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This study aims at investigating the development of premature infants’ autonomic

nervous system (ANS) based on a quantitative analysis of the heart-rate variability (HRV)

with a variety of novel features. Additionally, the role of heart-rate drops, known as

bradycardias, has been studied in relation to both clinical and novel sympathovagal

indices. ECG data were measured for at least 3 h in 25 preterm infants (gestational

age ≤32 weeks) for a total number of 74 recordings. The post-menstrual age (PMA)

of each patient was estimated from the RR interval time-series by means of multivariate

linear-mixed effects regression. The tachogramswere segmented based on bradycardias

in periods after, between and during bradycardias. For each of those epochs, a set

of temporal, spectral and fractal indices were included in the regression model. The

best performing model has R2 = 0.75 and mean absolute error MAE = 1.56 weeks.

Three main novelties can be reported. First, the obtained maturation models based

on HRV have comparable performance to other development models. Second, the

selected features for age estimation show a predominance of power and fractal features

in the very-low- and low-frequency bands in explaining the infants’ sympathovagal

development from 27 PMA weeks until 40 PMA weeks. Third, bradycardias might disrupt

the relationship between common temporal indices of the tachogram and the age of the

infant and the interpretation of sympathovagal indices. This approach might provide a

novel overview of post-natal autonomic maturation and an alternative development index

to other electrophysiological data analysis.

Keywords: preterm infants, HRV, bradycardia, autonomic nervous system, development

1. INTRODUCTION

Premature infants represent 10% of the neonatal population and are at higher risk for
developmental disorders that can lead to adverse outcome (Aylward, 2014). The investigation of
maturation via multiple physiological biomarkers is part of the clinical practice to prevent lower
cognitive, motor, or language outcomes later on in life (Franke et al., 2012; Koolen et al., 2016). A
common probe to inspect the development of the neurovegetative functions or Autonomic Nervous
System (ANS) is the heart-rate fluctuation, simply known as Heart-rate variability (HRV).
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The guidelines of the adult HRV task force clearly specify
the association between the different frequency tones of the
tachograms and the stimulation of the ANS branches (Camm
et al., 1996). The stimulation of the sympathetic branch is
normally represented by the low-frequency band (LF, [0.04 −

0.15]Hz) of the HRV, while the high-frequency band (HF, [0.15−
0.4]Hz) reflects the parasympathetic branch. The sympathovagal
balance can be expressed by the power ratio of the two frequency
bands

(

LF
HF

)

, while the very-low-frequency band (VLF, [0− 0.04]
Hz) is usually associated to thermal and hormonal regulation.
On the contrary, the fetal and preterm HRV frequency bands
are still the subject of an intensive discussion in the literature.
The early exposure to the ex-utero environment induces an
aberrant sympathetic response and delays autonomic maturation
(Smith et al., 2013; Javorka et al., 2017). The association between
the common HRV frequency bands and the sympathovagal
regulation is far less documented in infants and fetuses (Doret
et al., 2015). Other factors are known to play a role in the
definition of the oscillations of the heart rate, such as intermittent
breathing cycles with high respiratory frequency and the actual
delay in maturation of the autonomic nervous system. Therefore,
David et al. (2007), Hoyer et al. (2013), and Doret et al. (2015)
suggested that newways to investigate the sympathovagal balance
should be examined. Since the fetal heart-rate is characterized by
a strong slow-wave baseline, David et al. redefine the frequency
bands for fetuses as follows: VLF = [0.02 − 0.08] Hz, LF =

[0.08−0.2]Hz,HF = [0.2−3]Hz. While adults normally present
an HRV spectrum with two clear peaks at HF and LF (Camm
et al., 1996), infants and fetuses have a 1/f spectrum up to 0.1
Hz (Karin et al., 1993). Consequently, the full description of the
preterm ANS has to consider all the possible frequency bands
(VLF,LF,HF) (Clairambault et al., 1992; Curzi-Dascalova, 1994;
Mazursky et al., 1998; Longin et al., 2006). This could explain why
the LF

HF ratio can give contradictory results: Krueger et al. (2010)
did not find any specific change in this ratio in a longitudinal
study with preterm patients, while Longin et al. (2006) found a
decrease in LF

HF from preterm to term age. The rapid development
and the unclear definition of the sympathovagal frequency bands
might not give a simple interpretation of LF

HF as it is for adults.
Surprisingly, infants show greater changes in the absolute power
of the three main bands VLF, LF and HF than relative power
(Longin et al., 2006). Hoyer et al. (2013) argued that predominant
principles of autonomic development are not only an increase in
heart-rate variability but also an increase in the complexity and
pattern formation. Consequently, HRV indices can be chosen to
reflect these principles in order to describe the sympathovagal
balance maturation. Pattern formation can be described by
tachogram skewness and the new ratio VLF

LF , while the increasing
complexity is characterized by an increasing HRV entropy. It
should also be stressed that the computation of power ratios,
such as LF

HF , requires stationarity, which can be questioned in
the case of infants heart-rate time series. Therefore, Abry et al.
(2010) and Doret et al. (2015) proposed fractal analysis as an
alternative method to investigate the sympathovagal balance in
fetal heart-rate. It focuses on quantities, such as oscillations or
increments at different scales to tackle the absence of stationarity
and determines specific relations between the fractal exponents

