. 1).
These meteorological conditions caused a delay in potato planting and seedling emergence.
Moreover, cold temperatures in July caused a delay in the potato flowering and ripening
periods. Precipitation and temperature in June were 29% and 2 ◦C higher compared
to the long-term average. Precipitation and temperature in July were close to long-term
norms, but August was arid (precipitation was 42% lower compared to long-term average).
That is, weather conditions in the first half of the season were appropriate for the active
development of both the phytopathogenic and entomopathogenic fungi (Carling & Leiner,
1990; Inglis et al., 2001).

Experimental time-points
At 4 and 7 weeks postplanting, we estimated the parameters of Rhizictonia infection in
potato plants, the growth characteristics of the plants, the colonization of the plants with
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Figure 1 The dynamics of temperature and precipitation by month in the growing season (2018) and
comparison with the average long-term data.

Full-size DOI: 10.7717/peerj.9895/fig-1

Beauveria and Metarhizium and peroxidase (POX) activity in the plants. The CFUs of
Beauveria andMetarhizium in the soil were estimated before planting (May 26) and at the
end of the experiment (August 24). Crop parameters were estimated on August 24.

At 4 and 7weeks postplanting sampleswere hand-picked and following plants parameters
have been estemated: damage of the stems, growth characteristics, colonization with
entomopathogenic fungi (Beauveria andMetarhizium) and POX activity.

Parameters of Rhizictonia infection
Rhizoctonia stem cancer development on potato plants was estimated by the Frank method
(Frank, Leach & Webb, 1976). We used the following scale gradation: 0 points—no damage
sites; 1 point—one damage site with a length of less than 25 mm; 2 points—one damage
site with a length close to 26-50 mm or several minor damage sites of less than 50 mm; 3
points—one ormore damage sites with a length of more than 50mmwithout encircling the
stem; 4 points—one or more damage sites with a length of less than 25 mm with damage
encircling the stem; 5 points—one or more damage sites longer than 25 mm in length with
damage encircling the stem.

The Rhizoctonia stem lesion index (RSI ) was calculated for each plant according to the
following generally accepted formula: RSI =

∑
(n×b)/N ×H×100%, where n—number

of damaged stems; b—corresponding site of damage; N—total quantity of the stems;
H—high point of scale gradation. The percentage of fallen and damaged stolons among
the total stolon count was estimated on the same plants. Five plants from each replication
were randomly selected and used for analysis.
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To determine the infection rate of the seeds and the new crop tubers, samples of these
materials were washed (120 samples from each treatment), and, all Rhizoctonia disease
manifestations were rated in each sample. These manifestations were as follows: single
sclerotia, sclerotia occupying up to 10, 25 or 50% of the surface area of the tuber, dry
core symptoms, scab-like symptoms and cracks. All disease forms were combined in the
sclerotium index (Si). The index was estimated according to Jager & Velvis (1983) with
minor modifications. We used the upgraded method corrected by considering both the
Rhizoctonia disease forms and damage levels of the tubers. Si was determined with the
following formula: Si= hy+3.5l+5m+6h/c+hy+1+m+h, in which c, hy, l, m, and
h—are the weights (kg) of the tubers of the classes; c—clean tubers; hy—tubers with only
hyphae forms (scab-like symptoms, dry core symptoms, cracks); l—tubers with a low level
of black scab (single sclerotia or sclerotia occupying up to 10% of the tuber’s surface);
m—tubers with an intermediate level of black scab (sclerotia occupying up to 25% of the
tuber’s surface); h—tubers with a high level of black scab (sclerotia occupying up to 50% of
the tuber’s surface); 3.5, 5, 6—numerical coefficients corresponding to the damage levels.

The biological efficiency (BE) of the entomopathogenic fungi was calculated using the
following formula: BE = (R− r)/R×100%, where R—disease lesion index in the control
treatment, and r—disease lesion index in the experimental treatment.

Potato plant growth and the tuber crop
Growth parameters were estimated on plants that were used for the analysis of Rhizoctonia
disease development (5 plants per replicate, 20 plants per treatment). The length of all stems
of each plant was measured from the parent tuber to the apex, followed by the calculation
of the arithmetic mean. Fresh weight was measured in the field immediately after removal
of soil and parent tubers. Weight was determined using a Polaris PKS 0832DG scale with
an accuracy of 1 g.

