
Progress in Traditional Chinese
Medicine Against Respiratory Viruses:
A Review
Bao-Hong Li1, Zhong-Yuan Li1, Miao-Miao Liu1, Jing-Zhen Tian1* and Qing-Hua Cui2,3*

1College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China, 2Innovation Research Institute of
Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China, 3Qingdao Academy of Chinese
Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China

Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-
1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat
to society. Based on the guiding principles of “holism” and “syndrome differentiation and
treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of
respiratory virus diseases owing to the synergistic effect of multiple components and
targets, which prevents drug resistance from arising. According to TCM theory, there are
two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”.
Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng
corresponds to immune regulation, inflammation control, and tissue protection in the
host. In this review, current progress in using TCMs against respiratory viruses is
summarized according to modern biological theories. The prospects for developing
TCMs against respiratory viruses is discussed to provide a reference for the research
and development of innovative TCMs with multiple components, multiple targets, and low
toxicity.

Keywords: traditional Chinese medicine, respiratory virus, basic theory of traditional Chinese medicine, clearing
heat and detoxication, mechanism of action, COVID-19

INTRODUCTION

Viral diseases that pose a serious threat to society occur frequently, and preventing and treating viral
infections have become major scientific problems. In particular, respiratory viruses have high
infectivity and high incidence. Virus variability, drug resistance, and the high risks of drug research
and development have resulted in there being only a handful of drugs for treating viral diseases.

Chinese herbs are the pharmaceutical ingredients that are collected, processed, and prepared
according to the basic theory of traditional Chinese medicine (TCM), which explains the mechanism
of action and guides clinical applications. Most TCMs are plant-based; thus, there is a saying that “all
kinds of herbs are grass-based”. The prevention and treatment of viral diseases with TCM has a long
history and clinical practice, from the Treatise on Febrile Diseases written around 2000 years ago and
the Treatise on Pestilence in the Ming (1,368–1,644) and Qing (1,644–1911/12) dynasties, to the
prevention and control of viral diseases in the modern era, reflects the advantages of TCM in this field
(Zhang et al., 2019; Zhu et al., 2021). At the end of 2019, an outbreak of a novel coronavirus, severe
acute respiratory syndrome coronavirus (SARS-CoV)-2, quickly became a pandemic. Although
many countries worldwide struggled to combat the spread of the virus, China rapidly controlled the
outbreak, and TCM played an important role in treating coronavirus disease 2019 (COVID-19).
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According to the TCM characteristics and the characteristics
and pathogenic mechanism of respiratory viral diseases, this
review systematically describes the relationship among virus,
host, and TCMs to provide a TCM strategy for treating
respiratory viruses.

Overview of Respiratory Viruses
Morbidity and mortality due to respiratory diseases are high
worldwide (Burney et al., 2015), and 90% of respiratory infections
are caused by viruses, the majority of which are RNA viruses, such
as orthomyxoviruses, paramyxoviruses, and coronaviruses, and
rhinoviruses, and some of which are DNA viruses, such as
adenoviruses. Orthomyxoviruses include influenza A virus
(IAV) and influenza B virus (IBV), which are characterized by
segmental RNA, variation, hemagglutination, and absence of
hemolysis. Paramyxoviruses include respiratory syncytial virus
(RSV), parainfluenza virus, measles virus, and mumps virus, and
they have a low frequency of RNAmutation in different segments
and show hemagglutination and hemolytic activity.
Coronaviruses include the SARS-CoV-2, SARS-CoV, and
MERS-CoV novel coronaviruses, which have high
pathogenicity and variability (Battles and McLellan, 2019;
Abdelrahman et al., 2020).

Respiratory viruses are highly contagious and transmitted
mainly through respiratory secretions, stools, urine, droplets, air
and contact (Weber and Stilianakis, 2021).Most respiratory viruses
occur in seasonal outbreaks, with infants, the elderly, and immune-
compromised populations at high risk (Nichols et al., 2008), and
the prevalence and severity vary across geographical regions and
populations (Moriyama et al., 2020). Infection often causes oral,
nasal, and pharynx discomfort, airway inflammation, and lung
injury, and serious cytokine storms may result in acute respiratory
distress and multiple organ failure, and even lead to death of
patients (Abdelrahman et al., 2020). For example, the Spanish flu,
which began in 1918, killed tens of millions of people and the
outbreak of the H1N1 virus in 2009 killed hundreds of thousands
of people worldwide (Garten et al., 2009; Shieh et al., 2009). By June
2021, SARS-CoV-2, which was detected at the end of 2019, has
infected nearly 200million people, and killedmore than 3.5 million
people.

Thus, the prevention and treatment of respiratory virus
diseases is a crucial global health issue. Guided by the basic
theory of TCM, TCMs have unique advantages in the prevention
and treatment of respiratory viruses through the overall
regulation of human immune function due to its multi-
component and multi-target characteristics.

Basic Theory of TCM
The basic theory of TCM has “holism” as its guiding principle and
“syndrome differentiation and treatment” as its method of
diagnosis and treatment, guiding the use of TCMs against
viruses. The principle of holism regards the body as an
organic whole, and understands the occurrence and
development of local diseases as related to the whole; thus,
local diseases can only be treated effectively by considering the
whole body. The concepts of syndrome differentiation and
treatment are defined as follows. Syndrome differentiation is

the process of proving and distinguishing the type of disease,
that is, knowing the location, etiology, properties, and the
relationship between the “zheng (energy)” and “xie (evil)” of
the disease, which reflect the nature of pathological changes.
Treatment is the process of identifying the appropriate treatment
methods according to the results of syndrome differentiation.
This also corresponds to the "personalized treatment" in modern
medicine, which is of great significance in diagnosis and
treatment (Li and Xu, 2011; Ma et al., 2019).

According to TCM theory, there are two main ways that
antiviral TCMs work, which are “dispelling evil” and “fu zheng”.
Dispelling evil refers to the elimination of viruses, which is usually
direct inhibition or killing of viruses by Chinese herbs. The
mechanism of action of this kind of herb is like that of direct-
acting antiviral drugs in Western medicine (direct-acting
antivirals). Fu zheng refers to improving the body’s physical
fitness and ability to resist evil and to rehabilitation; zheng qi
is stored in the body, and prevents evil, which is also an important
aspect of the antiviral mechanisms of TCMs. These two modes of
action are also reflected in the mechanism of TCM treatment of
respiratory viral diseases (Wang et al., 2020a).

Antiviral Research Guided by Holism and
Syndrome Differentiation and Treatment
Figure 1 shows the relationship between TCM antiviral theory
with respect to the basic theory of TCM andmodernmedicine. We
discuss treatment of COVID-19 with TCM as an example of using
the principles of holism and syndrome differentiation and
treatment. In TCM theory, COVID-19 belongs to the category
of epidemic disease. COVID-19 is caused by the invasion of the
exogenous pathogen SARS-CoV-2 and the deterioration in human
immune function, which exacerbates the imbalance in the body
(excessive immune inflammatory reaction) and causes organ
dysfunction. From the perspective of holism, COVID-19 is a
struggle between the virus and the immune system, which leads
to an imbalance in the homeostasis of the human internal
environment. From the perspective of syndrome differentiation
and treatment, the progress of the disease can be divided into the
initial stage, the intermediate stage, the severe or critical stage, and
the recovery stage. Different treatments target different stages of
the disease; for example, clearing heat and detoxification in the
early stage are part of dispelling evil in TCM. The latter three stages
require the suppression of an excessive immune response and
inflammation, regulation of balance in the body, and coordination
of the functions of the viscera, all of which are part of fu zheng in
TCM. Clinical results have shown that TCM treatment is effective
for COVID-19, especially in significantly reducing the number of
patients transitioning from the early and middle stages of the
disease to severe and critical illness, which is key to reducing the
incidence and mortality of critical illness (Lee et al., 2021).