(such as the Hurst Exponent) and the LF
HF ratios. However, those

methods were never applied to premature infants.
One example of non-stationarity is the presence of

bradycardias. These are normally heart-rate drops below
70% of the heart-rate average, which last at least for 4 s and may
be associated with apneas or hypoxias (Poets et al., 1993). These
drops can alter oxygen saturation and blood flow, putting organs
at risk of damage (Paolillo and Picone, 2013). Apneic spells
that occur with bradycardias or hypoxic events are most likely
to affect brain homeostasis. In addition, those physiological
instabilities are the probable consequence of the immature
respiratory system (Porges, 1995; Atkinson and Fenton, 2009).
However, it has also been shown different HR reactions can be
triggered by hyperoxia and hypoxias via chemoreception in term
infants (Søvik et al., 2001). Additionally, Poets et al. specifically
highlighted that bradycardias can occur independently from
apneic or gas events (Poets et al., 1993). Bradycardias can be
considered a consequence of heart-rate dysregulation, which can
disrupt the state-space and the probability density function of
the tachogram (Gee et al., 2017). Any proper model that tries
to describe the development of the infants’ ANS has to include
not simply the slow variation of the basal heart-rate, but the
sudden drops of the tachogram, independently from any other
conditioning factor. Those non-stationary events possibly affect
the most common HRV temporal or spectral features used in
clinical practice, such as the standard deviation and the LF

HF ratio.
They are commonly used for the assessment of development
outcome, sleep or pathologies diagnosis (Javorka et al., 2017), and
any disruption of these features can bias conclusions made by the
medical community. For example, bradycardias can forcefully
increase the variability of the tachogram or its regularity.

In order to address the shortcomings using the studies
outlined above and the lack of autonomic growth charts for
premature infants, a new framework to describe autonomic
maturation in healthy preterm babies has been provided.
This research can be divided into two main strands. First,
both spectral analysis and multifractal analysis have been
employed to investigate the neurovegetative development of the
sympathovagal balance and its complexity and track maturation.
Second, the impact of bradycardias on both clinical and novel
ANS maturation indices has been investigated. This study tries
to provide a complete overview of autonomic maturation in
premature neonates, including non-stationary events, such as
bradycardias. The final clinical objective is to provide novel
maturation charts for the premature autonomic nervous system
in the first weeks of life and correct the effect of heart-rate events
on common clinical HRV indices. Those normative charts might
be used as references to investigate early-life and ex-utero factors
that can deviate from normal premature development and define
suitable therapies in the neonatal intensive care unit.

2. METHODS

2.1. Dataset
The dataset consists of electrocardiograms (ECG) of 25 preterm
infants, which were recorded at the Neonatal Intensive Care
Unit of the University Hospital of Leuven. It was collected in a
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TABLE 1 | Demographics of the 25 patients: average duration of the tachogram in

minutes (DurationRec), average duration of the annotated bradycardias in s

(DurationWB), average number of the annotated bradycardias (NumberWB),

average RR amplitude during the bradycardia in ms (RRWB), post-menstrual age in

weeks (PMA) and gestational age in weeks (GA).

Number of patients = 25

DurationRec (min) 208.435± 115.657

DurationWB (s) 18.881± 8.332

NumberWB 7± 12

RRWB 631.405± 78.677

PMA (wks) 33.689± 3.049

GA (wks) 28.315± 2.318

PMA ≤ 32 wks 22

PMA ∈ (32− 36] wks 35

PMA > 36 wks 17

The last three rows represent the number of recording for each age subgroup (below 32

PMA weeks, between 32 and 36 weeks, and above 36 weeks).

multimodal setting for another research study related to brain
development and a sleep-stage analysis (Koolen et al., 2016;
Dereymaeker et al., 2017). Inclusion criteria were as follows:
a normal neurodevelopmental outcome at 9 and 24 months
corrected age (Bayley Scales of Infant Development-II, mental
and motor score >85), no severe brain lesions, assessed by
ultrasound and not taking any sedative or antiepileptic drugs
during the EEG registration. The sampling ECG frequency was
250 or 500 Hz and the average length of the recording was 4 h
44 min. An overview of the dataset is reported in Table 1, while
a complete description is reported in Supplementary Tables

1, 2. The latter shows the heterogenous interperiod sessions
among recordings, which indicate that the measurements were
not scheduled at the same PMA for each patient. In addition,
the Supplementary Materials 1, 2 show the ECG sampling
frequency for each of the recording.

2.2. Pre-processing
The HRV represents the instantaneous fluctuations of heart
rate and is usually expressed by the tachogram which visualizes
the variations of the time interval between two consecutive R-
peaks (RR intervals, RRi). In order to compute a RRi time
series, the R peaks of the ECG have been detected via the
Matlab toolbox by Moeyersons et al. (2019), which is based on
enveloping procedure. This graphical user-interface also allows
for correction and deletion in case of erroneous R-peaks. In case
of a single missing R-peak, the value was replaced by using the
following formula:

R̂t =
Rt−1 + Rt+1

2
, (1)

where R̂t is the estimated position of the missed R-peak, while
Rt−1 and Rt+1 are the location of the previous and following R-
peak. In the case of two or more missing R-peaks due to ECG
flat lines or muscle artifacts, which made the QRS detection
impossible, the contaminated parts of the signal were discarded.

In case that less 20 min of noise-free signal remained, the signal
was discarded. The length of each recording (in min) is reported
in Supplementary Tables 1, 2. The progressive number of the
recording ID shows that some of them were fully discarded. The
full overview shows that all included recordings had at least 50
min of available data (DurationRec column) resulting in a total of
74 recordings.

