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Abstract 

Background There is a lack of studies exploring the performance of Transformers-based language models in com-
mon risks assessment among psychiatric inpatients. We aim to develop a scalable risk assessment model using multi-
dimensional textualized data and test the stability, robustness, and benefit of this approach.

Methods In this real-world cohort study, a deep learning language model was developed and validated using first 
hospitalized cases diagnosed with schizophrenia, bipolar disorder, and depressive disorder between January 2016 
and March 2023 in three hospitals. The algorithm was externally validated on an independent testing cohort com-
prising 1180 patients. A total of 140 features, including first medical records (FMR), laboratory examinations, medical 
orders, and psychological scales, were assessed for analysis. The outcomes were short- and long-term impulsivity 
(STI and LTI), risk of suicide (STSS and LTSS), and need of physical restraint (STPR and LTPR) assessed by qualified 
nurses or clinicians. Analysis was carried out between August 2024 and June 2024. Models with different architec-
tures and input settings were compared with each other. The area under the receiver operating characteristic curve 
(AUROC) was used to assess the primary performance of models. The clinical utility was determined by the net benefit 
under Youden’s threshold.

Results Of 7451 patients included in this study, 2982 (47.6%) were male, and the median (interquartile range) age 
was 42 (28–57) years. The overall incidence of outcomes was 635 (8.5%), 728 (10.5%), 659 (8.8%), 803 (10.8%), 588 
(7.9%), and 728 (9.8%) for STPR, LTPR, STSS, LTSS, STI, and LTI, respectively. The multitask semi-structured Transformers-
based language (SSTL) model showed more promising AUROCs (STPR: 0.915; LTPR: 0.844; STSS: 0.867; LTSS: 0.879; STI: 
0.899; LTI: 0.894) in the prediction of these outcomes than single-tasked or multimodal language models and tra-
ditional structured data models. Combining FMR with other data from electronic health records led to significant 
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improvements in the performance and clinical utility of SSTL models based on demographic, diagnosis, laboratory 
tests, treatment, and psychological scales.

Conclusions The SSTL model shows potential advantages in prognostic evaluation. FMR is a strong predictor 
for common risks prediction and may benefit other tasks in psychiatry with minimum requirements for data and data 
processing.

Keywords Transformers, Deep learning, Suicide risk, Impulsivity, Physical restraint

Background
Impulsivity and suicide are common adverse outcomes 
among patients with mental illness, especially those diag-
nosed with schizophrenia spectrum disorders, bipolar 
disorder (BD), and depressive disorder (DD) [1–4]. These 
risks are typically interrelated [5–8] and represent a sig-
nificant public health challenge that carries important 
clinical implications [8, 9]. Physical restraint is not only a 
common method for addressing the above risks but also 
an important indicator of the quality of medical care and 
has drawn widespread concern worldwide [10]. Hence, 
the precise prediction and proficient management of 
these risks, alongside the implementation of physical 
restraint, is particularly crucial.

Although traditional risk assessment tools such as self-
reported questionnaires [11] exist to aid clinical decisions 
on patient management and interventions like restraints 
[12], there is no consensus on the best tools for assess-
ing impulsivity and suicide risk, and detailed monitoring 
of symptom fluctuations is lacking [1]. While previous 
studies have attempted to use machine learning to pre-
dict adverse events in patients [13, 14], there are still 
some challenges to this endeavor. One limitation lies in 
handling structured data and missing values in large real-
world samples [15], which may lead to inconsistencies 
between modeling research and clinically available data 
[16]. Second, despite the continued discovery of specific 
markers in psychiatry, the available features in the clinic 
are still limited [17, 18]. Thus, whether using language 
as a feature in psychiatry [19] can help address these 
issues and reduce the complexity of dealing with struc-
tured data remains a topic worth investigating [20, 21]. 
Previous studies have explored language models, demon-
strating the potential of language features in psychiatric 
diagnosis [22, 23], prognosis [24], and treatment [25].

The Transformers architecture [26] has laid the founda-
tion for the rapid development of deep learning language 
models, enabling the development of state-of-the-art 
technologies such as ChatGPT [27], LLaMA [28], and 
DeepSeek-R1 [29]. These cutting-edge language models 
exhibit considerable capabilities in identifying patterns 
and associations in specific contexts and processing nat-
ural language effectively [30]. Psychiatry, a medical field 
deeply connected with language, has successfully applied 

natural language processing (NLP) methods in clinical 
settings to analyze risk factors, symptoms, and diagnoses 
[31–33]. Electronic health records (EHRs) of psychiatric 
inpatients provide a rich resource of longitudinal data 
and large cohort sizes, fostering the increasing applica-
tion of NLP tools. Although several Transformer-based 
models for EHR data have been developed globally [34, 
35], there remains a lack of effective NLP models capa-
ble of leveraging EHR data to address multiple mental ill-
nesses simultaneously in China [36–38].

Incorporating language modeling with Transformers 
models is expected to address current gaps, particularly 
the lack of a practical model and the underutilization 
of valuable language information in psychiatric clinical 
practice. This approach aims to provide an effective and 
reliable risk assessment tool with a strong capability to 
process unstructured language data, establishing a feasi-
ble application route to enhance mental health services 
quality. This study aims to integrate multidimensional 
EHR data to identify potential future risks of psychiatric 
inpatients through Transformers-based language models.

Methods
Study participants
Data were collected from three mental health facili-
ties (Tongji University Mental Health Center, Shang-
hai Putuo District Mental Health Center, and Shanghai 
Changning District Mental Health Center, and Shang-
hai Mental Health Center). The database includes all-
time medical history, admission information, diagnoses, 
scale tests, medical orders, laboratory tests, and risk 
assessments from real-world EHRs in both clinics and 
hospitalizations. These data are multi-centered, and 
especially, Shanghai Mental Health Center is one of the 
four National Medical Centers for Mental Diseases, thus 
having strong representativeness and reflecting the situ-
ation of psychiatric inpatients in China. This retrospec-
tive study included detailed and comprehensive medical 
records of psychiatric patients hospitalized from 2016 
to 2023, seeking to predict acute and long-term risks of 
suicide, impulsivity, and the need for physical restraint. 
Patient data were extracted based on unique hospitali-
zation codes. The first admission was identified using 
the earliest traceable hospitalization code. Private 
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information such as name, ID number, and address were 
not included, nor were the records of repeated admis-
sions. The eligibility criteria included (a) 18–65 years 
old, (b) main diagnosis on admission was BD, DD, or 
schizophrenia, (c) first hospitalization, and (d) resident 
in China. These three included diseases are the diagno-
ses that account for the largest proportion of hospitalized 
patients in China, and the diagnostic standards follow 
ICD-10. Exclusion criteria included (a) loss of demo-
graphic information, (b) excessive loss of hospital records 
(more than 20% of included features), (c) length of hos-
pitalization is less than 180 days, (d) accompanied with 
mental retardation, personality disorder or brain organic 
disease, (e) accompanied with severe somatic disease, (f ) 
long-term history of psychotropic drug use, and (g) preg-
nancy or lactation. This study was approved by the Eth-
ics Committee of Tongji University Mental Health Center 
(Grant number: PDJW-IIT-2023-017CS). This study 
followed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) reporting guidelines [39].

Procedures
Numerical structured data were extracted directly from 
the database, including patient demographic informa-
tion, diagnosis, temporary and long-term medical orders, 
laboratory and other auxiliary examinations, and psycho-
logical assessment scales. From the medical orders data, 
we specifically extracted commonly used drug usage, 
electroconvulsive therapy, and repetitive transcranial 
magnetic stimulation records. To ensure the future clini-
cal practicality of the model and maximize the utilization 
of hospital data, we selected the Zung Self-rating Anxiety 
Scale (SAS) and Zung Self-rating Depression Scale (SDS) 
that were used in every hospital, and previous studies 
have shown that the scores of these scales are significantly 
associated with adverse events in psychiatric patients [40, 
41]. Text records were obtained from the patient’s first 
medical record (FMR). The FMR is recorded on the day 
of admission and is a semi-structured HyperText Markup 
Language (HTML)-formatted text composed of different 
sections required by each facility. We used the following 
keywords to extract text from different sections to sup-
plement the patient’s profile: chief complaint, present and 
past history, physical examination, and mental examina-
tion. See Additional file 1: Table S1 for the definition and 
explanation of each included variable. A total of 140 fea-
tures were included for analysis.