RESEARCH STATUS OF ANTIVIRAL TCMS

This review focuses on five Chinese herbal medicines (Isatidis
radix, Glycyrrhizae radix et rhizoma, Scutellariae radix,
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Houttuyniae herba, and Chebulae fructus), six traditional
Chinese formulae (Ge-gen decoction [GGD], San-wu-huang-
qin decoction [SWHQD], Gu-ben-fang-xiao decoction
[GBFXD], Qing-fei-pai-du decoction [QFPDD], Ma-xing-shi-
gan decoction [MXSGD], and Ma-huang-xi-xin-fu-zi
decoction [MXFD]), six proprietary Chinese medicines (Lian-
hua-qing-wen capsules [LHQWC], Yin-hua-ping-gan granules
[YHPGG], Shu-feng-jie-du capsules [SFJDC], Re-du-ning
injection [RDNI], Xue-bi-jing injection [XBJI], and Tan-re-
qing injection [TRQI]), and six active ingredients from natural
products that have been studied extensively (forsythin, rheum
emodin, baicalein, baicalin, quercetin, and glycyrrhizic acid)
(Table 1). Based on a modern biological interpretation of
TCM antiviral theory, we discuss the efficacy and mechanism
of TCMs against respiratory viruses from the perspectives of the
direct effect on viruses (Table 2), immune regulation (Table 3),
control of inflammatory factors (Table 4), and tissue protection
(Table 5).

Direct-Acting Antivirals
Taking respiratory viruses, such as high-risk coronaviruses
(SARS-CoV and SARS-CoV-2), IAV, and RSV, as examples,
the direct inhibitory effects of TCMs on respiratory viruses
include interference with viral adsorption and invasion,
replication (e.g., transcription and translation, nuclear

output, and assembly), packaging, and budding (Figure 2;
Table 2).

Inhibition of Viral Adsorption and Invasion
The interaction between the viral surface protein and the host cell
surface receptor is key for how the virus enters the cell; for
example, the spike protein and angiotensin converting enzyme 2
(ACE2) receptor for SARS-CoV and SARS-CoV-2,
hemagglutinin (HA) and the sialic acid protein for IAV, and
the fusion protein and nucleolin receptor for RSV (Griffiths et al.,
2020). Chinese herbal medicine aimed at the surface proteins or
host receptors of these viruses can effectively “keep the enemy out
of the country”. For example, RDNI acts on ACE2 to inhibit
SARS-CoV-2 invasion, and effectively blocks viral replication in
cells by inhibiting the main protease, resulting in a dual-target
protective effect (Jia et al., 2021). The active component of
LHQWC shared 189 common proteins with ACE2 co-
expression proteins, which interact with each other (Zheng
et al., 2020) and exert a multi-target synergistic effect that may
prevent drug resistance caused by using a single ACE2 inhibitor
(Runfeng et al., 2020; Yang et al., 2020; Chen et al., 2021a).
LHQWCwas the first drug approved to treat COVID-19 in China
during the pandemic due to its clinical efficacy. Further studies
showed that rheum emodin blocks the binding of the SARS-CoV
spike protein to ACE2 and inhibits virus infection with a K1/2

FIGURE 1 | TCM antiviral theory based on the basic theory of TCM and its relationship with modern medicine. Under the guidance of “holism” and “syndrome
differentiation and treatment”, TCM can remove pathogenic factors and strengthen the body, to achieve the effect of preventing and treating viral diseases, which is
corresponding to the modern medical system.
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TABLE 1 | Overview of antiviral TCMs.

Type TCM Parts/components Main active components References

Chinese herbal
medicine

Isatis indigotica Fort Root Alkaloids, organic acids, nucleosides, amino
acids, flax lignans, flavonoids, sterols, volatile oils,
polysaccharides etc.

Zhou and Zhang
(2013)

Glycyrrhiza uralensis Fisch.,
Glycyrrhiza inflata Bat.,
Glycyrrhiza glabra L

Root, rhizome Triterpenoid saponins, flavonoids, chalcones,
coumarin etc.

Zhang and Ye
(2009)

Scutellaria baicalensis
Georgi

Root Baicalin, baicalein etc. Ji et al. (2015)

Houttuynia cordata Thunb Whole herb, overground parts Chlorogenic acid, scopolamine, quercetin, rutin,
isoquercetin, vitexin etc.

Yang et al. (2014)

Terminalia chebula Retz.,
Terminalia chebulaRetz. var.
tomentella Kurt

Ripe pod Gallic acid, gallicin, corilagin, ellagic acid etc. Chen et al. (2017)

Traditional
Chinese formula

Ge-gen decoction (GGD) Puerariae lobatae radix; Ephedrae herba;
Cinnamomi ramulus; Glycyrrhizae radix et
rhizoma; Paeoniae radix alba; Zingiberis
rhizoma recens; Jujubae fructus

Puerarin, daidzein, paeoniflorin, cinnamic acid,
glycyrrhizic acid, ephedrine,
pseudoephedrine etc.

Song et al. (2007)

San-wu-huang-qin
decoction (SWHQD)

Sophorae flavescentis radix; Scutellariae
radix; Rehmanniae radix

Verbascoside, baicalin, wogonoside, baicalein,
matrine, sophocarpine, oxymatrine,
oxysophorcarpine etc.

Ma et al. (2018)

Gu-ben-fang-xiao decoction
(GBFXD)

Astragali radix;Codonopsis radix; Atractylodis
macrocephalae rhizoma; Poria; Ostreae
concha; Cicadae periostracum; Citri
reticulatae pericarpium; Saposhnikoviae radix;
Magnoliae flos; Schisandrae chinensis
fructus; Glycyrrhizae radix et rhizoma

——

Qing-fei-pai-du decoction
(QFPDD)

Ephedrae herba; Glycyrrhizae radix et
rhizoma; Armeniacae semen amarum;
Gypsum fibrosum; Cinnamomi ramulus;
Alismatis rhizoma; Polyporus; Atractylodis
macrocephalae rhizoma; Poria;Bupleuri radix;
Scutellariae radix; Pinelliae rhizoma; Zingiberis
rhizoma recens; Asteris radix et rhizoma;
Farfarae flos; Belamcandae rhizoma; Asari
radix et rhizoma; Dioscoreae rhizoma; Aurantii
fructus immaturus; Citri reticulatae
pericarpium; Pogostemonis herba

Ephedrine, amygdalin, nobiletin, liquiritin, gallic
acid, chlorogenic acid, saikosaponin A,
glycyrrhizic acid etc.

Liu et al. (2021b)

Ma-xing-shi-gan decoction
(MXSGD)

Ephedrae herba; Armeniacae semen
amarum; Glycyrrhizae radix et rhizoma;
Gypsum fibrosum

Ephedrine, pseudoephedrine, amygdalin,
glycyrrhizic acid etc.

Li et al. (2021)

Ma-huang-xi-xin-fu-zi
decoction (MXFD)

Ephedrae herba; Aconiti lateralis radix
praeparata; Asari radix et rhizoma

Methylephedrine, aconine, songorine, fuziline,
neoline, talatisamine, chasmanine,
benzoylmesaconine, benzoylaconitine,
deacetylhypaconitine etc.