Potato tuber characteristics were analyzed at harvest time according to the experimental
treatments (10 plants per replicate, 40 plants per treatment). The total weight of the tubers
and their distribution among different weight groups were estimated with an accuracy of
1 g. Three tuber groups were formed according to theirs masses: less than 35 g (small),
36–180 g (medium) and more than 180 g (large).

Estimation of plant colonization by entomopathogenic fungi and their
CFUs in soil
Plant and soil colonization by the entomopathogenic fungiM. robertsii and B. bassiana was
estimated through plating on themodified Saburoadmedium (10 g peptone, 40 gD-glucose
anhydrous, 20 g agar, 1 g yeast extract). To prevent growth of bacteria and sporophytic fungi,
we added an antibiotic cocktail containing 0.35 g/L cetyltrimethylammonium bromide,
0.05 g/L cycloheximide, 0.05 g/L tetracycline, and 0.6 g/L streptomycin to the culture
medium. To estimate plant colonization by the entomopathogenic fungi, we examined
the roots, stems and leaves (5 plants from each replicate and 20 plants of each treatment).
The potato organs were sterilized with 0.5% sodium hypochlorite suspension and 70%
ethanol (Posada et al., 2007). The organs were imprinted on the medium surface and then
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plated on the medium in 90 mm Petri dishes (McKinnon et al., 2017). The samples for
which fungal growth appeared in the imprints were excluded from the analysis. The roots
of the potato plants were also plated without surface sterilization. The roots were vortexed
3 times (1 min at 180 rpm each time) in a water-Tween 20 solution (0.04%) and plated on
the above-mentioned medium in Petri dishes.

To estimate the soil CFUs of the entomopathogenic fungi, we used soil samples from
the potato root area (one sample from each replication of 3 root areas combined). The soil
samples (5 g) were diluted in 40 mL of a water-Tween solution (0.1%) and vortexed for
10 s, followed by incubation in the shaker for one hour at 180 rpm. A 100 µL aliquot of
the soil solution from each sample was plated on the above-mentioned medium in Petri
dishes.

The dishes containing the plant and soil samples were incubated at 24 ◦C for 14 d,
followed by the detection of fungal growth from the plant organs and the calculation of
CFU counts in the soil samples. The fungi belonging to Metarhizium and Beauveria were
identified by light microscopy.

Estimation of POX activity
In this work, we used plant organ samples obtained from potato plants that had been
planted 4 and 7 weeks earlier. Stems without symptoms of Rhizoctonia disease were
selected to analyze POX activity. Roots and leaves (five samples in each replication) were
washed carefully and separately tested to determine POX activity. For sample preparation,
100 mg samples of leaves or roots were placed in 100 µL of cooled phosphate buffer (PBS;
pH 7.4; 0.01M containing 0.15 M NaCl and 1% (w/v) phenylmethylsulfonyl fluoride and
1% dithiothreitol), followed by sonication in an ice bath with three 15 s bursts using an
ultrasonic homogenizer (Bandelin electronic GmbH & Co, Berlin, Germany).

The homogenate was centrifuged at 10,000 g for 20min at 4 ◦C. The supernatant was used
for the measurement of enzyme activity. To measure POX activity, 2.5 µL aliquots of the
plant samples (root or leaf supernatant) were added to the reaction mixture containing 100
µL of 1.7 mMH2O2 (prepared fresh daily) in PBS and 100 µl of 2.5 mM 4-aminoantipyrine
with 0.17 M phenol. The reagents were dissolved in deionized water. The absorbance at
510 nm was measured after 10 min for leaves and after 4 min for roots at 25 ◦C in a 96-well
plate reader. Enzymatic activity was measured in units of the optical density (1A) of the
incubation mixture during the reaction per 1 min and 1 mg of protein. The concentration
of protein in the supernatants was determined via the Bradford method (1976). For the
calibration curve, bovine serum albumin was used (from 100 µg to 1,000 µg).