Besides the preprocessing of artifacts and before the feature
extraction, we also dealt with the sudden drops of heart-
rate, known as bradycardias. Although those phenomena are
completely natural in the developing infant, they can suddenly
increase the frequency content of the RRi series. Therefore,
traditional linear spectral and temporal analysis might not be
suitable since the instantaneous variance and mean of the heart-
rate can vary over time, as explained in detail by Gee et al.
(2017). According to the same study, the heart-rate activity
that precedes sudden drops might differ from the drops itself
and other bradycardia-free periods. Consequently, bradycardias
have been detected in the current studies before any further
processing. Based on the definitions of apnea of prematurity and
bradycardias by Paolillo and Picone (2013), the bradycardia spells
were detected as sudden RRi increases above θ = 1.5 ∗ RRi that
persist for more than 4 s, where RRi is the median tachogram of
the entire recording. We defined the onset of the bradycardia as
the moment that the tachogram exceeds θ . Conversely, the offset
was defined as the moment that the amplitude decreases below
the same threshold. Subsequently, three different windowing
strategies were applied:

1. Post-bradycardia (PB) windowing: the 10-min period that
starts 10 s after the bradycardia offset was considered a
candidate for features extraction. This window did not include
the bradycardia itself.

2. Between-bradycardias (BB) windowing: all non-overlapping
10-min windows contained between bradycardic events were
considered as candidate epochs for features’ extraction. The
first viable window was at least 10 min from the bradycardia
offset in order to guarantee that the signal was stabilized.

3. Within-bradycardia (WB) windowing: a 10-min window was
considered from the bradycardia onset. This windowing
should involve both the information related to the heart-rate
drop and the recovery period. Based on the definition of the
PB, the PB and WB windowing schemes overlap almost fully
for the period after the bradycardia offset, but WB is the only
scheme fully containing the bradycardic event.

A visual description of the windowing scheme is reported in
Figure 1. The gray dashed boxes highlight the three types of
windows (WB, BB, PB) that can be determined in a single
trace, while the dot-dash box shows typical bradycardia events.
The average duration and amplitude of a bradycardia event are
reported in Table 1, which also shows the average number of
bradycardias in the entire dataset. A full overview recording by
recording is reported in the Supplementary Tables 1, 2, which
display the number of bradycardias as well as the average
intensity and the average duration of heart-rate drops patient
by patient. The Supplementary Material shows that some of the
recordings did not have any heart-rate drop according to the
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FIGURE 1 | Visual representation of the three windowing schemes applied in this study: post-bradycardia scheme (PB), between-bradycardia scheme (BB) and

within-bradycardia scheme (WB). The selected windows in each trace are indicated with gray dashed boxes, while the dot-dashed boxes show examples of

annotated bradycardia. In case of BB windowing, a period T greater that 10 min is present between the end of the bradycardia and the first available window.

reported definition. Therefore, the windowing scheme based on
bradycardias was not applicable. In this specific case, the design
choice was a segmentation in non-overlapping 10-min windows
and assign the results of feature extraction to post-bradycardia
windowing scheme (see Figure 2).

2.3. Feature Extraction
In each of the windows defined according to the PB, BB, and
WB schemes, a set of temporal, spectral and fractal features
were derived to describe the autonomic nervous system of
the premature infants and its relationship with development.
These features were chosen based on the principles of variability
increase, complexity increase and pattern formation by Hoyer
et al. (2013). An overview of the different attributes is reported
in Table 2.

2.3.1. Temporal Indices
Based on themost common guidelines related to HRV processing
(Camm et al., 1996; Javorka et al., 2017), the first- and the second-
order moments of the RRi, i.e., the mean of the tachogram (µRR)
and the standard deviation (σRR), were computed in order to
assess the level of the variability.

2.3.2. Spectral Analysis
The sympathovagal activity is normally assessed by the
computation of the spectral power in the different HRV
frequency bands (Camm et al., 1996). Unlike adults, premature

infants have a higher mean heart rate with very slow oscillation
around it (Clairambault et al., 1992; David et al., 2007).
Therefore, the frequency bands of the premature patients were
defined as follows: VLF = [0, 0.08] Hz, the low-frequency
LF = [0.08, 0.2] Hz and high frequency HF = [0.2, 3.0] Hz.
Additionally, the RR time series of the premature infant can be
non-stationary due to a series of events, like bradycardias or other
heart-rate dysregulation. Therefore, the power spectral density
was computed with time-frequency (TF) methodologies, which
allows us to investigate the principle of pattern formation as
discussed byHoyer et al. (2013). Namely, the HRV power spectral
density (PSD) was estimated with three specific approaches: the
Welch’s periodogram, the quadratic smoothed pseudo Wigner-
Ville distribution (SPWD) (Orini et al., 2012) and the continuous
wavelet transform (CWT) (David et al., 2007).

Given a fixed window size, Welch’s algorithm estimates
multiple periodograms in overlapping subwindows and averages
them. The Welch’s window length was set at 3 min and the
overlap at 50%. Based on the suggestions of the HRV guidelines
(Camm et al., 1996), the window length was set to investigate the
very-low-frequency band.

One can also estimate the instantaneous autospectrum
SRR(t, f ). Based on the CWT of the tachogram

WRR(t, s) =

∫ +∞

−∞

RR(τ )ψ∗

(

t − τ

s

)

dτ , (2)
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FIGURE 2 | The block diagram shows the main steps of the study. For each RR signal, artifact preprocessing is performed and associated resampling of the

tachogram. The signal is split in different windows according to the scheme of Figure 1. For each of these epochs, temporal, spectral and fractal features undergo a

grand-median process if there is more than one epoch per scheme. The three datasets are then used to estimate the age of the recording in a linear mixed effects

(LME) regression.

TABLE 2 | Overview of all computed features.