Sun et al. (2016),
Liang et al. (2020c)

Proprietary
Chinese
medicine

Lian-hua-qing-wen
capsules (LHQWC)

Forsythiae fructus; Ephedrae herba;
Lonicerae japonicae flos; Isatidis radix;
Menthae haplocalycis herba; Dryopteridis
crassirhizomatis rhizoma carbonisatum;
Rhodiolae crenulatae radix et rhizoma;
Gypsum fibrosum; Pogostemonis herba; Rhei
radix et rhizoma; Houttuyniae herba;
Glycyrrhizae radix et rhizoma; Armeniacae
semen amarum

Salidroside, chlorogenic acid, forsythin E,
cryptochlorogenic acid, amygdalin, swainonine,
hyperoside, rutin, forsythin A, forsythin, rhein,
glycyrrhizic acid etc.

Jia et al. (2015)

Yin-hua-ping-gan granules
(YHPGG)

Puerariae lobatae radix; Lonicerae japonicae
flos; Polygoni cuspidati rhizoma et radix;
Ephedrae herba; Armeniacae semen
amarum; Glycyrrhizae radix et rhizoma

Ephedrine, pseudoephedrine, chlorogenic acid,
amygdalin, puerarin, polygonin, glycyrrhizic acid,
rheum emodin etc.

Du et al. (2018)

Shu-feng-jie-du capsules
(SFJDC)

Polygoni cuspidati rhizoma et radix;
Forsythiae fructus; Isatidis radix; Bupleuri
radix; Patriniae herba; Verbenae herba;
Phragmitis rhizoma; Glycyrrhizae radix et
rhizoma

Forsythin, forsythin E, rheum emodin,
verbenalin etc.

Sun et al. (2016)

Re-du-ning injection (RDNI) Artemisiae annuae herba; Lonicerae
japonicae flos; Gardeniae fructus

Chen et al. (2020)

(Continued on following page)
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value of about 200 μM(Ho et al., 2007). In addition, glycyrrhizic
acid acts on the ACE2 receptor and prevents SARS-CoV-2 from
entering cells (Luo et al., 2020; Yu et al., 2021).

In influenza viruses, MXSGD targets HA protein and regulates
the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)
signaling pathway to block viral entry, blocks H1N1 virus
RNA replication and protein synthesis, and has a synergistic
effect with oseltamivir (Hsieh et al., 2012). Glycyrrhizic acid acts
on the cell membrane, reduces its endocytosis activity, inhibits
the entry of IAV into cells, and thus reduces virus uptake
(Wolkerstorfer et al., 2009).

In RSV invasion, GGDmay inhibit RSV fusion protein, inhibit
viral adsorption and invasion, and stimulate host mucosal cells to
produce interferon (IFN)-β (Chang et al., 2012). In vitro studies
have shown that aqueous licorice extract and glycyrrhetinic acid
can inhibit RSV attachment and entry into host cells (Feng Yeh
et al., 2013). Baicalin can block pre-infection by directly killing
RSV(Shi et al., 2016).

Inhibition of Viral Replication
In SARS-CoV viral replication, 3C-Like protease (3CLpro),
papain-like protease (PLpro), and RNA-dependent RNA
polymerase (RdRp) are the key proteases (Hilgenfeld, 2014),
and are promising drug targets (Anand et al., 2003). The
aqueous extract of Houttuynia cordata Thunb. inhibits SARS-
CoV 3CLpro and RdRp in vitro (Lau et al., 2008). The ethanolic
extract of Scutellaria baicalensis Georgi inhibits viral replication
by acting on 3CLpro (Liu et al., 2021a). Baicalein interferes with
mitochondrial oxidative phosphorylation (Huang et al., 2020a)
and inhibits SARS-CoV-2 3CLpro in a mitochondrial
permeability transition pore (mPTP)-dependent manner
in vitro (Liu et al., 2021a; Song et al., 2021). Baicalin and
other active components in Scutellaria baicalensis Georgi, such
as scutellarin, dihydromyricetin, quercetagetin, and myricetin,
also selectively inhibit SARS-CoV-2 3CLpro (Jo et al., 2020; Liu
et al., 2021a). In addition, forsythin inhibits the replication of
coronaviruses, such as SARS-CoV-2, in vitro (Ma et al., 2020; Su
et al., 2020). Molecular docking has shown that quercetin inhibits
the 3CLpro and PLpro targets of SARS-CoV-2 (Abian et al., 2020;
Derosa et al., 2021).

The IAV genome encodes 11 genes, including those for
neuraminidase (NA), matrix protein 1 (M1), matrix protein 2

(M2), HA, and nucleoprotein (NP). Blocking the release,
replication, and synthesis of proteins related to influenza virus
ribonucleoprotein (RNP) is effective for anti-influenza therapy
(Dou et al., 2018; Umeoguaju et al., 2021). SWHQD inhibits the
HA, NA, NP, and M2 ion channels of the influenza H1N1 virus
and blocks the proliferation and replication of virus particles (Ma
et al., 2018). GGD inhibits the PI3K/AKT pathway induced by
IAV, resulting in the retention of virus RNP in the nucleus, and
thus interferes with viral replication (Wu et al., 2011). YHPGG
has shown the best inhibitory effect on the replication stage of
H1N1 influenza virus with a selectivity index (SI) of 26.4 (Du
et al., 2018). LHQWC inhibits different strains of SARS-CoV-2,
IAV, and IBV. In the early stage of virus infection, LHQWC
inhibits the activity of nuclear factor (NF)-κB, weakening the
nuclear output of virus RNP and progeny reproduction, and,
combined with oseltamivir, improved symptoms in IBV-infected
mice (Ding et al., 2017). Meta-analysis showed that LHQWC is
superior to oseltamivir in improving the symptoms of IAV
infection and is similar to oseltamivir in clearing the virus
without serious adverse reactions (Zhao et al., 2014). In
addition, baicalein inhibits the production of H5N1 influenza
virus NP and inhibits viral replication (Sithisarn et al., 2013).

Inhibition of Virus Release
In coronaviruses, the 3A ion channel mediates the virus release
(Schwarz et al., 2014). Rheum emodin inhibits the 3A ion channel
in coronaviruses, such as SARS-CoV, and inhibits the release of
progeny virions with a K1/2 value of about 20 μM (Schwarz et al.,
2011).

In IAV, the NA, HA, and M2 proteins are exported to the
plasma membrane and used with viral RNP to produce IAV
virions. Under NA catalysis, the newly assembled viruses are then
transmitted from the host cell (Battles and McLellan, 2019;
Blockus et al., 2020; Umeoguaju et al., 2021). The release of
influenza virions is closely related to NA protein. The active
components of the aqueous extract of Terminalia chebula Retz.,
chebulagic acid and chebulinic acid, inhibit the activity of viral
NA protein, break the binding of virions to sialic acids on infected
cells, block the virus release, and have a strong inhibitory effect on
oseltamivir-resistant influenza strains (Li et al., 2020a).

Compared with small molecular inhibitors, TCMs have the
advantage of containing multiple components and can have a

TABLE 1 | (Continued) Overview of antiviral TCMs.

Type TCM Parts/components Main active components References

Iridoids, lignans, phenolic acids, flavonoids,
caffeoylquinic acids, sesquiterpenes,
coumarin etc.

Xue-bi-jing injection (XBJI) Carthami flos; Paeoniae radix rubra;
Chuanxiong rhizoma; Salviae miltiorrhizae
radix et rhizoma; Angelicae sinensis radix

Hydroxysafflor yellow A, paeoniflorin, albiflorin,
senkyunolide I, benzoylpaeoniflorin etc.

Sun et al. (2017b)

Tan-re-qing injection (TRQI) Scutellariae radix; Fel Selenarcti; Cornu
Naemorhedi; Lonicerae japonicae flos;
Forsythiae fructus

Rutin, baicalin, baicalein, chrysin-7-O-indole-
glucoside, baicalein 7-O-β-d-glucopyranoside,
wogonin, cynaroside, chlorogenic acid, caffeic
acid, ursodesoxycholic acid, chenodeoxycholic
acid etc.