Psychological scales, laboratory examinations, and 
other demographic information were conducted or 
recorded between 1 week before admission and the day of 
admission and were extracted according to the examina-
tion time or execution time. Considering that psychiatric 

drugs need a certain amount of time to take effect, data 
from the medical order records were extracted from 1 
month before admission to the day of admission. As some 
patients may seek medical treatment in more than one 
hospital, we also extracted the medical order records of 
all patients in the study hospitals during that time period 
to reduce the impact of prescriptions in multiple places.

Outcomes
The outcome variables of this study were the risk of 
impulsivity, risks of suicide, and the need of physi-
cal restraints. According to institutional requirements 
and clinical pathways, impulsivity and suicide risks are 
recorded in the risk assessment scale system by qualified 
nurses or clinicians in real-time on the day of admission 
and at least every week during hospitalization. Physi-
cians can also proactively evaluate patients when deemed 
necessary. Impulsivity was assessed by the Impulsive 
Behavior Risk Assessment Scale (IBRAS) made by Chi-
nese experts combining the Modified Overt Aggres-
sion Scale (MOAS) and the Violence Risk Screening-10 
(V-RISK-10), which contains 7 items, and the score of 
each item is 0 for no, while the score for yes varies (1, 2, 3, 
or 5), depending on the degree of severity of the question. 
A score of ≥ 5 indicates high clinical concern for future 
impulsive behavior, which was used as the cutoff value 
for this study [42]. This assessment was completed by 
trained clinicians or nurses based on direct observation, 
patient records, and clinical judgment during hospitaliza-
tion [43]. Suicide risk was assessed by the Nurse’s Global 
Assessment of Suicide Risk (NGASR), which consists of 
15 questions, and patients with a total score of ≥ 9 were 
considered to be at high risk of suicide [44, 45]. The use 
of physical restraints is documented in the medical order. 
This study extracted all outcome variables from the day 
of admission to 180 days of hospitalization. The timing of 
the outcome variables was set to be within 7 days (short-
term) and 180 days (long-term) of hospitalization.

Models
Models were built in Python 3.8 with packages of 
Pytorch 2.0.0 [46] (Transformers-based language 
model) and Scikit-learn 1.1.3 [47] (traditional machine 
learning: XGBoost and logistic regression). In this 
study, our Transformers-based language model com-
prises a pre-trained text encoder, a multilayer percep-
tron (MLP), and a linear classifier. Transformers-based 
text encoders [26, 48] were used for feature extraction 
from texts. Several well-established Transformers-
based encoders were considered for feature extraction, 
including XLNet [49], BERT [48], ALBERT [50], RoB-
ERTa [51], Longformer [52], and BigBird [53]. BERT, 
ALBERT, and RoBERTa are widely adopted for their 
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high accuracy and bidirectional context understand-
ing. Longformer and BigBird utilize sparse attention for 
extended sequences. For our task, XLNet (XLNet-base: 
12-layer; 768 nodes; 12 self-attention heads; pre-trained 
on 32.9 billion words) was selected for its strengths 
in capturing long-range dependencies and processing 
complex text information efficiently. XLNet’s permu-
tation-based training [54], segment recurrence mecha-
nism, and relative positional encoding [55] enhance its 
ability to process long clinical texts, making it particu-
larly suitable for clinical text analysis. XLNet has shown 
superior performance in text classification tasks com-
pared to other encoders [49]. A 2-layered MLP with 
512 nodes was placed after the text encoder because it 
can stabilize the extracted features [56]. Then, a linear 
classifier predicts positive and negative probabilities 
with a softmax function for each outcome. The maxi-
mum input length was set to 1200 Chinese characters 
during implementation, based on the observed upper 
quartile of input text length and considerations of com-
putational efficiency. Texts longer than this length were 
truncated. The multimodal models use an additional 
3-layered MLP to receive the structured data, while the 
latent features are concatenated in a subsequent lin-
ear layer. We developed an automatic semi-structured 
textualization function that transforms structured 
data into texts to input additional information into the 
Transformers-based language models. Since the struc-
tured information is converted into text and most mod-
els have no direct restriction on the length of the input 
text, the semi-structured Transformers-based language 
(SSTL) model can accept information of arbitrary 
length and does not require special handling of missing 
values during inference. Figure  1 illustrates the design 
of the semi-structured textualization function and the 
patient assessment process. To properly construct the 
semi-structured text, we first developed a feature dic-
tionary to appropriately respond to the required feature 
index and other necessary information such as lab units 
and frequency of medical orders. We then searched 
the original database for the unique patient index for 
each included patient. If the required data are availa-
ble in the original database, these data were textualized 
according to the feature dictionary. The transformed 
text of these structured data is saved separately accord-
ing to the classification described by Additional file  1: 
Table  S1, which was considered clinically appropriate 
by our clinicians. When feeding the models, each part 
of the text is connected using a special symbol, < SEP > , 
which represents a separator token used to deline-
ate different sequences or sentences within the Trans-
former models’ input. Multitask Transformers-based 
language models were trained for three outcomes of 

interest simultaneously, using the same feature extrac-
tors and different classifiers. Adopting multitask 
learning potentially enhances model generalization, 
improves efficiency, and fosters information and feature 
sharing across diverse tasks [57]. Schematics of the dif-
ferent Transformers-based language models are shown 
in Additional file  1: Fig. S1. XGBoost [58] and logistic 
regression were selected for structured data modeling, 
due to their wide applications and excellent perfor-
mance in previous studies. Model codes are available 
on GitHub (https:// github. com/ Enzha oZhu/ Common- 
risks- predi ction- among- psych iatric- inpat ients).

Patients with more than 20% missing values were 
excluded. We did not perform any missing value fill-
ing for the SSTL model. For traditional machine learn-
ing models, missing values were filled with the median 
within each cohort. Cluster random sampling was used 
to identify one hospital (Shanghai Putuo District Men-
tal Health Center) as an external testing cohort to test 
the model’s generalization performance in response to 
potentially differently distributed data. We divided the 
remaining data into a training cohort and an internal 
testing cohort in the ratio of 8:2. The models were trained 
based on tenfold cross-validation repeated ten times in 
the training cohort for the best replicability [59]. Tuned 
hyperparameters for Transformers-based language mod-
els included the number of MLP layers (tested over 1, 2, 
3), number of nodes per layer (128, 256, 512), learning 
rate (1e − 5, 1e − 4, 1e − 3), the percentage of dropout (0.1, 
0.2, 0.3), and the mini-batch size (8, 16, 32), while num-
ber of trees (100, 200, 300), tree depth (3, 6, 9), and learn-
ing rate (1e − 3, 1e − 2, 1e − 1) were tuned for XGBoost. 
Grid search was employed to find the optimal param-
eter values based on cross-validation performance in 
the training cohort. To account for label imbalance, the 
following approaches were taken: (1) focal loss [60] was 
used to adaptively adjust the extent to which the sam-
ple contributes to the loss, which allows greater weight 
to be assigned to samples that are inaccurately predicted; 
(2) the training samples were oversampled to ensure 
that the negative and positive samples were equally dis-
tributed. For the multitask models, we oversampled the 
joint distribution of labels to ensure that the joint distri-
butions were unchanged after oversampling. In multitask 
learning, we employed a dynamic strategy to adjust task 
weights, which emphasizes tasks with higher losses by 
assigning higher weights while considering the average 
task importance [61]. To prevent overfitting, the cross-
validated loss generated by each iteration is recorded, and 
training is automatically terminated if the loss does not 
decrease in 10 iterations (10 * mini-batch size (16) = 160 
samples). The maximum number of epochs was set to 10, 
and the optimizer used was AdamW. Transformers-based 
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language models were trained in parallel on three graph-
ics processors (RTX 3090 Ti), with a total of 64 gigabytes 
of graphics memory.

Statistical analysis
Initial data processing was conducted in PostgreSQL 4.2. 
Model performance metrics were calculated in Python 
3.10 with the following packages: Scikit-learn 1.1.3, Pan-
das 1.5.2 [62], Numpy 1.23.4 [63], and Torchmetrics 1.4.0 
[64]. Further data description and analysis were con-
ducted in R 4.1.3. Continuous variables are reported as 
medians and interquartile ranges (IQR), while categorical 
variables are presented as numbers and percentages (%). 