Temporal features

Statistical moments µRR, σRR

Spectral features

Welch P(VLF ),P(LF ),P(HF ),

VLF
LF

, LF
HF

, LF
LF+HF

, LF
LF+VLF

SPWVD P(VLF ),P(LF ),P(HF ),

VLF
LF

, LF
HF

, LF
LF+HF

, LF
LF+VLF

Wavelet P(VLF ),P(LF ),P(HF ),

VLF
LF

, LF
HF

, LF
LF+HF

, LF
LF+VLF

Fractal features

Multifractality Hexp,[j1 ,j2=5,12], C2,[j1 ,j2=5,12],

Hexp,[j1 ,j2=3,12],C2,[j1 ,j2=3,12]

Besides the first- and the second-order moments, the table reports all the relative and

absolute power features in the frequency domain, namely the power in VLF, LF, and HF

bands, the ratio between the VLF and LF bands and between LF and HF bands and the

normalized LF band power with respect to VLF band and HF band. The spectral features

are reported for each the PSD estimation approaches that were used in this study. The

last section reports the computed multifractal features, i.e., Hurst exponent (Hexp) and the

(C2 ) for the investigated scale ranges: [j1, j2 ] = [3,12] and [j1, j2 ] = [5,12].

SRR(t, f ) can be computed as the scalogram of the wavelet
transform of the signal as follows:

SRR(t, f ) = |WRR(t, f )|
2, (3)

where ψ is the mother wavelet (Analytic Morlet), while s stands
for the scale of the wavelet transform and, in the general, s ≈

f−1. However, the SRR(t, f ) based on CWT risks to be distorted

by interference terms which can be present with linear time-
frequency approaches. Therefore, Orini et al. (2012) proposed
to estimate the instantaneous autospectrum via a quadratic
time-frequency distribution, such as SPWD. Then SRR is then
estimated as follows:

SRR(t, f ) =

∫ ∫ +∞

−∞

8RR(τ , ν)ARR(τ , ν)e
j2π(tν−τ f )dτdν, (4)

where ARR(τ , ν) is the ambiguity function, which is defined as
the Fourier Transform of the time-dependent auto-correlation of
RR(t) as follows

ARR(τ , ν) =

∫ +∞

−∞

RR(t + τ/2)RR∗(t − τ/2)e−j2π tνdt, (5)

The smoothing of the time-frequency cross-coupling in (4)
is done via the exponential kernel in the ambiguity domain
defined as

8RR(τ , ν) = exp

{

− π

[(

ν

ν0

)2

+

(

τ

τ0

)2]2λ}

, (6)

Following the study by Widjaja et al. (2013), ν0, τ0, λ were set to
0.050, 0.046, and 0.3, respectively, leading to a kernel function
with a TF resolution of [1t, 1f ] = [10.9 s, 0.03 Hz]. Both
Welch’s approach and the CWT were computed with MATLAB
subroutines, while the implementation details and software
download for the SPWD are reported in Orini et al. (2012).
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Based on the givenmethodologies, the instantaneous power in
the β = [f1, f2] band of interest can be obtained as

Pβ (t) =

∫ f 2

f 1
SRR(t, f )df . (7)

In particular, one can compute the absolute power in three bands
VLF, LF and HF as the reported integral in (7). Besides, the
ratios VLF

LF and LF
HF were also computed alongside two indices

to represent the normalized LF power: LF
VLF+LF and LF

HF+LF . In
case of Welch’s algorithm, there is no dependency from the time
variable t. On the contrary, CWT and SPWD generate a time
series for each selected frequency band, as highlighted by (3),
(4), and (7). In order to obtain one single value for each window,
the median of this time-series was taken into account. The set of
spectral features derived for each methodology is reported in the
central block of Table 2.

2.3.3. Multifractal Analysis
Since spectral analysis requires stationarity of data and the
very definition of the tachogram series frequency bands have
been questioned, the HRV was also analyzed according to the
fractal or multifractal paradigm. The multifractal analysis aimed
to describe the principle of complexity increase discussed by
Hoyer et al. (2013). As shown in Doret et al. (2015), the infant’s
tachogram is a fractal or scale-free signal, which presents a
power-law decay spectrum as follows:

SRR(f ) = |C|f−2(Hexp−1) (8)

where Hexp is known as the Hurst exponent and controls the
decay of the power function. H is also a representative parameter
for fractal time series and there can be more than one exponent
for each signal. A signal with one single exponent is commonly
known as monofractal, while a signal with multiple exponents h
is known as multifractal (Ivanov et al., 1999). Small values of h
represent sharp and transient regularity or singularity, while large
values represent smooth changes (Leonarduzzi et al., 2010).

An efficient method to determine the amount of exponents or
singularities h is the multifractal formalism based on the wavelet
transform modulus maxima. The discrete wavelet transform
(DWT) decomposes the signal RR(t) into elementary time-
frequency components based on different scales a. Large scales
describe smooth and low frequency oscillations, while small
scales describe the sharp transitions in the signal. According
to Popivanov et al. (2006) and Wendt et al. (2007), a partition
function Z(a, q) = ZL(2

j, q) can be estimated using the wavelet
leader Lf (j, k), as follows:

Z(a, q) = ZL(2
j, q) =

1

nk

nk
∑

k=1

|Lf (j, k)|
q ∼ 2jτ (q), (9)

where Lf (j, k) represents a specific type of wavelet transform,
where the maximum of wavelet coefficients is considered in a
narrow time neighborhood. More details can be found in Wendt
et al. (2007) and Abry et al. (2010).