Statistical analyses
Data analyses were performed using Statistica 8 (StatSoft Inc., USA) and PAST 3 (Hammer,
Harper & Ryan, 2001). The normality of the data distribution was checked with the
Shapiro–Wilk W test. Normally distributed data were analyzed by one-way ANOVA
followed by Fisher’s LSD post hoc test. Non-normal data were analyzed with the Kruskal-
Wallis test followed by Dunn’s post hoc test. Student’s t -test was used to estimate the
data of antagonistic activity in dual-plate assays. Fisher’s exact test was used to estimate
differences in the fungal colonization of plants.
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Figure 2 Antagonistic activity ofM. robertsii (M.r.) and B. bassiana (B.b.) against R. solani (R.s.) at 5,
10, 15 and 20 d when grown in dual plate cultures on PDA. (A–D) R.s. (control); (E–H) M.r with R.s.;
(I–L) B.b. with R.s. Arrows indicate the growth region of an entomopathogenic fungus on the surface of a
colony of R. solani in dual-plate assays.

Full-size DOI: 10.7717/peerj.9895/fig-2

RESULTS
Antagonistic properties of M. robertsii and B. bassiana toward
R. solani in vitro
The mycelium of the R. solani strain was characterized by fast growth. In the Petri dishes
containing two plugs with a pure culture of R. solani (Fig. 2, R.s./R.s.), almost the entire
surface of the medium was occupied after 5 d, and early sclerotia started to form.

We did not observe sterile zones and inhibition of phytopathogen radial growth under
the influence of the entomopathogenic fungi. The contact of entomopathogen colonies
with R. solani occurred after 5 d. However, the morphology of the fungal cultures was
altered under joint cultivation. In the case of M. robertsii, a sterile (aconidiogenic) zone of
the entomopathogenic fungus was formed over a 5 to 10 d of cocultivation (Fig. 2, M.r. /
R.s.). Themycelium ofM. robertsii subsequently began to actively grow on the surface of the
R. solanimycelium; after 15 d, it reached the phytopathogen plugs, and it spread across the
entire surface of the medium in the Petri dish at 20 d. Microscopic observation showed that
the mycelium of R. solani was actively braided by theM. robertsii hyphae and consequently
began to thin and dry out (Figs. 3B, 3C and 3D). In the zone whereM. robertsii was actively
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Figure 3 Interaction ofM. robertsii (M.r.) and B. bassiana (B.b.) hyphae with R. solani (R.s.). (A–C)
Light microscopy× 200; (D) electron microscopy.

Full-size DOI: 10.7717/peerj.9895/fig-3

Table 1 Antagonistic activity of entomopathogenic fungi against R. solani in dual-plate assays.

Entomopathogenic
fungus

Entry into the R. solani colony, mm (mean± SE)

10d 15d 20d

B. bassiana 1.41± 0.14a 5.41± 0.22a 9.65± 0.14a

M. robertsii 1.65± 0.22b 6.59± 0.22b 35.53± 0.44b

Notes.
The different letters indicate significant differences between fungi at each time point (P < 0.05).

growing, the surface mycelium of R. solani was significantly degraded. Importantly thatM.
robertsii caused a delay in sclerotium formation of R. solani.

R. solani growth was also stopped by B. bassiana. The R. solanimycelium was condensed
at the growth border (Fig. 2, B.b./R.s.). B. bassiana also began to grow on the R. solani
mycelium after 10 d of dual cultivation. In contrast toM. robertsii, it grew more slowly and
densely (T -test, P < 0.05 between fungi, Table 1) and reached the R. solani plugs at 20 d.
The microscopic examination showed an interaction that was similar for M. robertsii and
R. solani, with braiding of R. solani hyphae by B. bassiana (Fig. 3A).
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Thus, in the dual growth assays, the M. robertsii strain showed stronger antagonistic
properties than the B. bassiana strain. Both strains led to the necrotization of the aerial
mycelium and prevention of full-fledged sclerotium formation in the fungus contact zone.

Rhizoctonia disease development in plants during the vegetation
period and in the tubers of a new crop
It was shown that entomopathogenic fungi actively suppressed Rhizoctonia disease
development in the early stages of plant growth (4 weeks postplanting). A decrease in
sprout mortality was observed in the plants grown from the treated tubers. In particular,
sprout mortality in the control was 19.9%. Treatment with M. robertsii decreased plant
mortality 3.15-fold compared to the control, but the difference was not significant (Dunn’s
test, P = 0.129). At the same time, sprout mortality was not detected after treatment with
B. bassiana (Dunn’s test, P = 0.031 compared to the control).