Li et al. (2019)
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TABLE 2 | TCMs that target viruses directly.

TCM Extract/components Virus type In
vitro/
vivo

Mechanism of
action

IC50/CC50/SI/KD References

Scutellaria
baicalensis
Georgi

Ethanolic extract SARS-CoV-2 In vitro 1. Inhibits viral replication and entry of
virus into cells

1. IC50 � 0.74 μg/ml Liu et al. (2021a)

2. Inhibits SARS-CoV-2 3CLpro 2. IC50 � 8.52 μg/ml
Scutellaria
baicalensis
Georgi

Scutellarin,
dihydromyricetin,
quercetagetin, myricetin

SARS-CoV-2 In vitro Inhibits SARS-CoV-2 3CLpro IC50 � 1.2–5.8 μM Liu et al. (2021a)

Houttuynia
cordata Thunb

Aqueous extract SARS-CoV In vivo
and
vitro

1. Inhibits SARS-CoV 3CLpro Lau et al. (2008)
2. Inhibits RdRp

Terminalia
chebula Retz

Chebulagic acid,
chebulinic acid

H1N1 In vitro Inhibits viral replication and NA-
mediated viral release

IC50 � 1.36 ± 0.36 μM Li et al. (2020a)
IC50 � 1.86 ± 0.98 μM
CC50 > 100 μM

Glycyrrhiza
uralensis Fisch

Aqueous extract RSV In vitro Prevents viral attachment and
internalization

IC50 � 74.8–70.7 μg/ml Feng Yeh et al.
(2013)CC50 �

2010.4–1945.3 μg/ml
SI � 26.9–27.5

Glycyrrhiza
uralensis Fisch

18β-Glycyrrhetinic acid RSV In vitro Prevents viral attachment and
internalization

IC50 � 4.3–4.5 μg/ml Feng Yeh et al.
(2013)CC50 � 71.5–76.3 μg/ml

SI � 15.0–17.7
MXSGD H1N1 In vitro 1. Inhibits viral RNA and protein

synthesis
1. IC50� 0.83± 0.41 mg/ml
CC50 � 71.5 mg/ml

Hsieh et al. (2012)

2. Prevents viral attachment 2. IC50 � 0.58 ±
0.07 mg/ml

3. Prevents viral entry by regulating
the PI3K/AKT signaling pathway

3. IC50 � 0.47 ±
0.08 mg/ml

GGD RSV In vitro 1. Inhibits viral attachment and
internalization

IC50 � 45.6–160.8 μg/ml Chang et al. (2012)

2. Stimulates IFN secretion CC50 > 3 mg/ml
GGD IAV In vitro Blocks virus-induced PI3K/AKT

signaling pathway, causing retention
of viral NP in the nucleus

Wu et al. (2011)

SWHQD H1N1 In vitro
and vivo

1. Inhibits viral HA, NA, NP, and M2
proteins

CC50 � 12.76 mg/ml Ma et al. (2018)

2. Reduces virus titers in mouse lung
tissue

LHQWC SARS-CoV-2 In vitro Inhibits viral replication IC50 � 411.2 μg/ml Runfeng et al. (2020)
CC50 �
1,089–1,157 μg/ml

LHQWC IAV (H1N1,
H3N2, H6N2,
H9N2,
H7N9), IBV

In vitro 1. Acts in the early stage of viral
infection

IC50 � 0.2–2 mg/ml Ding et al. (2017)

2. Inhibits NF-κB pathway and
impairs nuclear export of viral RNP.

SI � 1.59–15.85

RDNI SARS-CoV-2 In vitro CC50 � 0.047 mg/ml Jia et al. (2021)
IC50 � 2.405 μg/ml

YHPGG H1N1 In vitro 1. Inhibits viral replication 1. IC50 � 100.9 ± 8.0 μg/
ml, SI � 26.4

Du et al. (2018)

2. Inhibits viral adhesion 2. IC50 � 230.6 ± 27.3 μg/
ml, SI � 11.6

Baicalin SARS-CoV-2 In vitro Inhibits SARS-CoV-2 3CLpro IC50 � 34.71 μM Jo et al. (2020)
Baicalein SARS-CoV-2 In vitro Inhibits viral replication by mPTP-

dependent interference in
mitochondrial oxidative
phosphorylation

IC50 � 10 μM Huang et al. (2020a)

Baicalein SARS-CoV-2 In vitro 1. Inhibits viral replication and acts on
viral post-entry stage

1. IC50 � 2.9 μM Liu et al. (2021a),
Song et al. (2021)

2. Inhibits SARS-CoV-2 3CLpro 2. IC50 � 0.39 μM
Baicalein H5N1 In vitro 1. Inhibits viral replication IC50 � 18.79 ± 1.17 μM Sithisarn et al. (2013)

2. Inhibits NP production SI � 5.82
Baicalin RSV In vitro

and vivo
Blocks viral adhesion and replication,
and decreases RSV titer in mouse
lung tissue

IC50 � 19.9 ± 1.8 μM Shi et al. (2016)
CC50 � 370 ± 10 μM

Rheum emodin In vitro K1/2 ¼ 20 μM
(Continued on following page)
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synergistic effect on multiple targets. These multi-component,
multi-target antiviral effects of TCMs support the basic theory
of TCM.

Indirect Immune Regulation Against Viral
Diseases
Many TCMs control the development of viral diseases by
regulating the balance of the immune system and maintaining
the stability of the internal environment of the body, which is the
embodiment of the TCM principle of holism (Table 3).

Regulation of IFN Secretion
IFN is a broad-spectrum antiviral glycoprotein, which acts as a
trigger, regulator, and effector of the immune system to
participate in many physiological responses in virus infection
(Malmgaard, 2004), and it is the most important cytokine
(Richard, 2021). QFPDD upregulates the expression of IFN
and interferon-stimulated genes (ISGs), and acts on the early
stage of SARS-CoV-2 virus infection (Wang et al., 2021a).
Forsythin E, forsythin, verbenalin, and rheum emodin, which
are the important components of SFJDC, improve the symptoms
of mice infected with the H1N1 influenza virus by regulating type
1 IFN, the NF-κB/mitogen-activated protein kinase (MAPK)
signaling pathway, and the extracellular signal-regulated kinase
(ERK) pathway (Li et al., 2017a; Tao et al., 2020). Clinical studies
have shown that SFJDC combined with umifenovir treatment
improves the immunity of ordinary COVID-19 patients, inhibits
pulmonary inflammation, and shortens the average antipyretic
time (Chen et al., 2021b). Isatis tinctoria L. cooperatively
regulates the expression of IFN-β by inhibiting the retinoic
acid-inducible gene I (RIG-I) and melanoma differentiation-
associated protein (MDA) 5 signaling pathways (Xu et al.,
2019). The active components, tryptamine B, 4(3H)-
quinazolone, and epigoitrin, activate the RIG-I signaling
pathway, reduce the expression of mitochondrial fusion

protein 2 (MFN2), and increase the expression of
mitochondrial antiviral signal (MAVs), and thus promote
IFN-β secretion (He et al., 2017; Luo et al., 2019). Baicalin
downregulates the expression of miR-146a, which promotes
IFN secretion and inhibits infection with H1N1 and H3N2
viruses (Li and Wang, 2019).