Model performance was evaluated using the area under 
the receiver operating characteristic curve (AUROC). 
Secondary performance metrics included the area under 
the precision-recall curve (AUPRC), Youden’s J statis-
tic, accuracy, sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), and 
F1 score. These metrics collectively provide a compre-
hensive assessment of predictive performance: AUPRC 
highlights the model’s effectiveness in identifying posi-
tive cases, sensitivity and specificity evaluate accuracy 
across positive and negative outcomes, F1 score balances 
precision and sensitivity, PPV and NPV indicate pre-
diction reliability, and Youden’s J statistic optimizes the 

Fig. 1 Schematics of an individual patient assessment and the automatic semi-structured textualization function. A Schematics of an individual 
patient assessment. B Schematics of the automatic semi-structured textualization function. HIS, hospital information system
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decision threshold for balanced sensitivity and specific-
ity to maximize accurate predictions. Reported values 
are averages and 95% confidence intervals (CI) obtained 
from bootstrapping with 1000 iterations. Clinical utility 
was assessed using net benefit at thresholds optimized 
by Youden’s J statistic [65]. This approach quantifies 
the trade-off between true positives and false positives, 
offering a practical measure of our model’s effective-
ness in supporting clinical decision-making [66]. In the 
blank model, which did not include any features, the cut-
off was baseline prevalence. Nadeau and Bengio’s cor-
rected resampled t-test [67] was used for model metrics 
comparison, which adjusts for the non-independence of 
resampled statistics. Various text encoders were evalu-
ated based on their AUROCs. To test the robustness of 
the model in the face of different proportions of missing 
values, we randomly removed a certain proportion of 
text. Pre-trained SimBERT was used to delete text with-
out destroying semantic integrity [68]. To test the added 
benefit of FMR, we compared the performance and clini-
cal utility of the model with and without FMR. Feature 
importance was assessed by calculating the reduction in 
AUROC after removing the corresponding feature set 
from the external testing cohort. In these tests, only the 
input data were changed, while the language models were 
not retrained. The relatedness of three outcomes was cal-
culated using Yule’s phi correlation. P < 0.05 was consid-
ered statistically significant. Holm-Bonferroni was used 
to adjust for multiple testing.

Results
Study overview
The data overview is summarized in Additional file  1: 
Table  S2. A total of 7451 patients were included in this 

study, identified by unique hospitalization codes. 3757 
(50.4%), 940 (12.6%), and 2754 (37.0%) patients were pri-
marily diagnosed with schizophrenia, bipolar disorder, 
and depression. The median (IQR) age was 42 (28–57) 
years. 2982 (47.6%) patients were male. The overall inci-
dence of outcomes was 635 (8.5%), 728 (10.5%), 659 
(8.8%), 803 (10.8%), 588 (7.9%), and 728 (9.8%) for short-
term need of physical restraint (STPR), long-term need 
of physical restraint (LTPR), short-term risk of suicide 
(STSS), long-term risk of suicide (LTSS), short-term 
risk of impulsivity (STI), and long-term risk of impul-
sivity (LTI), respectively. Compared with the combined 
training and internal testing cohort, the external testing 
cohort had older patients (51 [IQR: 39–65] vs. 42 [IQR: 
28–57] years), shorter FMR lengths (780 [IQR: 601–965] 
vs. 858 [IQR: 708–1009] characters), and higher preva-
lence of schizophrenia (67.1% vs. 47.3%) and physical 
restraint needs (short-term: 17.6% vs. 6.8%; long-term: 
19.9% vs. 8.8%) (all P < 0.001). The correlation of the three 
outcomes is summarized in Additional file 1: Tables S3–
S4 for short- and long-term outcomes, which show a sig-
nificant positive correlation between each outcome.

Model performance
As summarized in Table  1 and Additional file  1: Tables 
S5–S10, all six of our Transformers-based language mod-
els and XGBoost achieved AUROCs higher than 0.700 
in predicting STPR, LTPR, STSS, LTSS, STI, and LTI, 
significantly better than the blank model (P < 0.001). 
However, the AUPRCs of the structured data model indi-
cated a relatively poor performance on imbalanced data. 
The best Transformers-based language model had an 
AUROC of more than 0.8 in the prediction of each out-
come, indicating a good classification performance [69]. 

Table 1 Overview of the primary performance metric of all models in the external testing cohort

This table summarizes the area under the receiver operating characteristic curve of all models in the external testing cohort. The 95% confidence interval was 
calculated using bootstrap with 1000 iterations. Bolded values indicate the best-performing model for each outcome. Model 1, language model with first medical 
record only; Model 2, language model with multimodal design; Model 3, language model with semi-structured textualization design; XGBoost, XGBoost model with 
structural data only; Logistic regression, logistic regression model with structural data only; a, language model with multitask design

Model Short-term 
need of physical 
restraint

Long-term need of 
physical restraint

Short-term risk of 
suicide

Long-term risk of 
suicide

Short-term risk of 
impulsivity

Long-term risk of 
impulsivity

Model 1 0.727 (0.715–0.748) 0.801 (0.793–0.814) 0.827 (0.821–0.835) 0.859 (0.853–0.871) 0.771 (0.76–0.789) 0.801 (0.792–0.815)

Model  1a 0.777 (0.724–0.825) 0.702 (0.69–0.719) 0.887 (0.863–0.905) 0.857 (0.827–0.889) 0.824 (0.793–0.863) 0.749 (0.698–0.82)

Model 2 0.830 (0.822–0.844) 0.821 (0.813–0.828) 0.881 (0.876–0.888) 0.816 (0.811–0.826) 0.822 (0.814–0.833) 0.822 (0.812–0.834)

Model  2a 0.827 (0.801–0.867) 0.800 (0.792–0.811) 0.852 (0.818–0.875) 0.851 (0.814–0.876) 0.834 (0.793–0.879) 0.822 (0.785–0.864)

Model 3 0.867 (0.861–0.875) 0.860 (0.853–0.869) 0.856 (0.848–0.864) 0.815 (0.808–0.829) 0.776 (0.765–0.794) 0.829 (0.802–0.857)

Model  3a 0.915 (0.91–0.922) 0.844 (0.836–
0.856)

0.867 (0.861–
0.875)

0.879 (0.873–
0.885)

0.898 (0.892–
0.911)

0.894 (0.867–0.918)

XGBoost 0.760 (0.752–0.774) 0.769 (0.76–0.779) 0.824 (0.819–0.835) 0.836 (0.83–0.847) 0.781 (0.769–0.793) 0.745 (0.734–0.758)

Logistic regression 0.720 (0.711–0.734) 0.701 (0.692–0.713) 0.755 (0.748–0.768) 0.732 (0.722–0.742) 0.685 (0.675–0.703) 0.682 (0.67–0.695)
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Additional metrics in the external testing cohort further 
supplemented these findings, with AUPRC values from 
0.577 to 0.684, sensitivity from 0.617 to 0.849, specific-
ity from 0.743 to 0.955, F1 scores from 0.446 to 0.632, 
PPV from 0.304 to 0.648, and NPV from 0.944 to 0.972. 
Collectively, these metrics indicate the model’s accept-
able predictive performance and enhanced clinical appli-
cability over structured data models. We subsequently 
compared the SSTL model with four other models (Addi-
tional file  1: Table  S11). The performance of the SSTL 
model was significantly better than that of other models 
in 33 (AUROCs) and 28 (AUPRCs) out of 42 tests, show-
ing that using the semi-structured textualization function 
to transform structured data into text can improve the 
performance of most models, which is better than using 
only FMR or simply merging text features with struc-
tured data features. Based on the comparison between 
multitask and single-task language models (Additional 
file 1: Table S12), the multitask models had superior per-
formance in 17 (AUROCs) and 13 (AUPRCs) out of 36 
tests. However, in 4 (AUROCs) and 5 (AUPRCs) tests, 
it was inferior to single-task models, primarily focus-
ing on the LTI prediction. We compared multitask SSTL 
models utilizing different text encoders and found that 
XLNet achieved the best performance in four out of six 
tasks (Additional file  1: Fig. S2). RoBERTa performed 
better in the LTSS task, with the highest AUROC (0.88, 
95% CI, 0.872–0.891; two-sided P = 0.915 vs. XLNet), 
while Longformer showed the best performance in the 
STI task (0.91, 95% CI, 0.902–0.918; two-sided P = 0.061 
vs. XLNet), although their advantage over XLNet was 
not statistically significant. RoBERTa and Longformer 
outperformed BERT and ALBERT across multiple tasks, 
while BigBird generally showed weaker performance. 
Thus, XLNet was determined as the best text encoder. 
The ROC curves of multitask SSTL models are presented 
in Additional file 1: Fig. S3 (internal testing cohort) and 
Fig. 2 (external testing cohort), with AUROCs of (STPR: 
0.915, standard deviation (SD), 0.009), (LTPR: 0.844, SD, 
0.012), (STSS: 0.867, SD, 0.011), (LTSS: 0.879, SD, 0.009), 
(STI: 0.899, SD, 0.013), and (LTI: 0.894, SD, 0.012) in the 
external testing cohort.