Four weeks postplanting, we registered a trend of a decrease in the Rhizoctonia disease
intensity (RSI) on the stems of plants treated with M. robertsii (1.87-fold compared
to the control; Dunn’s test, P = 0.078, Fig. 4). A significant 3.61-fold decrease in the
RSI was registered in plants treated with B. bassiana (Dunn’s test, P = 0.003 compared
to the control). Seven weeks postplanting, a decrease in the RSI was also documented
(Fig. 4). Similarly, the decrease after treatment with M. robertsii was marginal (Fisher’s
LSD, P = 0.070 compared to the control), and a significant difference was detected after
treatment with B. bassiana (Fisher’s LSD, P = 0.029 compared to the control).

At the 7-week postplanting, we registered a decreased number of damaged stolons in the
plants treated with B. bassiana (2.2-fold compared to the control, Fisher’s LSD, P = 0.029,
Fig. 5). Treatment with M. robertsii led to a 1.4-fold decrease in the number of damaged
stolons, but the difference was marginal (Fisher’s LSD, P = 0.070 compared to the control).

Tomilova et al. (2020), PeerJ, DOI 10.7717/peerj.9895 10/26

https://peerj.com
https://doi.org/10.7717/peerj.9895/fig-4
http://dx.doi.org/10.7717/peerj.9895


7 weeks postplanting

R
h

iz
o

ct
o

n
ia

 d
is

ea
se

 in
 s

to
lo

n
s,

 %

Lesion of stolons Death of stolons
0

2

4

6

8

10 Control

M. robertsii

B. bassiana

a

ab

b

a

a

a

Figure 5 Effect of the treatment of seed tubers with entomopathogenic fungi on damage to potato
stolons caused by Rhizoctonia disease (7 weeks postplanting). The bars indicate the standard error of the
means (four biological replicates, five plants in each). The same letters indicate insignificant differences in
damage to potato stolons between all treatments (Dunn’s test, Fisher’s LSD, P > 0.05).

Full-size DOI: 10.7717/peerj.9895/fig-5

Treatment with fungi led to 1.2- and 2.4-fold decreases in the number of dead stolons after
treatment with M. robertsii and B. bassiana, respectively, but these differences were not
significant (Dunn’s test, P ≥ 0.141 compared to the control, Fig. 5).

The analysis of the new crop tubers showed that entomopathogenic fungi suppressed
sclerotial forms ofRhizoctonia disease (Table 2). The proportion of healthy tubers (free from
allRhizoctonia disease symptoms) after treatment with the entomopathogenic fungi was not
significantly different from that in the control (Fisher’s LSD, P ≥ 0.075, Table 2). However,
the proportion of tubers free from sclerotia significantly increased after treatment with B.
bassiana andM. robertsii (Fisher’s LSD, P < 0.016 compared to the control). The sclerotium
index was decreased 1.7-2-fold (Fisher’s LSD, P = 0.016 compared to the control, Table 2).
The biological efficacy of the entomopathogenic fungi toward Rhizoctonia disease was high
during all potato ontogeny stages, ranging from 40–100% (Table 3).

Influence of fungi on potato growth and the tuber crop
A growth-promoting effect of the entomopathogenic fungi on the potato plants was
revealed. At 4 weeks postplanting, we observed an increase in plant weight after treatment
with entomopathogenic fungi (Fig. 6A). Treatment withM. robertsii promoted a significant
increase in plant fresh weight (6.96 g/plant; Fisher’s LSD, P = 0.037 compared to the
control). At the same time, B. bassiana induced an increase of 5.85 g/plant, and the
significance of this difference was at the marginal level (Fisher’s LSD, P = 0.070 compared
to the control). Plant length after fungal treatment was only slightly increased compared
to the control (0.18–2.56 cm) (Fisher’s LSD, P ≥ 0.091, Fig. 6C).