Regulation of Nonspecific and Humoral Immunity
After viral infection, cells recruit and activate macrophages,
natural killer (NK) cells, and other immune cells by releasing
cytokines, chemokines, and other signals to kill and eliminate
infected cells. Once the regulation is out of balance, it causes an
excessive immune response and tissue damage (Dai et al., 2020).
GGD reduces the expression of the toll-like receptor (TLR)
seven pathway signal and tumor necrosis factor (TNF)-α in
H1N1 infected mice and improves the immune balance of T
helper 1 (Th1) and T-helper 2 (Th2) cells (Geng et al., 2019).
GBFXD inhibits the expression of B cell activating factor
(BAFF) secreted by pulmonary macrophages and its related
receptors, reduces the activation of B cells and the release of
immunoglobulin E (IgE) (Liang et al., 2020a), inhibits the
polarization activation of M2 macrophages, improves Th1/
Th2 balance, reduces airway hyperresponsiveness and mucus
secretion (Liu et al., 2019), regulates cholesterol transport,
activates complement factors, and improves respiratory
function and virus-induced asthma (Xing et al., 2019).
YHPGG increases the level of CD4+T cells and the ratio of
CD4+/CD8+ cells in peripheral blood of mice infected with
H1N1, decreases the level of CD8+T cells (Peng et al., 2015),
downregulates B-cell lymphoma 2 (Bcl-2)-associated X (Bax)
and caspase-3 expression in mouse lung tissue, upregulates the
expression of Bcl-2, and regulates apoptosis induced by virus
(Du et al., 2020). Erucic acid in Isatis tinctoria L. reduces
recruitment of CD8+ cytotoxic T lymphocytes (CTL), inhibits
pro-apoptotic signals and NF-κB/MAPK signals, and reduces
pulmonary inflammation (Liang et al., 2020b). Baicalin inhibits

TABLE 2 | (Continued) TCMs that target viruses directly.

TCM Extract/components Virus type In
vitro/
vivo

Mechanism of
action

IC50/CC50/SI/KD References

SARS-CoV
HCoV-OC43

Suppresses viral 3A protein to inhibit
viral release

Schwarz et al.
(2011)

Rheum emodin SARS-CoV In vitro Blocks interaction of SARS-CoV
spike protein with ACE2

K1/2 � 200 μM Ho et al. (2007)

Forsythin SARS-CoV-
2 HCoV-229

In vitro Inhibits viral replication CC50 � 1,034–1959 μg/ml Ma et al. (2020)
IC50 � 63.90–64.53 μg/ml
SI � 16.02–30.66

Quercetin SARS-CoV-2 In vitro 1. Inhibits SARS-CoV-2 3CLpro 1. Binding affinity �
−6.25 kcal/mol, Ki � 7 μM

Abian et al. (2020),
Derosa et al. (2021)

2. Inhibits SARS-CoV-2 PLpro 2. Binding affinity �
−4.62 kcal/mol

Glycyrrhizic acid H3N2 In vitro Interacts with cell membrane to
reduce endocytic activity and virus
uptake

Wolkerstorfer et al.
(2009)

Glycyrrhizic acid SARS-CoV-2 In vitro Inhibits ACE2 Luo et al. (2020), Yu
et al. (2021)
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TABLE 3 | Immunomodulatory TCMs.

TCM Extract/
composition

Virus type/
symptom

In vitro/
vivo

Mechanism of
action

References

Houttuynia cordata Thunb Polysaccharides H1N1 In vivo
and vitro

1. Reduces expression of chemokine CCL20 in lungs and
regulates balance of Th17/Treg carrying CCR6+

Shi et al. (2020a)

2. Inhibits Th17 cell differentiation by downregulating
phospho-STAT3

Houttuynia cordata Thunb Polysaccharides H1N1 In vivo Increases content of SIgA and ZO-1 in intestine to regulate
gut-lung axis

Zhu et al. (2018)

Isatis indigotica Fort Erucic acid H1N1 In vivo
and vitro

Reduces CD8+ CTL recruitment and pro-apoptotic
signaling and inactivates NF-κB and p38 MAPK signaling

Liang et al. (2020b)

Isatis indigotica Fort 4(3H)-
Quinazolone

RSV In vitro Inhibits expression of RIG-I and interferon regulatory factor
3 to suppress the transcription of IFN-β

He et al. (2017)

Isatis indigotica Fort Epigoitrin H1N1 In vivo Reduces protein expression of MFN2 to increase
expression of MAVs, and increases the production of IFN-
β and IFITM3

Luo et al. (2019)

MXSGD H1N1 In vivo Decreases expression of CCL5 and CXCL10 in lung tissue
to increase the growth of beneficial bacteria and improve
the lung microecological environment and immune
microenvironment

Wang et al. (2020b), Wang
et al. (2021b)

GGD H1N1 In vitro
and vivo

Decreases expression of TNF-α and improves Th1/Th2
immune balance

Geng et al. (2019)

QFPDD HCoV-229E In vitro Increases expression of IFN and ISGs to inhibit viral
replication and acts at the early stage of viral infection

Wang et al. (2021a)
HCoV-OC43

MXFD H1N1 In vivo Improves glucose metabolism, and regulates arachidonic
acid metabolism and glycerophospholipid and
sphingolipid metabolic pathways

Sun et al. (2017a), Li et al.
(2017b)

GBFXD Asthma In vivo 1. Regulates Th17/Treg balance and suppresses M2
macrophage polarization

Liu et al. (2019), Liang et al.
(2020a), Dong et al. (2020)

2. Inhibits expression of BAFF and BAFF-related receptors
to reduce B cell activation and IgE release

GBFXD RSV, asthma In vivo 1. Regulates fatty acid metabolism by activating AMPK
pathway

Xing et al. (2019), You et al.
(2021)

2. Regulates cholesterol transport and complement factor
activation

RDNI Fever In vivo Regulates amino acid metabolism, lipid metabolism and
energy metabolism

Gao et al. (2020)

XBJI Sepsis, acute
lung injury

In vivo Regulates pathways of purine, glutathione,
sphingomyelin, arachidonic acid, and phospholipid
metabolism

Shi et al. (2018), Xu et al.
(2018)

YHPGG H1N1 In vivo 1. Downregulates mRNA and protein expression of Bax
and caspase-3, and upregulates Bcl-2 expression in
mouse lung tissue

Peng et al. (2015), Du et al.
(2020)

2. Increases levels of CD4+ and CD4+/CD8+ and reduces
levels of CD8+ in whole blood

SFJDC Verbenalin,
forsythin

Acute lung
injury

In vivo Regulates expression of the ERK pathway Li et al. (2017a)

rheum emodin
SFJDC Forsythin E,

verbenalin
H1N1 In vitro Acts on type I IFN and NF-κB/MAPK signaling pathways Tao et al. (2020)

rheum emodin
Baicalin H1N1 In vivo

and vitro
Induces IFN-γ production in human CD4+ and CD8+

T cells and NK cells, and activates JAK/STAT-1 signaling
pathway

Chu et al. (2015)

Baicalin H1N1 In vivo
and vitro

Downregulates miR-146a expression and produces IFN
to inhibit viral replication

Li and Wang (2019)
H3N2

Baicalin H1N1 In vivo
and vitro

Triggers macrophage M1 polarization and IFN activation
to inhibit viral replication

Geng et al. (2020)
H1N1

Baicalin H1N1 In vivo Downregulates key factors in the RLRs signaling pathway
to inhibit viral replication, and decreases T1/T2 and T17/
Treg ratios to balance host inflammatory response

Pang et al. (2018)

Baicalin H3N2 In vitro Suppresses expression of Atg5–Atg12 and LC3-II, and
attenuates autophagy

Zhu et al. (2015)
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H1N1 infection by directly inducing human CD4+, CD8+T, and
NK cells to produce IFN-γ and activating the JAK/STAT-1
signaling pathway (Chu et al., 2015) and by inducing
macrophage M1 polarization and IFN activation (Geng et al.,
2020). Furthermore, baicalin regulates key factors in the RIG-I-
like receptors (RLRs) signaling pathway, inhibits H1N1
influenza viral replication, reduces the Th1/Th2 and T helper
17 (Th17)/regulatory T cells (Treg) ratios, and limits
immunopathological damage (Pang et al., 2018). Baicalin also
regulates the mTOR signaling pathway to inhibit the expression
of the autophagy elongation complex (ATG5-Atg12) and
lipidated LC3 (LC3-II), and inhibits autophagy induced by
H3N2 influenza virus (Zhu et al., 2015).