The robustness tests are demonstrated in Additional 
file 1: Fig. S4, in which the P values and differences were 
calculated hierarchically (i.e., 20% versus all; 40% versus 

20%). When text content was randomly deleted by 20%, 
the average reduction in AUROCs was 0.098 (95% CI, 
0.072–0.121), 0.077 (95% CI, 0.049–0.112), 0.071 (95% 
CI, 0.042–0.098), 0.052 (95% CI, 0.027–0.077), 0.104 
(95% CI, 0.066–0.14), and 0.033 (95% CI, 0.008–0.062) 
for STPR, LTPR, STSS, LTSS, STI, and LTI. No significant 
performance degradation of the LTI model was observed 
when 20% of the text content was removed. The model 
was insensitive to the deletion of textual content from 40 
to 60% and 60 to 80% (P > 0.05).

Added value of first medical record and feature importance
For short-term outcomes, the clinical utility ranged from 
0.51 to 0.553, while for long-term outcomes, it ranged 
from 0.405 to 0.507 (Additional file 1: Table S13).

Combining FMR with other recorded patient data from 
EHR led to significant improvements in the performance 
(Fig. 3) and clinical utility (Fig. 4) of multitask SSTL mod-
els based on demographic, diagnosis, laboratory tests, 
treatment plans, SAS, and SDS, with the importance of 
FMR being evident across six outcomes in the external 
testing cohort. In the ALL model, which consisted of 
all semi-structured text information, FMR significantly 
improved model performance (STPR: 0.153; LTPR: 0.253; 
STSS: 0.128; LTSS: 0.289; STI: 0.085; LTI: 0.256) and 
clinical utility (STPR: 2.661; LTPR: 3.242; STSS: 0.192; 
STI: 0.381; LTI: 1.815). For short-term outcomes, the 
relative contribution of FMR to multitask SSTL mod-
els varied from 0.007 to 0.407 (weighted AUROCs) and 
0.007 to 0.401 (clinical utility), while that of long-term 
outcomes were 0.008 to 0.340 (weighted AUROCs) and 
0.010 to 0.549 (clinical utility). When FMR was excluded, 
the AUROCs of ALL models were 0.762 (STPR), 0.591 
(LTPR), 0.739 (STSS), 0.590 (LTSS), 0.813 (STI), and 
0.639 (LTI).

The feature importance heatmap (Fig.  5) shows that 
FMR was the strongest predictor across all tasks, while 
treatment plans, psychological scales, diagnosis, and 
demographic information also have a statistically sig-
nificant impact on the model’s performance (most of the 
two-sided P < 0.01). Additionally, laboratory biomarkers 
such as blood routine, liver function, and kidney func-
tion also influence the prediction accuracy of certain out-
comes in the SSTL models.

(See figure on next page.)
Fig. 2 The receiver operating characteristic curve of semi-structured Transformers-based language model in the external testing cohort. A The 
receiver operating characteristic curve of short-term impulsivity. B The receiver operating characteristic curve of long-term impulsivity. C The 
receiver operating characteristic curve of short-term risk of suicide. D The receiver operating characteristic curve of long-term risk of suicide. E The 
receiver operating characteristic curve of short-term need of physical restraint. F The receiver operating characteristic curve of long-term need 
of physical restraint. SD, standard deviation; AUROC, the area under the receiver operating characteristic curve
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A Short-term risk of impulsivity B Long-term risk of impulsivity

C Short-term risk of suicide D Long-term risk of suicide

F Long-term need of physical restraintE Short-term  need of physical restraint

Fig. 2 (See legend on previous page.)
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Discussion
Our study suggests that Transformers-based language 
models can accurately predict both short- and long-term 
common psychiatric risks among inpatients, including 
the use of physical restraint, risk of suicide, and impul-
sivity. The clinical utility of the model, measured as net 

benefit under Youden’s threshold, ranged from 0.405 to 
0.553 in the external testing cohort. This indicates that, 
per 100 patients assessed, the model could support 41 to 
55 net positive decisions, reflecting a favorable balance 
between true positives and false positives. Metrics such 
as AUPRC, sensitivity, and specificity underscore the 
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model’s effectiveness in accurately identifying positive 
cases, even within imbalanced data contexts, affirming 
its reliability in high-stakes clinical applications. Further-
more, the consistency in PPV, NPV, and F1 scores dem-
onstrates reliable, well-rounded predictive performance 
across outcomes. Enhanced by FMR and the Transform-
ers architecture, our model surpasses traditional meth-
ods by offering a balanced, clinically attuned predictive 
capacity [14, 70]. Clinically, this robust predictive ability 
enhances the early identification of high-risk patients and 
facilitates early, proactive, individualized interventions.

Incorporating FMR into psychiatric prediction 
models based on other individual data significantly 

enhances their ability to distinguish between patients 
who may develop risks in future hospitalization and 
could lead to clinically relevant improvements. The 
performance can be further improved by converting the 
common accessible structured data from the EHR into 
inputs for the Transformers-based language model. 
This approach allows our models to evaluate patients 
with minimal required data and reduces the need for 
extensive preprocessing steps, such as handling miss-
ing values and performing feature engineering on 
structured data, which are often required by traditional 
machine learning models [71]. In clinical practice, una-
vailable data or excessively heavy data preprocessing is 
a common problem that greatly reduces the utilization 
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of prediction models in practice [72], which further 
underscores the clinical practicality of our approach.

Moreover, the feature importance analysis reinforces 
the crucial role of FMR, treatment plans, psychologi-
cal scales, demographic information, and diagnoses in 
prediction. This aligns with existing evidence that psy-
chiatric symptoms, medication usage, and diagnostic 
categories are closely linked to common risks in psychi-
atric inpatients. Additionally, laboratory biomarkers also 
serve as risk predictors, possibly due to their associa-
tion with metabolic dysregulation, inflammation, organ 
dysfunction, and medication side effects [73–76]. These 
pathophysiological alterations may contribute to mood 
disorders, cognitive impairment, and behavioral disor-
ders, which are important factors of psychiatric risks 
[77–84]. Our finding demonstrates the contribution of 
different features to the model performance and also 
highlights the value of integrating multimodal clinical 
data into risk prediction models.

Among the text encoders we tested, XLNet performed 
best, likely due to its ability to effectively model bidirec-
tional context and long-range dependencies, which may 
have been particularly beneficial for the variety of tasks in 
this study. RoBERTa and Longformer showed better per-
formance, possibly due to RoBERTa’s improved pretrain-
ing and Longformer’s efficiency with longer sequences. In 
contrast, BigBird’s large number of parameters may have 
been less suited to our relatively small dataset, potentially 
explaining its weaker performance. Although current 

advanced pre-trained Transformers-based language 
models represent a significant improvement over previ-
ous models in many tasks [26, 30], their substantial com-
putational resource requirements for both training and 
inference remain a critical challenge for deployment in 
real-world settings, particularly in resource-constrained 
environments such as healthcare [85]. To improve com-
putational efficiency and optimize performance across 
multiple tasks, we designed an integrated model that 
shares feature extractors across tasks while employing 
task-specific classifiers. In future endeavors, construct-
ing a general-purpose language model specifically for 
psychiatry could further streamline clinical applications. 
Such a model could require no further training or only 
a few-shot training by strengthening the generalizable 
feature extraction capabilities of text encoders [85] in 
psychiatric-specific texts. Techniques such as self-super-
vised learning [65] and domain-adaptive pretraining [86] 
may play a pivotal role in achieving this goal, enabling the 
development of efficient, high-performing models tai-
lored to psychiatric data.

This research is the first to predict multiple risk out-
comes for various mental disorders using an NLP model 
and multicenter data in China. NLP models have been 
employed in several studies on mental disorders, such 
as predicting depression from social media text [87, 88] 
and exploring the neural mechanisms of schizophrenia 
through semantic processing methods [31]. EHR data 
also offer great potential due to their high professionalism 

Fig. 5 Feature importance heatmap. STPR, short-term need of physical restraint; LTPR, long-term need of physical restraint; STSS, short-term risk 
of suicide; LTSS, long-term risk of suicide; STI, short-term risk of impulsivity; LTI, long-term risk of impulsivity. The P values were two-sided, calculated 
using Nadeau and Bengio’s corrected resampled t-test



Page 12 of 15Zhu et al. BMC Medicine          (2025) 23:308 

and extensive volume. Previous studies have primarily 
focused on structured data or specific risk-related fields, 
underutilizing the extensive and highly relevant textual 
content within the FMR [36, 38]. Our study demonstrates 
that incorporating FMR significantly enhances model 
performance and clinical utility, highlighting the impor-
tance of deeply mining this textual information in future 
research.