At the following time-point (7 weeks postplanting), significant differences between the
control and treated plants were not registered for either plant weight (Fisher’s LSD, P ≥
0.149, Fig. 6B) or length (Fisher’s LSD, P ≥ 0.098, Fig. 6D).
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Table 2 The effect of entomopathogenic fungi on the forms of Rhizoctonia disease in tubers (mean±

SE, 120 tubers from each treatment).

Forms of Rhizoctonia disease Share of tubers, %

Control M. robertsii B. bassiana

No signs of blight 42.50± 4.77ab 53.75± 4.27a 36.25± 2.39b

Weakly scab-like symptoms 20.00± 5.77 8.75± 2.39 25.00± 4.56
Scab-like symptoms 10.00± 2.50 13.33± 3.82 10.00± 3.54
Dry core symptoms 1.25± 1.25 – –
Scab-like symptoms+ cracks 15.00± 7.07 23.75± 3.75 25.00± 5,40
Without black scrub 86.25± 2.39a 96.25± 2.39b 96.25± 2.39b

Black scrub (the surface of tuber covered with sclerotia)
On 1/2 – – –
1/4 – – –
1/10 6.25± 1.25 – –
Single sclerotia 3.75± 1.25 1.25± 1.25 2.50± 1.44

Combined forms
Sclerotia 1/2+ scab-like – – –
Sclerotia 1/4+ scab-like 1.25± 1.25 – –
Sclerotia 1/10+ scab-like 1.25± 1.25 1.25± 1.25 –
Single sclerotia+ scab-like 1.25± 1.25 – –
Sclerotia 1/2+ scab-like+ cracks – – –
Sclerotia 1/4+ scab-like+ cracks – – –
Sclerotia 1/10+ scab-like+ cracks – – –
Single sclerotia+ scab-like+ cracks – 1.25± 1.25 –
Sclerotium index 0.86± 0.07a 0.44± 0.09b 0.50± 0.10b

Notes.
The same letters indicate insignificant differences between treatments (Fishers LSD, P > 0.05).

Table 3 Efficiency of the application of entomopathogenic fungi for tuber treatment.

Treatment Biological efficiency, % on

Sprouts Stems Stolons Tubers

M. robertsii 68.3 45.8 30.9 48.8
B. bassiana 100 73.1 54.3 40.7

Treatment with the entomopathogenic fungi did not significantly affect the number of
stems per potato plant, the number of stolons per potato plant or the number of tubers
per potato plant at either time-point (data dot shown). Treatment with the fungi slightly
increased the tuber crop, but the differences were not significant (Fisher’s LSD, P ≥ 0.096,
Table 4). Nevertheless, the crop return resulting fromM. robertsii treatment was 7.0 kg per
100 potato plants, and that resulting from B. bassiana treatment was 11.1 kg per 100 potato
plants, or 12.1 and 19.2%, respectively. The proportion of the medium-sized fraction was
increased after treatment with M. robertsii, and the proportion of the large fraction was
increased after treatment with B. bassiana, but the differences were insignificant compared
to the control (Table 4, see also ESM Fig. S1).
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Figure 6 Effect of the treatment of seed tubers with entomopathogenic fungi on plant growth. The
bars indicate the standard error of the means (four biological replicates, five plants in each). The same let-
ters indicate insignificant differences in the length of stems and wet weight between all treatments (Fisher’s
LSD, P > 0.05).

Full-size DOI: 10.7717/peerj.9895/fig-6

Table 4 Effect of entomopathogenic fungi on the fractional composition and yield of potato following the treatment of seed tubers (mean± SE,
4 biological replicates, 10 plants in each).

Treatment Fractional composition, % Biological yield/100 plants

Small fraction Medium fraction Large fraction kg Yield increase

kg %

Control 4.83± 0.48a 41.33± 2.81a 53.85± 2.98ab 57.73± 4.60a – –
M. robertsii 6.03± 0.23a 43.65± 5.97a 50.33± 6.07a 64.70± 3.02a 7.0 12.1
B. bassiana 3.25± 0.38b 31.55± 2.29a 65.20± 2.18b 68.85± 4.83a 11.1 19.2

Notes.
The same letters indicate insignificant differences between treatments (Fisher’s LSD, P > 0.05).