Regulation of Intestinal Immunity
The lung and intestine originate from the same germinal layer in
embryology and participate in mucus immunity (Barfod et al.,
2013; Segal and Blaser, 2014;Wang and Tian, 2015). According to
the theory of TCM, the lung and large intestine have an exterior-
interior relationship. Intestinal disorders may affect the immune
balance of lung tissue (Lee et al., 2021). When the intestinal
barrier is damaged, pathogenic bacteria are exposed and
transferred by M cells in the lymphoid follicular epithelium
(Swank and Deitch, 1996), and infection of dendritic cells
(DC) in gut-associated lymphoid tissue (GALT) activates
T cell subsets in the mesenteric lymph node to produce
regulatory cytokines (Wang et al., 2014). Intestinal mucosal

TABLE 4 | TCMs that control inflammatory factors.

TCM Extract/composition Virus type/
symptom

In vitro/
vivo

Mechanism of
action

References

Isatis indigotica
Fort

Polysaccharides H1N1 In vitro Inhibits TLR3 pathway expression to decrease IL-6,
CXCL10, MIG, and CCL5 expression

Li et al. (2017c)

Houttuynia
cordata Thunb

70% ethanolic extract H1N1 In vivo Decreases CCL2, IL-8, TNF-α, and MDA levels by
inhibiting TLR pathway

Ling et al. (2020)

Glycyrrhiza
uralensis Fisch

Ethanolic extract H1N1 In vitro Inhibits CCL5 secretion to reduce inflammation Ko et al. (2006)

MXSGD H1N1 In vivo Regulates CCL2 protein expression Zou et al. (2018)
MXFD H1N1 In vivo Suppresses IL-6, CCL2, and TNF-α expression, and

increases IL-10 expression
Rong et al. (2016)

SWHQD H1N1 In vivo Decreases IL-6, TNF-α, IL-1β, and IFN-γ levels, and
increases IL-4 level

Ma et al. (2021)

GBFXD RSV, asthma In vivo 1. Decreases ORMDL3, TGF-β, and IL-6 levels (Huang et al., 2016; Lu
et al., 2016)2. Increases CXCL1 and IFN-γ levels

LHQWC SARS-CoV-2 In vitro Reduces TNF-α, IL-6, CCL2, and CXCL10 production Runfeng et al. (2020)
LHQWC IAV In vivo Suppresses NF-κB activation and downregulates IL-6,

IL-8, TNF-α, CXCL10, and CCL2 gene expression
Ding et al. (2017)

LHQWC IBV In vitro Inhibits excessive expression of CCL5, IL-6, IL-8,
CXCL10, TNF-α, CCL2, MIP-1β, and IFN-λ

Yang et al. (2020)

TRQI Airway
inflammation

In vivo Reduces TNF-α, IL-1β, IL-6, and IL-8 release, mitigates
mucus hypersecretion, suppresses NF-κB p65, ERK1/
2, JNK, and p38 MAPK phosphorylation, and inhibits
p38 MAPK and NF-κB p65 expression

Liu et al. (2016)

RDNI H1N1 In vivo Downregulates ROS, IL-1β, IL-18, and NLRP3
expression, and the translation of caspase-1

Chen et al. (2020)

RDNI Sepsis In vivo Inhibits TNF-α, IL-6, IL-10 and MIP-2 expression, and
HMGB1-mediated activation of TLR4/NF-κB/MAPKs
signaling pathways

Wang et al. (2021d)

XBJI Safflor yellow A, hydroxysafflor
yellow A, anhydrosafflor yellow B

Acute lung injury In vivo
and vitro

Reduces levels of MPO and MPO-DNA complex in
serum, and phosphorylation of c-Raf, MAPKK, and ERK.

Wang et al. (2020c)

YHPGG H1N1 In vivo Inhibits the expression of TLR4, MyD88, TRAF6, and
NF-κB p65 pathways to increase IL-2 and IFN-γ levels
and decrease IL-4, IL-5, and TNF levels

Peng et al. (2016a),
Peng et al. (2016b)

YHPGG H1N1 In vitro Upregulates IFN-β, MX-1, ISG-15, and ISG-56 levels,
downregulates IL-6 and TNF-α levels and protein
expression of phosphorylated TBK1, IRF3, ERK1/2, P38
MAPK, and NF-κB p65, and increases phosphorylated
STAT1 levels

Du et al. (2018)

Forsythin SARS-CoV-2 In vitro Inhibits NF-κB pathway to reduce the mRNA expression
of TNF-α, IL-6, IL-1β, CCL2, and CXCL10

Ma et al. (2020)
HCoV-229E

Forsythin H1N1 In vivo Decreases the virus titers, IL-6 levels, and HA expression Qu et al. (2016)
Glycyrrhizic acid H5N1 In vitro Reduces NF-κB, JNK, and p38 activation to decrease

CXCL10, IL-6, CCL2, and CCL5 expression
Michaelis et al. (2011)

Glycyrrhizic acid SARS-CoV-2 In vitro Decreases HMGB1 levels and attenuates IL-1β, IL-6,
and IL-8 release

Gowda et al. (2021)
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TABLE 5 | Tissue-protecting TCMs.

TCM Tissue In vitro/in
vivo

Mechanism of action References

Scutellaria
baicalensis Georgi

Lung In vivo Reduces infiltration of excessive inflammatory factors Zhi et al. (2019)

SFJDC Olfactory
epithelium

In vivo Protects against neuronal apoptosis and rescues impaired autophagy Mei et al. (2020)

LHQWC Lung In vivo,
in vitro

Inactivates NF-κB and reverses SOCS3 expression in inflammatory macrophages by
regulating JNK/API pathway

Li et al. (2020b)

XBJI Liver In vivo Decreases levels of ALT and AST in serum, downregulates AST expression,
downregulates TNF-α, IL-6 expression, and upregulates IL-10 and SOCS1
expression

Li et al. (2016)

Baicalein Lung In vivo Decreases serum levels of IL-1β and TNF-α Song et al. (2021)
Quercetin Kidney In vitro Blocks activation of signaling pathways related to inflammation and apoptosis Gu et al. (2021)
Quercetin Lung In vivo Prevents chronic obstructive pulmonary disease exacerbation and pulmonary disease

progression
Farazuddin et al.
(2018)