Strengths and limitations
Our analysis has several strengths. The data for the 
model development and validation were derived from 
multiple hospitals and contained a substantial sample 
size. An independent external testing cohort demon-
strates that the model has similar predictive power with 
potentially different distributions of text data. The pre-
dictors used in our models are clinically accessible, which 
further enhances their usefulness. The present study 
provides insights for future work on the use of texts and 
FMR as features based on language modeling to achieve 
more accurate prognostic assessment and is expected to 
be potentially extended to other goals such as diagnosis, 
symptom recognition, and bias control.

Limitations include the fact that the data come from 
only one city, which leads to the possibility that the model 
may not be applicable in areas with greater language dif-
ferences. The use of FMR also presents several chal-
lenges. Firstly, since FMRs are retrospectively written by 
physicians, the quality and narrative style may vary across 
institutions. Nevertheless, their structural consistency is 
supported by national documentation standards in China 
which mandate uniform formats and structured history-
taking across all clinical levels [89, 90]. Additionally, 
robustness tests, the independent external testing cohort, 
and the large-scale, multi-centered dataset demonstrated 
the model’s reliability in handling variability. Future work 
may benefit from direct quantification of structural con-
sistency across institutions using corpus-level similarity 
or section alignment metrics. Second, there is the risk 
of feature drift, where changes in language features over 
time due to evolving documentation practices, diagnos-
tic criteria, or terminologies could affect the model’s per-
formance [91, 92]. Lastly, the use of textual data, which 
clinicians manually write, could introduce biases related 
to gender, race, or pre-existing assumptions, potentially 
undermining the system’s utility. These problems high-
light the necessity for prospective validation in future 
studies to mitigate biases and improve the model’s 
applicability in diverse clinical settings. Moreover, due 
to inconsistencies in the usage of scales across different 

hospitals, our study included a limited number of psychi-
atric scales and did not utilize scales related to psychosis 
or mania. Furthermore, current language models, includ-
ing models like XLNet, also face limitations in efficiently 
processing long-text sequences [93] and optimizing com-
putational efficiency [54]. Future research should prior-
itize developing solutions that effectively tackle these 
challenges, potentially by integrating advanced method-
ologies such as the Mamba architecture [94], knowledge 
distillation [95, 96], and causal inference [97]. Lastly, 
interpretability is essential for clinical applications. While 
providing detailed interpretability insights is currently 
unfeasible due to ethical considerations, the reduction in 
AUROC after removing each feature set was evaluated to 
understand the contribution of each feature to the over-
all model performance. Future efforts are still needed to 
further address this limitation through prospective evalu-
ations and case reports to enhance interpretability in a 
clinically applicable and ethically responsible manner.

Conclusions
This study incorporates language as a predictor and con-
structs a deep learning prediction model for common 
psychiatric risks based on real-world clinical data. By 
converting structured data into texts, the model can lev-
erage the additional information to achieve more accu-
rate predictions and minimize the requirements of input. 
Our results emphasize the potential of FMR to success-
fully complement prognostic assessments for psychiatric 
inpatients and provide insights for subsequent modeling 
studies.

Abbreviations
AUPRC  Area under the precision-recall curve
AUROC  Area under the receiver operating characteristic curve
HTML  HyperText Markup Language
IBRAS  Impulsive Behavior Risk Assessment Scale
ICD-10  International Classification of Diseases, 10th Revision
MLP  Multilayer perceptron
MOAS  Modified Overt Aggression Scale
NGASR  Nurse’s Global Assessment of Suicide Risk
NLP  Natural language processing
NPV  Negative predictive value
PPV  Positive predictive value
ROC  Receiver operating characteristic
SAS  Self-rating Anxiety Scale
SDS  Self-rating Depression Scale
SSTL  Semi-structured Transformers-based language model
STPR  Short-term need of physical restraint
LTPR  Long-term need of physical restraint
STSS  Short-term risk of suicide
LTSS  Long-term risk of suicide
STI  Short-term impulsivity
LTI  Long-term impulsivity
FMR  First medical records



Page 13 of 15Zhu et al. BMC Medicine          (2025) 23:308  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 025- 04150-7.

Additional file 1: Tables S1–S13 and Figures S1–S4. Table S1 Assessment 
of included features. Table S2 Data overview. Tables S3–S4 Correlations 
among short- and long-term outcomes. Tables S5–S10 Model perfor-
mance metrics for each outcome. Tables S11–S12 Statistical comparisons 
of model variants. Table S13 The overall clinical utility. Fig. S1 Schematics 
of language models. Fig. S2 Comparisons of different text encoders. Fig. 
S3 The ROC curve of semi-structured in the internal testing cohort. Fig. S4 
Robustness test.

Acknowledgements
The authors of this study thank the hospital information department staff 
and directors including Dr Zhihao Chen (East China University of Science 
and Technology), Dong Wang (Tongji University Mental Health Center), Feng 
Wang (Tongji University Mental Health Center), Yi Gu (Shanghai Putuo District 
Mental Health Center), Yu Mei (Shanghai Mental Health Center), Yifan Liu 
(Shanghai Mental Health Center), and Yichao Yin (Shanghai Changning Mental 
Health Center) for their work on data collection, management, and curation; 
hospital and institutional directors including Dr Hua Wang (Shanghai Putuo 
District Mental Health Center), Fazhan Chen (Tongji University Mental Health 
Center), Dianxu Feng (Shanghai Putuo District Health Committee), Guoquan 
Zhou (Shanghai Putuo District Mental Health Center), Weizhong Shi (Shanghai 
Hospital Development Center), Liangliang Chen (Shanghai Changning District 
Mental Health Center), Hui Li (Shanghai Mental Health Center), Chunbo Li 
(Shanghai Mental Health Center), Hong Qiu (Shanghai Mental Health Center), 
Lei Wang (Tongji University), Gang Zhu (Shanghai Municipal Finance Bureau), 
Guozhen Lin (Shanghai Ruijin Hospital), Yanping Zhang (Shanghai Jinshan 
District Mental Health Center), Xuehui Li (Shanghai Ruijin Hospital) for their 
work on project administration. They also thank other staff affiliated with the 
data source hospitals and colleges for their work on patient assessment, data 
collection, and technical guidance.

Authors’ contributions
EZ and ZA had full access to all of the data in the study and take responsibility 
for the integrity of the data and the accuracy of the data analysis. All authors 
made substantial contributions to the study conception and design, data 
acquisition or analysis, and manuscript preparation. Concept and design: EZ, 
JW, GZ, JH, HL, ZA Acquisition, analysis, or interpretation of data: EZ, JW, GZ, CL, 
FC, KJ, LC, YZ1, YY, JQ, HW, FW, DW, ZC, HL, YC Drafting of the manuscript: EZ, 
JW, XZ, XZ2, ZW, JH Critical review of the manuscript for important intellectual 
content: EZ, JW, GZ, CL, WS, HL, ZA Statistical analysis: EZ, JW, ZA Obtained 
funding: GZ, LC, XZ, HL Administrative, technical, or material support: EZ, JW, 
GZ, CL, FC, KJ, LC, YZ1, YY, HW, JH, HL, ZA Supervision: GZ, CL, FC, HL, ZA All 
authors read and approved the final manuscript.

Funding
This work was supported by projects from Shanghai Putuo District Municipal 
Commission of Health (ptkwws202413); Shanghai Municipal Health Commis-
sion (202340018); Data Sharing and Emulation of Clinical Trials, CCS-DASET 
(SHDC2024CRI008); Shanghai Changning District Municipal Commission of 
Health (CNWJXY026); and School of Innovation & Entrepreneurship, Tongji 
University (S202310247388, X2024085, and X2024048).

Data availability
The data analyzed in this study are not available to the public in accordance 
with national legislation (Mental Health Law of the People’s Republic of China). 
Requests for data should be made through the corresponding author upon 
reasonable cause, subject to data license agreements with School of Medicine 
of Tongji University and data source hospitals.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of Tongji University Mental 
Health Center (Approval No. PDJW-IIT-2023-017CS). The requirement for 

informed consent was waived due to the retrospective and de-identified 
nature of the data. All procedures were conducted in accordance with the 
Declaration of Helsinki and relevant local regulations.

Consent for publication
Not applicable. This study does not contain any individual person’s data in any 
form (including individual details, images, or videos).

Competing interests
The authors declare no competing interests.