One can immediately notice the similarity between (8) and
(9), especially between the Hurst exponents and τ (q). For certain
values of q, the scaling exponent τ (q) (SE) has a specific meaning:
for positive, respectively negative q, Z(a, q) reflects scaling of
large, respectively short fluctuations. In general, for each q,
the partition function exhibits a power-law decay characteristic,
such as the power spectrum of 1/f noise (8). The scaling
exponents τ (q) (SE) associated with this decay can be obtained
by computing the slope of Z vs. the scales in a log-log diagram
from a certain scale a1 = 2j1 to a certain scale a2 = 2j2 . The
log-transform clearly shows the advantage to define scales as
power quantities. In case of a monofractal signal, τ (q) is a linear
function of q andHexp, which is τ (q) = qHexp − 1 (as also shown
in 8). In case of a multifractal signal, the τ (q) is a non-linear
function of the local exponents h and its fractal dimensions D(h),
known also as the singularity spectrum (SS) (Popivanov et al.,
2006).

The fractal paradigm fully describes the properties of the
signal by means of the singularity spectrum D(h), obtained
as the Legendre transform of τ (q) (Abry et al., 2010).
This function represents the embedding dimensions in the
function of the different singularities of the signals and two
main D(h) attributes are normally derived: the maximum
and the width of the D(h) distribution, known also as the
parameters C1 and C2. They can be computed as cumulants
or coefficients of the Taylor expansion of τ (q) and they are
used to represent the main Hurst exponent of the multifractal
signal (Hexp or C1) and the “variety” of fractals in the time
series (C2).

The multifractality parameters (Hexp, C2) were computed in
the entire non-overlapping window according to three schemes
discussed in section 2.2. Specifically, the multifractal features
were derived using the Wavelet p-Leader and Bootstrap based
MultiFractal analysis (PLBMF) MATLAB toolbox, described
in Wendt et al. (2007). This toolbox can be downloaded
from https://www.irit.fr/~Herwig.Wendt/software.html. A
fundamental design choice is the scale range [2j1 , 2j2 ] from
which the exponent τ (q) is estimated from (9) (Wendt et al.,
2007; Abry et al., 2010). In case of HRV, the exponents [j1, j2]
are normally set equal to [3, 12]. Given the fact that the scale
can be written as a = 2j = (fs/2)/f with fs as sampling
frequency of the signal, it follows that the range [j1, j2] = [3, 12]
approximately represents the frequency band ≈ [0.375, 0.001]
Hz with fs = 6 Hz. In case that [j1, j2] = [5, 12], the chosen
scale range approximately represents the frequency band
≈ [0.094, 0.001] Hz. It is clear the first range considers part of
the HF band, while the latter solely focuses on the combination
of LF and VLF. A window size of 10 min does not allow
an investigation of oscillations lower than up to 0.001 Hz.
However, since the VLF band of infants is limited to 0.01
Hz, we can state that the scale range [j1, j2] = [5, 12] fully
describes slow-waves of infants HRV. Since the chosen scale
range might influence the multifractal attributes, both ranges
were tested in this study to investigate which frequency bands
mostly reflects the sympathovagal balance. In fact, the main
Hurst exponent Hexp or C1 parameter is able to influence the
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ratio LF
HF . Based on (8), one can rewrite the spectral ratios

as follows:

LF

HF
=

∫ fI
fm
SRR(f )df

∫ fM
fI

SRR(f )df
=

(f
2−2Hexp

I − f
2−2Hexp
m )

(f
2−2Hexp

M − f
2−2Hexp

I )
(10)

where [fm, fI],[fI , fM] represent the frequency bands of LF and
HF. Taking into account that the Hurst exponent and the LF

HF
are related and taking also into account that the chosen [j1, j2]
decides which frequency bands the multifractal parameters are
related to, the scales investigation of the fractal properties can
shed a light which bands mainly reflect the sympathovagal
activity. The set of fractal features derived for each methodology
is reported in the last block of Table 2.

2.3.4. Algorithmic Pipeline and Statistical Analysis
The processing pipeline of the current study is reported
in Figure 2. For each HR time series, the signal was split
according to the PB, BB, andWB windowing scheme reported in
Figure 1 and all the features reported in Table 2 were extracted.
Besides artifact removal, a fundamental preprocessing step is the
resampling of the tachogram. The behavior of non-linear features
can depend on the sample rate, as also shown by the definition
of the scales and their range for the multifractal parameters
(section 2.3.3). Based on the findings by Bolea et al. (2016), the
following sampling frequencies were tested for fractal indices:
[6, 8, 12]Hz. In contrast, the sampling frequencies for the spectral
and temporal indices was set to 6 Hz in order to include the
higher respiratory frequency of premature infants (Camm et al.,
1996; Javorka et al., 2017). The data were resampled with linear
interpolation. The results are reported for only one sampling
frequency in the main manuscript; however, a more complete
discussion of the use of different sampling frequencies and the
associated results are included in the Supplementary Material.

As described in section 2.3, the tuning and design parameters
for the spectral and fractal analysis were chosen in accordance
with the absence of stationarity and the persistent slow-
wave baseline of the premature HRV signal. The necessity to
investigate long-range fluctuations and a recovery period after
events, such as bradycardias justify the segmentation in 10 min.
Normally, time-frequency approaches use windows longer than
600 s to describe evolution in HRV spectrum (Orini et al., 2012;
Widjaja et al., 2013) and the fractal indices also require windows
of this size to fully investigate changes in regularity (Abry et al.,
2010; Doret et al., 2015). Additionally, the BB and WB schemes
can generate a set of windows and therefore an array of features
based on the number of bradycardias present in each recording
(on average, seven bradycardias per recording, as reported by
Table 1). In order to obtain one representative value for each
recording in each windowing scheme, the median of this array
of attributes over the different windows was computed for each
recording, as highlighted by the grand-median block in Figure 2.