CFUs in soil and colonization of plants
Soil CFUs
The soil plated before the start of the experiment showed a low frequency of the
entomopathogenic fungi: B. bassiana—133.33 ± 57.38 CFUs/g dry soil, andM. robertsii—
155.56± 75.90 CFUs/g dry soil. At the end of the vegetation period (13 weeks postplanting),
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the average CFUs of the entomopathogenic fungi in the rhizosphere soil of the treated
plants were 3977.78 ± 965.84 CFUs/g dry soil forM. robertsii and 2955.56 ± 718.82 CFU/
g dry soil for B. bassiana. In the control samples of rhizosphere soil, entomopathogenic
fungi were detected at the following rates: B. bassiana—88.89± 36.29 CFUs/g dry soil, and
M. robertsii—266.67 ± 120.36 CFUs/g dry soil.

Plant colonization
At 4 weeks postplanting, we did not observe colonization of potato plant tissues (leaves,
stems and roots) by M. robertsii or B. bassiana. Notably, roots plated without sterilization
(washed solely with the water-Tween solution) showed ample surface contamination by
the experimental fungi in 70–80% of the plants (ESM Fig. S2), which suggests active fungal
development in the rhizosphere zone. In the control samples of the plants, colonies of the
entomopathogenic fungi were not detected.

At 7 weeks postplanting, the percentage of the plants exhibiting systemic colonization by
the fungi (leaves, stems and roots) was low (M. robertsii—5.26%, B. bassiana—5.88%), and
the difference between these treatments was not significant (Fisher’s exact test, P = 0.730).
The rates of local colonization of the roots were 31.58% for M. robertsii and 47.06% for
B. bassiana (Fisher’s exact test, P = 0.377). The entomopathogenic fungi were not isolated
from the control plants.

Activity of POX
At 4 weeks postplanting, we revealed a significant 1.5-fold increase in POX activity in
the roots under the influence of both fungi (Dunn’s P ≤ 0.014, Fig. 7A). At the same
time-point, enzyme activity in the leaves was close to the control level (Dunn’s test, P ≥
0.687, Fig. 7B). At 7 weeks postplanting, POX activity in the roots tend to decrease in the
plants that were treated with fungi (Fig. 7C). Treatment with B. bassiana led to a significant
decrease compared to the control (Dunn’s test, P = 0.023 compared to the control), but
treatment withM. robertsii led to insignificant differences (P = 0.162). POX activity in the
leaves was not significantly changed in B. bassiana- treated plants (Dunn’s test, P = 0.949,
Fig. 7D), but this parameter was significantly decreased after treatment with M. robertsii
(Dunn’s test, P = 0.041 compared to the control).

DISCUSSION
This work demonstrated that the treatment of potato seed tubers with entomopathogenic
fungi, followed by growth in open-ground conditions increased plant resistance to
Rhizoctonia disease. We found for the first time that plants treated with the investigated
strain of B. bassiana gained resistance to the pathogen during the vegetation period under
the continental conditions of Western Siberia. In addition, plants treated with the fungus
exhibited more rapid growth and increased tuber quality. Similar trends were observed
after the treatment of seed tubers with the strain of M. robertsii, but these effects were
weaker. We suggest that entomopathogens influence R. solani directly (as an antagonist)
or indirectly (through the activation of the plant defense systems).
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Figure 7 Effect of the treatment of seed tubers with entomopathogenic fungi on the levels of peroxi-
dase activity in potato roots (A, C) and leaves (B, D). The bars indicate the standard error of the means
(n = 20). The same letters indicate insignificant differences in POX activity in plants between treatments
(Dunn’s test, P > 0.05).

Full-size DOI: 10.7717/peerj.9895/fig-7

The results obtained in the dual fungal growth experiments showed antagonistic
properties of M. robertsii and B. bassiana toward the phytopathogen R. solani. The activity
of Beauveria and Metarhizium species against various phytopathogens has been described
in previous studies on the interaction between fungi in vitro (Renwick, Campbell &
Coe, 1991; Veselý & Koubová, 1994; Bark et al., 1996; Reisenzein & Tiefenbrunner, 1997;
Lee et al., 1999; Sasan & Bidochka, 2013; Shternshis et al., 2014; Gothandapani et al., 2015;
Barra-Bucarei et al., 2020). Many authors suggest a key role of entomopathogenic fungal
metabolites in inhibition of phytopathagens. These suggestions have been confirmed in
experiments involving cell-free culture filtrates (Renwick, Campbell & Coe, 1991; Bark et
al., 1996; Sasan & Bidochka, 2013; Lozano-Tovar et al., 2017). It was also shown that B.
bassiana produces an antifungal peptide (BbAFP1) that inhibits the growth of Alternaria
brassicae (Tong et al., 2020). The activity ofMetarhizium extracts against Phytophthora sojae
and Aphanomyces cochlioides was associated with the secondary metabolites aurovertins
and fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-
2-pyrroline (Putri et al., 2014).