Author details
1 School of Medicine, Tongji University, Shanghai, China. 2 Shanghai Putuo 
Mental Health Center, Putuo District, Shanghai, China. 3 Shanghai Key Labora-
tory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong 
University School of Medicine, Shanghai 200030, China. 4 Clinical Research 
Center for Mental Disorders, Shanghai Pudong New Area Mental Health 
Center, School of Medicine, Chinese-German Institute of Mental Health, Tongji 
University, Shanghai, China. 5 Shanghai Changning Mental Health Center, 
Changning District, Shanghai, China. 6 Division of Gastrointestinal Surgery, 
Department of General Surgery, West China Hospital, Sichuan University, 
Chengdu, China. 7 Department of Infection Control, West China Hospital, 
Sichuan University, Chengdu, China. 8 Shanghai Jinshan District Mental Health 
Center, Jinshan District, Shanghai, China. 9 Lakefield College School, Lakefield, 
ON, Canada. 10 Shanghai Hospital Development Center, Shanghai, China. 11 East 
China University of Science and Technology, Shanghai, China. 12 University 
Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, 
RWTH Aachen University, Aachen 52074, Germany. 13 Department of Medical 
Statistics, School of Medicine, Tongji University, Shanghai, China. 

Received: 12 August 2024   Accepted: 19 May 2025

References
 1. Beaudry G, Canal-Rivero M, Ou J, Matharu J, Fazel S, Yu R. Evaluating the 

risk of suicide and violence in severe mental illness: a feasibility study of 
two risk assessment tools (OxMIS and OxMIV) in general psychiatric set-
tings. Front Psychiatry. 2022;13:871213.

 2. Miller JN, Black DW. Bipolar disorder and suicide: a review. Curr Psychiatry 
Rep. 2020;22(2):6.

 3. Bai W, Liu ZH, Jiang YY, Zhang QE, Rao WW, Cheung T, Hall BJ, Xiang 
YT. Worldwide prevalence of suicidal ideation and suicide plan among 
people with schizophrenia: a meta-analysis and systematic review of 
epidemiological surveys. Transl Psychiatry. 2021;11(1):552.

 4. Liang Y, Wu M, Zou Y, Wan X, Liu Y, Liu X. Prevalence of suicide ideation, 
self-harm, and suicide among Chinese patients with schizophrenia: a sys-
tematic review and meta-analysis. Front Public Health. 2023;11:1097098.

 5. Richard-Lepouriel H, Kung AL, Hasler R, Bellivier F, Prada P, Gard S, Ardu 
S, Kahn JP, Dayer A, Henry C, et al. Impulsivity and its association with 
childhood trauma experiences across bipolar disorder, attention deficit 
hyperactivity disorder and borderline personality disorder. J Affect Disord. 
2019;244:33–41.

 6. Saddichha S, Schuetz C. Impulsivity in remitted depression: a meta-
analytical review. Asian J Psychiatr. 2014;9:13–6.

 7. Krakowski MI, Czobor P. Depression and impulsivity as pathways to 
violence: implications for antiaggressive treatment. Schizophr Bull. 
2014;40(4):886–94.

 8. Hamza CA, Willoughby T, Heffer T. Impulsivity and nonsuicidal self-injury: 
a review and meta-analysis. Clin Psychol Rev. 2015;38:13–24.

 9. May AM, Klonsky ED, Klein DN. Predicting future suicide attempts among 
depressed suicide ideators: a 10-year longitudinal study. J Psychiatr Res. 
2012;46(7):946–52.

 10. Bleijlevens MH, Wagner LM, Capezuti E, Hamers JP. Physical restraints: 
consensus of a research definition using a modified Delphi technique. J 
Am Geriatr Soc. 2016;64(11):2307–10.

 11. Baek IC, Jo S, Kim EJ, Lee GR, Lee DH, Jeon HJ. A review of suicide risk 
assessment tools and their measured psychometric properties in Korea. 
Front Psychiatry. 2021;12:679779.

https://doi.org/10.1186/s12916-025-04150-7
https://doi.org/10.1186/s12916-025-04150-7


Page 14 of 15Zhu et al. BMC Medicine          (2025) 23:308 

 12. Zhong S, Yu R, Cornish R, Wang X, Fazel S. Assessment of violence 
risk in 440 psychiatric patients in China: examining the feasibility and 
acceptability of a novel and scalable approach (FoVOx). BMC Psychiatry. 
2021;21(1):120.

 13. Parsa MPM, Koudys JW, Ruocco AC. Suicide risk detection using artificial 
intelligence: the promise of creating a benchmark dataset for research on 
the detection of suicide risk. Front Psychiatry. 2023;14:1186569.

 14. Danielsen AA, Fenger MHJ, Østergaard SD, Nielbo KL, Mors O. Predicting 
mechanical restraint of psychiatric inpatients by applying machine learn-
ing on electronic health data. Acta Psychiatr Scand. 2019;140(2):147–57.

 15. Nesca M, Katz A, Leung CK, Lix LM. A scoping review of preprocessing 
methods for unstructured text data to assess data quality. Int J Popul 
Data Sci. 2022;7(1):1757.

 16. Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. 
A survey on missing data in machine learning. J Big Data. 2021;8(1):140.

 17. Sun J, Dong QX, Wang SW, Zheng YB, Liu XX, Lu TS, Yuan K, Shi J, Hu B, 
Lu L, et al. Artificial intelligence in psychiatry research, diagnosis, and 
therapy. Asian J Psychiatr. 2023;87:103705.

 18. Zanardi R, Prestifilippo D, Fabbri C, Colombo C, Maron E, Serretti A. 
Precision psychiatry in clinical practice. Int J Psychiatry Clin Pract. 
2021;25(1):19–27.

 19. Nour MM, Huys QJM. Natural language processing in psychiatry: a field 
at an inflection point. Biol Psychiatry Cogn Neurosci Neuroimaging. 
2023;8(10):979–81.

 20. Bernstorff M, Hansen L, Enevoldsen K, Damgaard J, Hæstrup F, Perfalk E, 
Danielsen AA, Østergaard SD. Development and validation of a machine 
learning model for prediction of type 2 diabetes in patients with mental 
illness. Acta Psychiatrica Scandinavica. 2025;151(3):245–58.

 21. Sommer IE. J NdB: How to reap the benefits of language for psychiatry. 
Psychiatry Res. 2022;318:114932.

 22. Yang T, Li F, Ji D, Liang X, Xie T, Tian S, Li B, Liang P. Fine-grained depres-
sion analysis based on Chinese micro-blog reviews. Inf Process Manage. 
2021;58(6):102681.

 23. Amini S, Hao B, Zhang L, Song M, Gupta A, Karjadi C, Kolachalama VB, 
Au R, Paschalidis IC. Automated detection of mild cognitive impairment 
and dementia from voice recordings: a natural language processing 
approach. Alzheimers Dement. 2023;19(3):946–55.

 24. Wiest IC, Verhees FG, Ferber D, Zhu J, Bauer M, Lewitzka U, Pfennig A, 
Mikolas P, Kather JN: Detection of suicidality from medical text using pri-
vacy-preserving large language models. Br J Psychiatry 2024:1-6. https:// 
doi. org/ 10. 1192/ bjp. 2024. 134.

 25. Ewbank MP, Cummins R, Tablan V, Bateup S, Catarino A, Martin AJ, 
Blackwell AD. Quantifying the association between psychotherapy 
content and clinical outcomes using deep learning. JAMA Psychiat. 
2020;77(1):35–43.

 26. Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser 
L, Polosukhin I. Attention is All you Need. In: Neural Information Process-
ing Systems: 2017;2017. https:// doi. org/ 10. 48550/ arXiv. 1706. 03762.

 27. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P, Zhang 
C, Agarwal S, Slama K, Ray A et al: Training language models to follow 
instructions with human feedback. ArXiv 2022, abs/2203.02155. https:// 
doi. org/ 10. 48550/ arXiv. 2203. 02155.

 28. Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière 
B, Goyal N, Hambro E, Azhar F et al. LLaMA: Open and Efficient Founda-
tion Language Models. ArXiv 2023, abs/2302.13971. https:// doi. org/ 10. 
48550/ arXiv. 2302. 13971.

 29. DeepSeek-AI, Guo D, Yang D, Zhang H, Song J-M, Zhang R, Xu R, Zhu 
Q, Ma S, Wang P et al. DeepSeek-R1: Incentivizing Reasoning Capability 
in LLMs via Reinforcement Learning. In: 2025; 2025. https:// doi. org/ 10. 
48550/ arXiv. 2501. 12948.