After the features’ extraction process and the grand-median
step, three datasets were then obtained according to the three
different windowing schemes. The number of features extracted
for each dataset was then 27 in total: 21 for the spectral attributes,

two for the temporal ones and four for fractal indices, as shown
in Table 2.

In order to investigate the ANS maturation, the HRV features
were used to estimate the PMA of the patient, as shown by the
last block of the diagram in Figure 2. Since the PMA is known
for each recording, a linear mixed effects (LME) regression
model was developed for each dataset with PMA as response
variable (Lavanga et al., 2018). The actual regression consisted
of two steps. First, the features were selected via the least
absolute shrinkage and selection operator (LASSO) due to the
high number of features, after that the absolute power features
were log-transformed. Specifically, the LASSO was repeated for
20 iterations on the entire dataset and the features which were
selected in more than 40% of the total number of iterations
(eight iterations out of 20) were included in the regression model
(Lavanga et al., 2018). Second, a linear mixed-effect regression
model was built with the selected subsets with multiple random
splits of the data. In particular, the dataset was split into 70%
training set and 30% test set for 20 iterations and the model was
developed on the train set and tested for test set for each iteration.
The performance was then assessed as mean absolute error MAE
on the test set, as well as explained variance R2, both on train and
test set (R2train, R

2
test). We also reported the pvalue of the F-statistics

for each iteration. The results were reported as median(IQR)
(where IQR stands for InterQuartile Range) over the 20 iterations.
A linear mixed effect model requires the definition of a grouping
variable that introduces the random effect, and the patient ID
was taken as a grouping variable since a set of one or more
recordings belong to a patient [as discussed in a previous study
(Lavanga et al., 2018)]. Furthermore, the LME regression with
the LASSO procedure was not simply examined for the entire
subset of features, but also for the three subset feature groups:
temporal, spectral and fractal attributes. In case of temporal
features regression, the LASSO step was not performed.

On top of that, the trend for the ANS features throughout the
patients’ development was also reported as median(IQR) in three
age groups (PMA≤ 31 weeks, PMA ∈ (31−36] weeks, and PMA
> 36 weeks) as well as Pearson correlation coefficient with PMA.

3. RESULTS

The overview of the dataset is reported in Table 1, which shows
certain traits of the annotated bradycardias. The mean length
is around 18 s. On average, there are seven bradycardias per
recording and the mean RRi during bradycardias is ∼631 ms.
The overview shows that the infants have an average PMA of
34 weeks and 35 recordings are collected in the range (32–36]
weeks. A total of 22 recordings is collected in the first days of
life, while 17 recordings were included from the weeks close to
discharge. A detailed overview of each recording is reported in
Supplementary Tables 1, 2.

Figure 3 and Table 3 report the trends in the three different
windowing schemes for the following features: the mean µRR

and standard deviation of the HRV σRR, the absolute power
in the LF band (and its logarithmic transform), the relative

LF
LF+VLF power, the Hurst Exponent in the range [j1, j2] =
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[5, 12] Hexp[j1,j2=5,12] and the width of the singularity spectrum
in the same range C2[j1,j2=5,12] . The overview of all features
for all different windowing schemes (PB, BB, and WB) are
reported in the Supplementary Tables 3–5. Figure 3 reports the
results for the windowing scheme for the within-bradycardia
epochs on the left column, while the results for the between-
bradycardia epochs are shown on the right column. The power
in the LF band and the relative LF power ( LF

LF+VLF ) increase
with increasing PMA in both scenarios: in particular, Pearson
correlations ρxy are 69% (72% with logarithm transform) and
64% for bradycardia epochs, respectively, while ρxy are 71% (71%
with logarithm transform) and 48%, respectively, for between-
bradycardia windows. Concerning the post-bradycardia period,
the Table 3 shows a Pearson correlation of 69% for the power in
LF band and 57% for LF

LF+VLF . Results are here reported for the
wavelet approach, but the other spectral methodologies exhibit
similar trends (see Supplementary Tables 3–5). In addition, the
Hurst exponent (derived as the c1 of the singularity spectrum)
decreases with development (ρxy are −45% in the bradycardias
scenario, −47% in post-bradycardia scenario, and −50% in the
between-bradycardia scenario), while the width of the singularity
spectrum (c2 parameter) increases with increasing PMA (ρxy are
54% in the bradycardia scenario, 45% in the post-bradycardia
scenario and 43% in the between-bradycardia scenario). The
greatest contrast was found with the variability of the heart-
rate, σRR. While the standard deviation increases with infants’
maturation in the between-bradycardia epochs, the σRR does
not increase with age within the bradycardic event. Moreover,
it is higher in the bradycardia epochs than in the between-
bradycardia scenario (ρbradycardia = −4% vs. ρbetween = 64%with
pv = 0.77 vs. pv ≤ 0.01).

Table 4 shows the regression results for the linear mixed-
effect models, while Table 5 reports the features selected by
LASSO. Those two tables report the results for the three
different windowing schemes (PB, BB, WB) in three different
blocks, while the rows report the results for the different
feature groups (temporal, spectral and fractal attributes) and
sampling frequencies. The different columns, respectively report
the explained variance in the training set (R2train), the mean
absolute error (MAE) and the explained variance in the test set
(R2test). The best performance is reached for the combination of
all features in the PB scheme (R2train = 0.75,MAE = 1.83 weeks,
R2test = 0.57) as well as between bradycardias (R2train = 0.68,
MAE = 1.56 weeks, R2test = 0.59). During the bradycardia event
(WB), the best performance is achieved with the spectral features
(R2train = 0.73, MAE = 1.9 weeks, R2test = 0.62). Table 5 shows
that the selected features are the absolute spectral power in LF
andVLF together withC2 parameter in the range [j1, j2] = [5, 12]
for the first two schemes. For theWB scheme, the selected feature
is simply the power in LF band.