It should be noted that the data on the influence of the entomopathogenic fungi on R.
solani are very contradictory. Lee et al. (1999) and Shternshis et al. (2014) observed growth
inhibition of R. solani during cocultivation with entomopathogenic fungi, while Veselý
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& Koubová (1994) showed that Beauvaria spp. did not exhibit any antagonistic activity
againstR. solani.Guo et al. (2005) demonstrated inhibitory activity of themetabolic peptide
isapheline from the Isaria feline mycelium on mycelial growth in R. solani. However, Kang
et al. (2018) did not observe radial growth inhibition of R. solani by Isaria javanica.We also
did not observe inhibition of radial colony growth of this phytopathogen by investigated
strains of M. robertsii and B. bassiana. Nonetheless, the long-term cocultivation of M.
robertsii and B. bassiana with R. solani allowed us to observe the braiding of R. solani
hyphae by entomopathogens with aerial mycelium necrotization and suppression of
sclerotium formation.

Many authors have reported that endophytic entomopathogenic fungi decrease plant
damage caused by various phytopathogens (reviwed by Bamisile et al., 2018; Jaber &
Ownley, 2018; Vega, 2018), including R. solani (Griffin et al., 2005; Ownley, Dee & Gwinn,
2008;Arab & El-Deeb, 2012).We found for the first time that the treatment of potato tubers
with fungi before planting led to a decrease in Rhizoctonia disease symptoms throughout
the growing season. In particular, it decreased the damage to sprouts, stems and stolons
as well as sclerotium formation on the tubers of new crops. Interestingly, M. robertsii
was more active against R. solani than B. bassiana in vitro, but in field conditions, we
obtained the opposite results, at least with respect to Rhizoctonia disease on the sprouts,
stems and stolons. On the other hand, equal levels of the suppression of sclerotium index
on tubers of the new crop was observed after the M. robertsii and B. bassiana treatments.
These effects may be observed because members of the genusMetarhiziummostly colonize
rhizosphere and internal root tissues (Hu & St Leger, 2002; St Leger, 2008; Steinwender et
al., 2015; Barelli, Moreira & Bidochka, 2018), while Beauveria species adapted to colonize
different plant tissues (roots, stems and leaves) (Behie, Jones & Bidochka, 2015). It is likely
that the differences in Rhizoctonia inhibition are linked to these adaptations. Future studies
could focus on the quantification of the colonization of potato organs by the investigated
fungi using molecular tools.

It should be noted that the inoculation of tubers with entomopathogenic fungi is a more
technologically challenging strategy compared to soil drenching or spraying. Preplanting
treatment allows the observation of the effects on the pathogen directly at the time of its
activation in the early stages of plant ontogenesis. However, the drenching of soil with a
M. robertsii conidial suspension also led to the suppression of potato Rhizoctonia disease
in the field conditions of Western Siberia (ESM Fig. S3).

It is important that an optimal planting density is employed as this affects the basic
structure of the potato crop in the early stage (during the 4 weeks postplanting). During
this period, we observed decreases in sproutmortality and theRhizoctonia stem lesion index
as well as an increase in plant weight. A growth stimulation effect on plants after treatment
with Metarhizium and Beauveria fungi has been registered by many other researchers in
various plants (Gomez-Vidal et al., 2009; Liao et al., 2014; Lopez & Sword, 2015; Gathage
et al., 2016; Jaber & Enkerli, 2016; Jaber & Enkerli, 2017; Jaber & Araj, 2017; Raad et al.,
2019), including potato (Krell et al., 2018). This phenomenon may have several potential
causes, such as (1) the additional supply of nitrogen via the mycelium to plant roots
(Behie, Zelisko & Bidochka, 2012; Behie & Bidochka, 2014); (2) the inducible production of
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regulatory proteins, altering metabolic activity in the plants (Gomez-Vidal et al., 2009); (3)
the activation of phytohormone production (Raad et al., 2019); and (4) the synthesis of
hormone-like substances by the fungi themselves (for example, indole-3-acetic acid) (Liao
et al., 2017). Nevertheless, most of these studies were performed in sterile soils or under
greenhouse conditions. We are the first to show a plant-growth promoting effect under
the field conditions of Western Siberia, which is in a zone of risky agriculture.