 30. Achiam OJ, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida 
D, Altenschmidt J, Altman S, Anadkat S et al. GPT-4 Technical Report. In: 
2023; 2023. https:// doi. org/ 10. 48550/ arXiv. 2303. 08774.

 31. Nour MM, McNamee DC, Liu Y, Dolan RJ. Trajectories through semantic 
spaces in schizophrenia and the relationship to ripple bursts. Proc Natl 
Acad Sci U S A. 2023;120(42):e2305290120.

 32. Tan EJ, Sommer IEC, Palaniyappan L. Language and psychosis: tightening 
the association. Schizophr Bull. 2023;49(Suppl_2):S83-s85.

 33. Mowery D, Smith H, Cheney T, Stoddard G, Coppersmith G, Bryan C, Con-
way M. Understanding depressive symptoms and psychosocial stressors 
on Twitter: a corpus-based study. J Med Internet Res. 2017;19(2):e48.

 34. Meng Y, Speier W, Ong MK, Arnold CW. Bidirectional representation learn-
ing from transformers using multimodal electronic health record data to 
predict depression. IEEE J Biomed Health Inform. 2021;25(8):3121–9.

 35. Li Y, Rao S, Solares JRA, Hassaine A, Ramakrishnan R, Canoy D, Zhu Y, 
Rahimi K, Salimi-Khorshidi G. BEHRT: transformer for electronic health 
records. Sci Rep. 2020;10(1):7155.

 36. Cliffe C, Cusick M, Vellupillai S, Shear M, Downs J, Epstein S, Pathak J, Dutta 
R. A multisite comparison using electronic health records and natural 
language processing to identify the association between suicidality and 
hospital readmission amongst patients with eating disorders. Int J Eat 
Disord. 2023;56(8):1581–92.

 37. Irving J, Patel R, Oliver D, Colling C, Pritchard M, Broadbent M, Baldwin 
H, Stahl D, Stewart R, Fusar-Poli P. Using natural language processing on 
electronic health records to enhance detection and prediction of psycho-
sis risk. Schizophr Bull. 2021;47(2):405–14.

 38. Bittar A, Velupillai S, Roberts A, Dutta R. Using general-purpose sentiment 
lexicons for suicide risk assessment in electronic health records: corpus-
based analysis. JMIR Med Inform. 2021;9(4):e22397.

 39. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of 
a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

 40. Sun Y, Li X, Xu L, Ma Z, Yang Y, Yin T, Gao Z, Gong X, Li L, Liu Q, et al. 
Health-related risky behaviors in Chinese adolescents with autism: 
a cross-sectional study. Child Adolesc Psychiatry Ment Health. 
2021;15(1):39.

 41. Zhang L, Yang Y, Li M, Zhou X, Zhang K, Yin X, Liu H. The prevalence of 
suicide ideation and predictive factors among pregnant women in the 
third trimester. BMC Pregnancy Childbirth. 2022;22(1):266.

 42. Chen Z, Zhang Y, Guo Y, Meng H, Ji J. Screening and nursing of adult psy-
chiatric patients at high risk of impulsive behavior. Chin J Modern Nurs. 
2014;32:2.

 43. Chen ZZY, Guo Y, Meng H, Ji J. Screening and nursing of adult psychi-
atric patients at high risk of impulsive behavior. Chin J Modern Nurs. 
2014;20(32):4115–6.

 44. Li X, Ge H, Zhou D, Wu X, Qi G, Chen Z, Yu C, Zhang Y, Yu H, Wang C. 
Reduced serum VGF levels are linked with suicide risk in Chinese Han 
patients with major depressive disorder. BMC Psychiatry. 2020;20(1):225.

 45. Cutcliffe JR, Barker P. The Nurses’ Global Assessment of Suicide Risk 
(NGASR): developing a tool for clinical practice. J Psychiatr Ment Health 
Nurs. 2004;11(4):393–400.

 46. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, 
Gimelshein N, Antiga L et al. PyTorch: An Imperative Style, High-Perfor-
mance Deep Learning Library. In.; 2019: arXiv:1912.01703. https:// doi. org/ 
10. 48550/ arXiv. 1912. 01703.

 47. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine 
learning in Python. J Mach Learn Res. 2011;12(null):2825–30.

 48. Devlin J, Chang M-W, Lee K, Toutanova K: BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. In: North 
American Chapter of the Association for Computational Linguistics: 2019; 
2019. https:// doi. org/ 10. 18653/ v1/ N19- 1423.

 49. Yang Z, Dai Z, Yang Y, Carbonell JG, Salakhutdinov R, Le QV XLNet: Gener-
alized Autoregressive Pretraining for Language Understanding. In: Neural 
Information Processing Systems: 2019; 2019. https:// doi. org/ 10. 48550/ 
arXiv. 1906. 08237.

 50. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. ALBERT: A Lite 
BERT for Self-supervised Learning of Language Representations. ArXiv 
2019, abs/1909.11942. https:// doi. org/ 10. 48550/ arXiv. 1909. 11942.

 51. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer 
L, Stoyanov V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 
ArXiv 2019, abs/1907.11692. https:// doi. org/ 10. 48550/ arXiv. 1907. 11692.

 52. Beltagy I, Peters ME, Cohan A. Longformer: The Long-Document Trans-
former. ArXiv 2020, abs/2004.05150. https:// doi. org/ 10. 48550/ arXiv. 2004. 
05150.

 53. Zaheer M, Guruganesh G, Dubey KA, Ainslie J, Alberti C, Ontañón S, 
Pham P, Ravula A, Wang Q, Yang L et al. Big Bird: Transformers for Longer 
Sequences. ArXiv 2020, abs/2007.14062. https:// doi. org/ 10. 48550/ arXiv. 
2007. 14062.

 54. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV. XLNet: General-
ized Autoregressive Pretraining for Language Understanding. In.; 2019: 
arXiv:1906.08237. https:// doi. org/ 10. 48550/ arXiv. 1906. 08237.

https://doi.org/10.1192/bjp.2024.134
https://doi.org/10.1192/bjp.2024.134
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2303.08774.
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.1906.08237


Page 15 of 15Zhu et al. BMC Medicine          (2025) 23:308  

 55. Wang K, Huang J, Liu Y, Cao B, Fan J: Combining Feature Selection Meth-
ods with BERT: An In-depth Experimental Study of Long Text Classifica-
tion. In: 2021. Cham: Springer International Publishing; 2021. p. 567-582. 
https:// doi. org/ 10. 1007/ 978-3- 030- 67537-0_ 34.

 56. Chen T, Kornblith S, Swersky K, Norouzi M, Hinton GE: Big Self-
Supervised Models are Strong Semi-Supervised Learners. ArXiv 2020, 
abs/2006.10029. https:// doi. org/ 10. 48550/ arXiv. 2006. 10029.

 57. Caruana RA. Multitask Learning: A Knowledge-Based Source of Inductive 
Bias: Multitask Learning: A Knowledge-Based Source of Inductive Bias; 
1995. https:// doi. org/ 10. 1016/ B978-1- 55860- 307-3. 50012-5.

 58. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings 
of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining; 2016. https:// doi. org/ 10. 1145/ 29396 72. 29397 85.

 59. Bouckaert RR, Frank E. Evaluating the Replicability of Significance Tests for 
Comparing Learning Algorithms. In: Advances in Knowledge Discovery 
and Data Mining: 2004// 2004. Berlin, Heidelberg: Springer Berlin Heidel-
berg; 2004. p. 3-12. https:// doi. org/ 10. 1007/ 978-3- 540- 24775-3_3.

 60. Lin T-Y, Goyal P, Girshick RB, He K, Dollár P. Focal loss for dense object 
detection. IEEE Trans Pattern Anal Mach Intell. 2017;42:318–27.

 61. Verboven S, Chaudhary MH, Berrevoets J, Verbeke W. HydaLearn: Highly 
Dynamic Task Weighting for Multitask Learning with Auxiliary Tasks. ArXiv 
2020, abs/2008.11643. https:// doi. org/ 10. 48550/ arXiv. 2008. 11643.

 62. McKinney W. Data Structures for Statistical Computing in Python In. 
Edited by Millman SvdWaJ; 2010. https:// doi. org/ 10. 25080/ Majora- 92bf1 
922- 00a.

 63. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanin P, Courna-
peau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van 
Kerkwijk MH, Brett M, Haldane A, Del Rio JF, Wiebe M, Peterson P, Gerard-
Marchant P, Sheppard K, Reddy T, Weckesser W, Abassi H, Gohlke C, 
Oliphant TE. Array programming with NumPy. Nature. 2020;585:357–62.