Figure 4 shows that the relationship of (10) between the Hexp

and the ratios VLF
LF and LF

HF . The first row shows the relationship

between VLF
LF andHexp,[j1 ,j2=5,12] in the three windowing schemes:

WB in magenta circles, PB in light-blue squares and BB in
indigo diamonds. The Pearson correlation coefficients are 21, 49,
and 43%, respectively. The second row shows the relationship

between LF
HF and Hexp,[j1 ,j2=3,12] in the same three schemes. The

Pearson correlation coefficients are 18, 20, and 36%, respectively.

4. DISCUSSION

This study provides an overview of the autonomic nervous
system maturation in preterm infants and aims to estimate the
post-menstrual age of the infants based on the HRV. Since
the neonatal tachogram is a signal characterized by lack of
stationarity and strong slow-wave baseline (Abry et al., 2010;
Hoyer et al., 2013; Doret et al., 2015), the current study
investigated the maturation of sympathetic and parasympathetic
branches with the combination of temporal, spectral and fractal
indices. Three main novel findings can be reported. First, Table 4
shows that the maturation of infants can be assessed with
different spectral and fractal HRV indices with comparable
performances to other maturation models for fetal and preterm
development by Hoyer et al. (2013), De Wel et al. (2017), and
Lavanga et al. (2017, 2018). Second, Figure 4 reports that the
spectral ratio VLF

LF and the Hurst exponent in the range [j1, j2] =

[5, 12] are more correlated than the LF
HF and the Hurst exponent

[j1, j2] = [3, 12]. This might indicate that neonates do not
have a sympathovagal balance that relies on the typical interplay
between LF and HF (Abry et al., 2010; Doret et al., 2015).
Third, the bradycardias can impact HRV maturational features,
especially the most common temporal indices that are used in
clinical practice (Javorka et al., 2017), such as the LF

HF ratio and the
standard deviation (Tables 3, 4). Additionally, the relationship
between spectral ratios and Hexp is strongly reduced in the WB
scheme, as stressed by Figure 4.

The different age models that were derived in this study can
outperform or can be compared to the other developmental
models reported in the literature (Hoyer et al., 2013; Lavanga
et al., 2018). Specifically, Table 4 highlights the capacity of
spectral features to outperform all other features in the PMA
estimation in all three windowing schemes. Furthermore, the LF
power is consistently selected by LASSO for all the different fs
and with any type of windowing scheme. These results are not
simply in line with a decrease of VLF

LF by Hoyer et al. (2013), but
they are also supported by other clinical findings. Namely, an
increase of the short-term variability of the tachogram was found
during the first days of life (De Souza Filho et al., 2019) and the
absolute LF power can discriminate preterm and full-term infants
with 84% accuracy (Mulkey et al., 2018). However, the highest
performances in the PB and BB schemes are achieved when the
fractal and spectral features are combined, as highlighted in bold
in Table 4 and suggested by the concomitant increase of entropy
and short-term variability of HRV found by De Souza Filho et al.
(2019). Interestingly, the highest performances are also achieved
when the between bradycardias epochs are considered (MAE =

1.56 weeks), which further reveals a bias effect of bradycardias
in the description of autonomic maturation. In line with other
studies (Clairambault et al., 1992; Curzi-Dascalova, 1994; Longin
et al., 2006; Hoyer et al., 2013), we found that the tachogrammean
µRR and its standard deviation σRR increase with maturation
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FIGURE 3 | (A–J) The figure shows the linear-mixed effect regressions between the post-menstrual age and the following HRV features: the standard deviation of the

tachogram σRR, the absolute and the relative power in the LF band
(

log10(LF ),
LF

LF+VLF

)

, the Hurst exponent Hexp,[j1 ,j2=5,12] and the parameter C2. The sampling

frequencies for the fractal indices is fs = 8 Hz. The left column—magenta circles report the results for the bradycardia epochs, while the right column—indigo

diamonds the results for the between-bradycardia epochs. ρ is the correlation coefficient with the associated significance pvalue.
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FIGURE 4 | (A–F) The figure shows results for the linear-mixed effect regression that models the relationship between Hexp,[j1 ,j2=5,12] and
VLF
LF

in the first row and

between Hexp,[j1 ,j2=3,12] and
LF
HF

in the second row. The three columns, respectively represents bradycardia epochs (magenta circle data points), post-bradycardia

epochs (light-blue squares data points), and between-bradycardia epochs (indigo diamonds data points). ρ is the correlation coefficient of the regression and pvalue

represents the significance of the correlation.

TABLE 3 | The main temporal, spectral and fractal features are reported for the three windowing schemes (PB, BB, and WB).