We documented an increase in POX activity after treatment with both strains of fungi
at 4 weeks postplanting. We suggest that the colonization of the soil and rhizosphere zone
of potato led to an increase in peroxidase activity in the roots. The activation of plant-
protective enzymes, particularly peroxidase, polyphenol oxidase and chitinase, has been
observed in studies considering the interactions between plants and antagonistic bacteria
(Pseudomonas fluorescens, Bacillus subtilis) and between plants and entomopathogenic
fungi (Karthiba et al., 2010; Senthilraja et al., 2013; Prabhukarthikeyan, Saravanakumar &
Raguchander, 2014; Prabhukarthikeyan et al., 2017). Independent endophytic colonization
with entomopathogenic fungimay induce plant resistance to phytopathogens and lead to an
increase in the activity of protective compounds (Hirano et al., 2008;Maksimov et al., 2014;
Maksimov et al., 2015). Raad et al. (2019) assessed Arabidopsis thaliana transcriptomic and
metabolic responses to B. bassiana colonization and the resistance of the plants to the
phytopathogen Sclerotinia sclerotiorum. These authors revealed the upregulation of genes
related to the synthesis of components of the phytoalexin, jasmonic, and salicylic acid
signaling pathways.

Active vegetative mass synthesis, stolon formation and tuber setting are characteristic of
the bud-formation and flowering periods (7 weeks postplanting). During this period, we
also registered a decrease in lesions on the stems and stolons caused by Rhizoctonia disease.
However, at this experimental time-point, we did not observe significant differences in
growth parameters of POX activity between the treated and control plants or exception
of slight decrease in POX activity under the influence of M. robertsii. Thus, the strongest
growth-related effects and immune reactions in the plants were observed during earlier
stages of the interaction between plants and fungi. Further research could be focused on
the dynamics of the immune reactions and growth parameters of potatoes after treatment
with entomopathogenic fungi.

At the final stage of the experiment (13 weeks postplanting), when the tubers of the
new crop had finally formed, we registered only a trend of an increase in the total tuber
weight (12.1–19.2%), but tuber quality (the decrease of Rhizoctonia sclerotia on the surface
of tubers) was significantly improved. It is important to note that the sclerotium index of
the tubers was significantly lower than that of the control by 1.7-2-fold. The low level of
tuber infection means that these tubers can be used as seed tubers because sclerotia are
the main source of Rhizoctonia infection (Banville, Carling & Otrysko, 1996; Tsror, Barak
& Sneh, 2001; Tsror & Peretz-Alon, 2005; Daami-Remadi, Zammouri & Mahjoub, 2008). It
should be notice that the soil in the root area of the treated plants was highly contaminated
with bothM. robertsii and B. bassiana compared to the control plants, which suggested the
fungi remained and proliferated in the rhizosphere zone (Inglis et al., 1997; Hu & St Leger,
2002) and might interact with R. solani during vegetation season.
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CONCLUSIONS
This work is the first study of the effect of entomopathogenic fungi on potato cultivation
under the continental climate of Siberia. The study showed that the preplanting treatment
of seed tubers with the conidia of entomopathogenic fungi protected against Rhizoctonia
disease during the vegetative growth. In particular, the treatment decreased the development
of the disease on the stems and stolons of potato plants and decreased the formation of R.
solani sclerotia on the surface of new crop tubers. The suppression of Rhizoctonia disease
could be caused by both the antagonistic properties of these fungi and the activation of the
host-plant resistance response. Further studies should focus on the screening of strains for
the inhibition of Rhizoctonia disease on potato under the conditions of Western Siberia as
well as the development of different formulations for potato treatments.
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