 64. Falcon NSDaJBaJSaAHaTKaLDLaDSaCQaMGaW: TorchMetrics - Measuring 
Reproducibility in PyTorch. J Open Source Software. 2022;1.2.0. https:// 
doi. org/ 10. 21105/ joss. 04101.

 65. Fluss R, Faraggi D, Reiser B. Estimation of the Youden index and its associ-
ated cutoff point. Biom J. 2005;47(4):458–72.

 66. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski 
N, Pencina MJ, Kattan MW. Assessing the performance of prediction 
models: a framework for traditional and novel measures. Epidemiology. 
2010;21(1):128–38.

 67. Bengio Y, Nadeau C. Inference for the Generalization Error. Machine 
Learning 1999(99s-25). https:// doi. org/ 10. 1023/A: 10240 68626 366.

 68. Su J. SimBERT: Integrating Retrieval and Generation into BERT. In.; 2020.
 69. Nahm FS. Receiver operating characteristic curve: overview and practical 

use for clinicians. Korean J Anesthesiol. 2022;75(1):25–36.
 70. Chen Q, Zhang-James Y, Barnett EJ, Lichtenstein P, Jokinen J, D’Onofrio 

BM, Faraone SV, Larsson H, Fazel S. Predicting suicide attempt or 
suicide death following a visit to psychiatric specialty care: a machine 
learning study using Swedish national registry data. PLoS Med. 
2020;17(11):e1003416.

 71. Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clini-
cal psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.

 72. Todd A, Alonzo. Clinical Prediction Models: A Practical Approach to Devel-
opment, Validation, and Updating: By Ewout W. Steyerberg. Amjepide-
miol; 2009. https:// doi. org/ 10. 1007/ 978-3- 030- 16399-0.

 73. Wasser T, Strockbine B, Uyanwune Y, Kapoor R. Restraint and seclusion 
practices and policies in U.S. forensic psychiatric hospitals. J Am Acad 
Psychiatry Law. 2023;51(4):566–74.

 74. Belayneh Z, Chavulak J, Lee DA, Petrakis M, Haines TP. Prevalence and 
variability of restrictive care practice use (physical restraint, seclusion and 
chemical restraint) in adult mental health inpatient settings: a systematic 
review and meta-analysis. J Clin Nurs. 2024;33(4):1256–81.

 75. Mann JJ, Michel CA, Auerbach RP. Improving suicide prevention through 
evidence-based strategies: a systematic review. Am J Psychiatry. 
2021;178(7):611–24.

 76. Weltens I, Bak M, Verhagen S, Vandenberk E, Domen P, van Amels-
voort T, Drukker M. Aggression on the psychiatric ward: prevalence 
and risk factors. A systematic review of the literature. PLoS One. 
2021;16(10):e0258346.

 77. Wang Y, Cai X, Ma Y, Yang Y, Pan CW, Zhu X, Ke C. Metabolomics on 
depression: a comparison of clinical and animal research. J Affect Disord. 
2024;349:559–68.

 78. Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-
cirrhosis axis. Hepatology. 2024;80(2):465–85.

 79. Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson 
SD, Vilstrup H, Jalan R. Hepatic encephalopathy: novel insights into clas-
sification, pathophysiology and therapy. J Hepatol. 2020;73(6):1526–47.

 80. Drew DA, Weiner DE, Sarnak MJ. Cognitive impairment in CKD: 
pathophysiology, management, and prevention. Am J Kidney Dis. 
2019;74(6):782–90.

 81. Pépin M, Klimkowicz-Mrowiec A, Godefroy O, Delgado P, Carriazo S, Fer-
reira AC, Golenia A, Malyszko J, Grodzicki T, Giannakou K, et al. Cognitive 
disorders in patients with chronic kidney disease: approaches to preven-
tion and treatment. Eur J Neurol. 2023;30(9):2899–911.

 82. Zhuo C, Liu W, Jiang R, Li R, Yu H, Chen G, Shan J, Zhu J, Cai Z, Lin C, et al. 
Metabolic risk factors of cognitive impairment in young women with 
major psychiatric disorder. Front Psychiatry. 2022;13:880031.

 83. Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, 
Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, et al. Neurobiologi-
cal highlights of cognitive impairment in psychiatric disorders. Int J Mol 
Sci. 2022;23(3):1217.

 84. Dragasek J, Minar M, Valkovic P, Pallayova M. Factors associated with 
psychiatric and physical comorbidities in bipolar disorder: a nation-
wide multicenter cross-sectional observational study. Front Psychiatry. 
2023;14:1208551.

 85. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan 
A, Shyam P, Sastry G, Askell A et al. Language Models are Few-Shot Learn-
ers. ArXiv 2020, abs/2005.14165. https:// doi. org/ 10. 48550/ arXiv. 2005. 
14165.

 86. Misra I. Maaten Lvd: Self-supervised learning of pretext-invariant 
representations. IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). 2020;2019:6706–16.

 87. Ma W, Qiu S, Miao J, Li M, Tian Z, Zhang B, Li W, Feng R, Wang C, Cui Y, 
et al. Detecting depression tendency based on deep learning and multi-
sources data. Biomed Signal Process Control. 2023;86:105226.

 88. Chiong R, Budhi GS, Dhakal S, Chiong F. A textual-based featuring 
approach for depression detection using machine learning classifiers and 
social media texts. Comput Biol Med. 2021;135:104499.

 89. National Health Commission of the People’s Republic of China: Basic 
Norms for Medical Record Writing. In.; 2010.

 90. Chinese Medical Doctor Association: Standardized residency training 
program (2022 edition). In.; 2022.

 91. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on 
concept drift adaptation. ACM Comput Surv. 2014;46(4):Article 44.

 92. Hansen L, Enevoldsen K, Bernstorff M, Perfalk E, Danielsen AA, Nielbo 
KL, Østergaard SD. Lexical stability of psychiatric clinical notes from 
electronic health records over a decade. Acta Neuropsychiatr; 2023:1-11. 
https:// doi. org/ 10. 1017/ neu. 2023. 46.

 93. Zaheer M, Guruganesh G, Dubey A, Ainslie J, Alberti C, Ontanon S, 
Pham P, Ravula A, Wang Q, Yang L et al. Big Bird: Transformers for Longer 
Sequences. In.; 2020: arXiv:2007.14062. https:// doi. org/ 10. 48550/ arXiv. 
2007. 14062.

 94. Gu A, Dao T. Mamba: Linear-Time Sequence Modeling with Selective 
State Spaces. In.; 2023: arXiv:2312.00752. https:// doi. org/ 10. 48550/ arXiv. 
2312. 00752.

 95. Liu X, He P, Chen W, Gao J. Improving Multi-Task Deep Neural Networks 
via Knowledge Distillation for Natural Language Understanding. In.; 2019: 
arXiv:1904.09482. https:// doi. org/ 10. 48550/ arXiv. 1901. 11504.

 96. Yuan L, Tay FEH, Li G, Wang T, Feng J. Revisiting Knowledge Distillation via 
Label Smoothing Regularization. In.; 2019: arXiv:1909.11723. https:// doi. 
org/ 10. 48550/ arXiv. 1909. 11723.

 97. Feder A, Keith KA, Manzoor E, Pryzant R, Sridhar D, Wood-Doughty Z, 
Eisenstein J, Grimmer J, Reichart R, Roberts ME et al. Causal Inference in 
Natural Language Processing: Estimation, Prediction, Interpretation and 
Beyond. In.; 2021: arXiv:2109.00725. https:// doi. org/ 10. 48550/ arXiv. 2109. 
00725.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-67537-0_34
https://doi.org/10.48550/arXiv.2006.10029
https://doi.org/10.1016/B978-1-55860-307-3.50012-5
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-540-24775-3_3
https://doi.org/10.48550/arXiv.2008.11643
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.21105/joss.04101
https://doi.org/10.21105/joss.04101
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1007/978-3-030-16399-0
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1017/neu.2023.46
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.1901.11504
https://doi.org/10.48550/arXiv.1909.11723
https://doi.org/10.48550/arXiv.1909.11723
https://doi.org/10.48550/arXiv.2109.00725
https://doi.org/10.48550/arXiv.2109.00725

	A highly scalable deep learning language model for common risks prediction among psychiatric inpatients
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study participants
	Procedures
	Outcomes
	Models
	Statistical analysis

	Results
	Study overview
	Model performance
	Added value of first medical record and feature importance

	Discussion
	Strengths and limitations

	Conclusions
	Acknowledgements
	References