FIGURE 2 |Mechanism of viral infection (SARS-CoV-2, IAV, and RSV) of host cells and host immune response. SARS-CoV-2 binds to ACE2, and IAV interacts with
sialic acid through the HA on the surface and enters the host cells by endocytosis, and SARS-CoV-2 can directly enter cells under the action of TMPRSS2. G protein on
the surface of RSV adheres to the cell membrane, and F protein binds to NCL and endocytosis into cells. After entering the cell, the virus releases its genome in the
cytoplasm. Through transcription and translation in the nucleus, it is exported to the nuclear endoplasmic reticulum and ribosomes for the synthesis and assembly
of viral proteins, and finally forms new progeny virus particles, which are exported to the outside of the cell in the form of exocytosis, and the host’s immune systemWhile
being activated, immune cells secrete a large number of antibodies and cytokines to fight the virus. ACE2: angiotensin converting enzyme 2; HA: hemagglutinin; G: glyco
protein; F: fusion protein; NCL: nucleolin receptor; S: spike protein; TMPRSS2: transmembrane protease, serine 2.
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immunity, which is central to the lung-intestinal axis, affects both
the lung and the intestine (Zhu et al., 2018). MXSGD reduces the
relative abundance of bacteria in the lung and intestine by
reducing the levels of chemokines CC chemokine ligand
(CCL) 5 and CXC motif chemokine ligand (CXCL) 10 in the
lung tissue, promotes the growth of beneficial bacteria in the lung,
improves the lung immune microecological environment, and
protects the lungs from injury caused by the H1N1 influenza
virus(Wang et al., 2020b; Wang et al., 2021b). Polysaccharides
from Houttuynia cordata Thunb. promote specific migration of
Th17CCR6+/TregCCR6+ cells from GALT to the lungs and
regulate the Th17/Treg balance in IAV-infected mice (Shi
et al., 2020a). In addition, these polysaccharides increase the
levels of intestinal secretory immunoglobulin A (SIgA) and
zonula occludens 1 (ZO-1), improve the intestinal physical
barrier and immune barrier, inhibit the expression of TLR4
and p-NF-κB p65 in lung tissue, and reduce mortality in
H1N1-infected mice (Zhu et al., 2018).

Regulation of Metabolism
Metabonomics is an important applied research method for the
TCM principle of holism and uses a top-down strategy to
understand physiological changes by analyzing the function of
the organism based on the final effects in the metabolic network
detected with modern techniques. The metabolic analysis of
serum and feces by high-performance liquid chromatography
time-of-flight mass spectrometry (TOF-MS) revealed that MXFD
may exert an antiviral effect via mechanisms including improving
energy metabolism and regulating arachidonic acid metabolism,
glycerol phospholipid metabolism, the tricarboxylic acid cycle,
tryptophan metabolism, and vitamin B6 metabolism (Sun et al.,
2017a; Li et al., 2017b). Serum metabonomics showed that
GBFXD activates the AMP-activated protein kinase (AMPK)
pathway to regulate fatty acid metabolism and lipid
metabolism and maintain the dynamic balance of lipids on the
lung surface, and thus reduce asthma symptoms (You et al.,
2021). Ultra-performance liquid chromatography to quadrupole
(UPLC-Q)-TOF-MS analysis showed that RDNI regulates amino
acid metabolism, lipid metabolism, and energy metabolism in
febrile rats (Gao et al., 2020). Metabonomic analysis based on
UHPLC-Q-Orbitrap high-resolution MS showed that XBJI
reduces lung injury caused by sepsis by regulating energy
metabolism, amino acid metabolism, fat metabolism, fatty acid
metabolism, and hormone metabolism (Xu et al., 2018).

From the perspective of the principle of holism, TCMs
regulate immune balance in many ways, such as IFN level,
specific and non-specific immunity, intestinal immunity, and
metabolism, and they reduce excessive immune reactions,
suppress viral infection, improve pathological injury, and
recover normal physiological function and the homeostasis of
the internal environment.

Control of Inflammatory Factors Induced by
Viral Infection
Inflammation is part of the body’s immune system that helps to
control viruses, but it can also cause pathological damage.

Uncontrolled inflammation can trigger a cytokine storm,
leading to cytokine release syndrome (Zuo et al., 2020), tissue
damage to the heart, liver, and kidneys, respiratory and multiple
organ failure, and even death (Schett et al., 2020; Huang et al.,
2020b). Therefore, anti-inflammatory drugs are as important as
antiviral drugs for critical patients (Table 4)(Ren et al., 2020;
Zhang et al., 2020; Chikhale et al., 2021; Wang et al., 2021c).

Control of Inflammatory Factors to Prevent a Cytokine
Storm
TCMs can synergistically regulate the release of cytokines and
chemokines via multiple targets and pathways. MXFD inhibits
the expression of interleukin (IL)-6, CCL2, and TNF-α in
serum, increases the expression of IL-10 and reduces
inflammatory reaction (Rong et al., 2016). SWHQD reduces
the levels of IL-6, TNF-α, IL-1β, and IFN-γ, and increases the
level of IL-4 in serum, bronchoalveolar lavage fluid (BALF), and
lung tissue of H1N1 infected mice (Ma et al., 2021). MXSGD
downregulates the expression of CCL2 protein in lung tissue
(Zou et al., 2018). YHPGG increases IL-2 and TNF-γ levels and
decreases IL-4, IL-5, and TNF levels in H1N1-infected mice by
inhibiting the expression of the TLR4/myeloid differentiation
primary response protein 88 (MyD88)/TNF receptor-
associated factor 6 (TRAF6) signaling pathway and NF-κB
p65 (Peng et al., 2016a; Peng et al., 2016b). In addition,
YHPGG upregulates the levels of TNF-β and ISGs, such as
Mx-1, isg-15, and isg-56, and regulates the protein expression of
key effectors in the type I IFN and pattern recognition receptor
signaling pathway (Du et al., 2018). LHQWC inhibits the
cytokines TNF-α, IL-6, CCL2, and CXCL10 induced by
SARS-CoV-2 in vitro (Runfeng et al., 2020); inhibits the
activation of NF-κB induced by IAV and IBV; inhibits the
gene expression of IL-6, IL-8, TNF-α, CXCL10, CCL2, and
TNF-λ; and prevents severe inflammation (Ding et al., 2017;
Yang et al., 2020). A randomized, double-blind, controlled
clinical trial showed that the average antipyretic time of
RDNI in the treatment of seasonal influenza was no longer
than that of oseltamivir, and there were no serious adverse
reactions (Liu et al., 2017). Treatment with ribavirin decreases
the expression of reactive oxygen species (ROS) in lung tissue,
downregulates IL-1β and IL-18 levels, and inhibits the
activation of NLR family pyrin domain containing 3
(NLRP3) inflammatory bodies (Chen et al., 2020).
Polysaccharides of Isatis tinctoria L. inhibit the expression of
TLR3, and thus inhibit the secretion of CXCL10, IL-6, MIG,
and CCL5(Li et al., 2017c). The 70% ethanolic extract of
Houttuynia cordata Thunb. decreases the phosphorylation
and nuclear translocation of TLR3/4/7 and NF-κB p65, and
decreases the levels of CCL2, IL-8, TNF-α, and MDA (Ling
et al., 2020). Glycyrrhizic acid reduces the activation of NF-κB,
c-Jun N-terminal kinases (JNKs), and p38 and inhibits the
expression of pro-inflammatory molecules, such as CXCL10,
IL-6, CCL2, and CCL5, by inhibiting ROS formation induced
by H5N1 (Michaelis et al., 2011). Forsythin reduces the
production of proinflammatory cytokines TNF-α, IL-6, IL-
1β, CCL2, and CXCL10 and alleviates cytokine storm caused
by SARS-CoV-2 and human coronavirus (HCoV)-229E by
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regulating the NF-κB signaling pathway (Ma et al., 2020). In
H1N1-infected mice, forsythin reduces the level of IL-6 and
lung tissue injury (Qu et al., 2016).

Relief of Respiratory Symptoms Caused by
Inflammation
Respiratory viruses cause acute asthma and airway inflammation
via several mechanisms (Shi et al., 2020b). However, GBFXD
increases the levels of CXCL1 and IFN-γ in the lungs and reduces
the airway inflammation caused by RSV-ovalbumin (Lu et al.,
2016). GBFXD may also prevent chronic asthma by reducing the
levels of transforming growth factor (TGF)-β and IL-6, reducing
the deposition of collagen in the airway, inhibiting the production
of airway mucus, and downregulating the expression of
orosomucoid like 3 (ORMDL3) (Huang et al., 2016). TRQI
reduces the release of TNF-α, IL-1β, IL-6, and IL-8 in mouse
lung tissue, reduces the entry of cytokines into BALF, reduces
mucus secretion, regulates the NF-κB/MAPK signaling pathway,
and alleviates respiratory tract inflammation (Liu et al., 2016).
CCL5 plays an important role in activating and recruiting
leukocytes to the inflammatory site. The ethanolic extract of
Glycyrrhiza uralensis Fish.; Glycyrrhiza inflata Bat.; Glycyrrhiza
glabra L. significantly inhibits the secretion of CCL5 by human
bronchial epithelial cells induced by the H1N1 influenza virus
(Ko et al., 2006).

Relief of Severe Inflammation
Severe COVID-19 patients exhibit symptoms including dyspnea,
acute respiratory distress syndrome, and sepsis. At this stage, the
mortality rate of patients is about 15% (Godeau et al., 2021). XBJI
is the only proprietary Chinese medicine approved in China for
treating sepsis, and it significantly shortens the improvement
time for major clinical symptoms and hospital stays (Luo et al.,
2021). The anti-inflammatory effect of XBJI arises from the
regulation of the NF-κB signaling pathway (Zhou et al., 2021).
Safflor yellow A, hydroxysafflor yellow A, and anhydrosafflor
yellow B, the three main components of XBJI, inhibit increases in
the levels of inflammatory factors in mouse BALF, reduce the
level of plasma myeloperoxidase (MPO)-DNA complex, and
decrease the phosphorylation of RAF proto-oncogene serine/
threonine-protein kinase (c-RAF), mitogen-activated protein
kinase kinase (MAPKK), and ERK in mouse lung tissue
(Wang et al., 2020c). High mobility group protein B1
(HMGB1) is an important late inflammatory factor and an
endogenous danger signal in the pathological process of sepsis
(Andersson and Tracey, 2003). Luteolin, the active component of
RDNI, inhibits the activation of the TLR4/NF-κB/MAPK
signaling pathway mediated by HMGB1 (Wang et al., 2021d).
Glycyrrhizic acid also inhibits the increase in HMGB1 after
SARS-CoV-2 infection, reduces the levels of proinflammatory
cytokines IL-1 β, IL-6, and IL-8, and alleviates severe
inflammation (Gowda et al., 2021).

The infiltration of inflammatory factors induced by viruses can
cause a variety of pathological damage in the focus tissue. TCMs
can not only control cytokines and chemokines in many ways to
prevent a cytokine storm, but can also protect critical patients,
which demonstrates that TCMs can maintain the homeostasis of

the internal environment of the body owing to their multiple
components and targets.

Tissue Protection
Respiratory viruses first invade the patient’s lungs, causing
varying degrees of lung injury, and the viral infection may
become systemic (Synowiec et al., 2021). Therapeutic drugs
may also increase the load on the liver, kidneys, and other
tissues, resulting in multi-tissue injury. TCMs can protect lung
tissue and improve multiple organ function by inhibiting
excessive apoptosis, inflammation, and immune reaction
(Table 5).

LHQWC regulates the JNK/activator protein one signaling
pathway, reduces the activity of NF-κB in macrophages, reverses
the expression of suppressor of cytokine signaling (SOCS) three
and the abnormal expression of TNF-related apoptosis-inducing
ligand, protects cells from apoptosis, and alleviates acute lung
injury in mice (Li et al., 2020b). The ethanolic extract of
Scutellaria baicalensis Georgi reduces IL-6, TNF-α, and CCL2
levels in the lung tissue of H1N1-infected mice, increases IL-10
and IFN-γ production, and protects lung tissue, which is superior
to the effect of active component baicalein alone (Zhi et al., 2019).
In addition, baicalein inhibits the infiltration of inflammatory
cells in lung tissue after RSV infection, decreases the serum levels
of IL-1β and TNF-α, and improves respiratory function in acute
lung injury in mice (Song et al., 2021). Quercetin reduces the
inflammatory reaction and pathological deterioration of lung
tissue in mice with chronic obstructive pulmonary disease
induced by rhinovirus (Farazuddin et al., 2018).

In addition to protecting lung tissue, XBJI reduces the levels of
serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), downregulates the expression of
TNF-α and IL-6, upregulates the expression of IL-10 and
SOCS1, and reduces liver injury caused by inflammation in
rats (Li et al., 2016). Quercetin regulates apoptosis-related
signaling pathways, blocks the inflammatory response, and
protects against SARS-COV-2-induced acute kidney injury
(Gu et al., 2021). Dysosmia is a common symptom in
COVID-19 patients (Tong et al., 2020). SFJDC reduces the
levels of IgE, TNF-α, and IL-1β in peripheral blood, lung
tissue, and olfactory epithelial (OE) tissue of rats, prevents
nerve cell apoptosis, rescues autophagy of damaged cells in
lung and OE tissue, and protects OE neurons and lung tissue
(Mei et al., 2020).

TCM regards the body as an organic whole, and thus not only
regulates immune and inflammatory responses, but also prevents
and protects from various pathological tissue injuries, resulting in
mutual balance among various physiological functions. This
overall stability and harmony are fundamental to disease
prevention and health maintenance.

DEVELOPMENT PROSPECTS OF
ANTIVIRAL TCMS

TCMs have become a main focus of antiviral research because of
their advantages, including reliable clinical efficacy, few side
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effects, and low drug resistance, which arise from the principles of
holism and syndrome differentiation and treatment. Therefore, to
study the antiviral properties of TCMs and develop new TCMs,
wemust combine the basic theory of TCMwith the latest research
in Western medicine and modern biological science. In
emergencies, Western medicine emphasizes using compounds
that target a single receptor to relieve symptoms quickly at the
disease site, which is effective, but not always sufficient to restore
the functional balance of the body, making adverse reactions
particularly obvious. For example, during the SARS epidemic in
2003, high-dose glucocorticoid treatment caused serious side
effects in critical patients, including immunosuppression,
delayed virus clearance, and bone destruction (Choudhry
et al., 2020). Holistic treatment with TCMs, which have
multiple components and targets, focuses on the interactions
and relationships among the body, viruses, and drugs, and has
considerable advantages in adaptability and effectiveness in the
treatment of complex human diseases that cause immune
imbalance, especially during an outbreak of an unknown new
virus. This holistic philosophy is also being used in the emerging
field of network pharmacology, and is recognized in modern
research methods, such as network biology and metabonomics.

The greatest advantage of TCM is the coordination of multiple
components and targets. Because of the many components, TCM
does not rely on a single antiviral mechanism of action, but
harnesses the coexistence and interaction of multiple
mechanisms. However, there is still insufficient research on
the chemical component analysis and mechanism of action of
TCMs, which restricts the development of TCM, and is also an
obvious short board in the modern medical system. (Li et al.,
2018). And research on the safety of TCMs in the treatment of
viral diseases are not sufficient. “Safe” of TCMs is not the same as

“natural”. Some TCMs have endogenous toxicity to organs such
as liver and kidney, and also exogenous toxicity in the process of
cultivation, processing, storage and distribution (Li et al., 2020c).
Therefore, the further development of TCMs in the world must
determine its side effects. Under the guidance of TCM theory,
research on the mechanism of TCMs should examine the
relationship of infection and immune response between virus
and host directly, revealing the dynamic relationships between
viral load, cytokines, and immune response. This information
may reveal new insights that are difficult to discover via
traditional biology, explain the mechanism of prevention and
treatment of viruses with herbs using the technology and
language of modern life sciences, and promote the deep
integration of TCM and modern biotechnology.
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