Median (IQR)—PMA weeks ≤ 32 (32 − 36] > 36 ρ(%)

POST-BRADYCARDIA (PB) GROUP

µRR 374.65 (366.38–391.36) 377.07 (364.33–393.69) 387.2 (374.98–416.44) 0.39∗∗

σRR 16.71 (12.02–22.05) 25.5 (21.65–31.1) 28.47 (24.03–32.08) 0.49∗∗

P(LF )Wavelet 2.14 (0.96–3.68) 4.17 (2.16–8.9) 17.74 (4.94–25.51) 0.69∗∗

LF
LF+VLF Wavelet

5.38 (3.45–8.7) 4.9 (3.67–12.17) 14.06 (11.77–18.09) 0.57∗∗

Hexp,[j1 ,j2=5,12] 0.61 (0.52–0.7) 0.55 (0.45–0.59) 0.5 (0.44–0.56) −0.47∗∗

C2,[j1 ,j2=5,12] −0.2 (−0.26 to −0.17) −0.19 (−0.21 to −0.13) −0.14 (−0.15 to −0.11) 0.45∗∗

BETWEEN-BRADYCARDIA (BB) GROUP

µRR 370.51 (359.96–388.36) 377.42 (363.11–389.25) 394.93 (370.01–427.45) 0.47∗∗

σRR 13.89 (10.97–18.49) 19.81 (15.72–23.82) 29.1 (21.99–30.66) 0.64∗∗

P(LF )Wavelet 1.3 (0.86–3.38) 4.23 (1.93–6.28) 11.34 (8.4–15) 0.71∗∗

LF
LF+VLF Wavelet

6.93 (4.89–8.53) 7.9 (4.63–11.05) 12.57 (8.75–13.95) 0.48∗∗

Hexp,[j1 ,j2=5,12] 0.6 (0.52–0.68) 0.54 (0.5–0.59) 0.48 (0.45–0.52) –0.5∗∗

C2,[j1 ,j2=5,12] −0.19 (−0.23 to −0.14) −0.17 (−0.2 to −0.14) −0.09 (−0.12 to −0.08) 0.43∗∗

WITHIN-BRADYCARDIA (WB) GROUP

µRR 384.9 (369.62–398.91) 384.16 (369.2–397.51) 389.12 (377.65–425.8) 0.37∗∗

σRR 38.31 (32.22–44.62) 40.61 (32.5–49.81) 35.89 (28.43–40.74) −0.04n.s.

P(LF )Wavelet 2.3 (1.12–4.03) 4.68 (2.8–9.86) 18.66 (5.35–26.46) 0.69∗∗

LF
LF+VLF Wavelet

2.57 (1.13–3.97) 3.34 (2.19–8.97) 10.96 (6.69–16.78) 0.64∗∗

Hexp,[j1 ,j2=5,12] 0.61 (0.49–0.71) 0.55 (0.43–0.62) 0.49 (0.43–0.52) –0.45∗∗

C2,[j1 ,j2=5,12] −0.26 (−0.3 to −0.21) −0.21 (−0.24 to −0.17) −0.13 (−0.18 to −0.11) 0.54∗∗

The results are reported as median (IQR). IQR stands for interquartile range. The fractal indices are reported for fs = 8 Hz. The symbol ρ stands for the Pearson correlation coefficient.

The symbol ∗∗ represents a significant correlation with p ≤ 0.01 and n.s. is used to indicate a non-significant correlation.
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TABLE 4 | Linear mixed-effect model performances.

Feature type R2
train

MAE(weeks) R2
test Pvalue

POST-BRADYCARDIA (PB) EPOCHS

Minimum MAE 0.75 (0.09) 1.83 (0.41) 0.57 (0.22) 0 (0)

Temporal features 0.44 (0.28) 2 (0.56) 0.35 (0.19) 0.01 (0.04)

Spectral features 0.74 (0.12) 2.01 (0.42) 0.5 (0.11) 0.00 (0.02)

Fractal features 0.26 (0.1) 2.18 (0.46) 0.43 (0.28) 0.00 (0.04)

BETWEEN-BRADYCARDIA (BB) EPOCHS

Minimum MAE 0.68 (0.11) 1.56 (0.39) 0.59 (0.16) 0 (0.01)

Temporal features 0.6 (0.33) 2.06 (0.38) 0.44 (0.24) 0.01 (0.03)

Spectral features 0.59 (0.19) 1.93 (0.54) 0.59 (0.15 0 (0.01)

Fractal features 0.34 (0.28) 2.16 (0.53) 0.18 (0.31) 0.06 (0.32)

WITHIN-BRADYCARDIA (WB) EPOCHS

All features 0.72 (0.15) 1.95 (0.33) 0.57 (0.24) 0 (0.01)

Temporal features 0.14 (0.1) 2.79 (0.35) 0.13 (0.13) 0.18 (0.35)

Minimum MAE 0.73 (0.17) 1.9 (0.21) 0.62 (0.21) 0.00 (0.00)

Fractal features 0.4 (0.16) 2.13 (0.56) 0.29 (0.28) 0.02 (0.06)

For each feature set and sampling frequency fs, the table shows the median (IQR) over the

20 iterations for R2
train on the train set as well as R

2
test, the MAE in weeks on test set and

the pvalue for the F-statistics of the regression. IQR here stands for the difference between

25 and 75% quantiles.

TABLE 5 | LASSO selected features for the linear mixed-effect model.

POST-BRADYCARDIA (PB) EPOCHS

Feature type

Minimum MAE log10(LF )SPWVD C2,[j1 ,j2=5,12]

Spectral log10(LF )SPWVD log10(LF )Wavelet

Fractal C2,[j1 ,j2=5,12]

BETWEEN-BRADYCARDIA (BB) EPOCHS

Feature type

Minimum MAE log10(VLF )Wavelet log10(LF )SPWVD C2,[j1 ,j2=5,12]

Spectral log10(LF )SPWVD

Fractal C2,[j1 ,j2=5,12]

WITHIN-BRADYCARDIA (WB) EPOCHS

Feature type

All log10(LF )Wavelet C2,[j1 ,j2=5,12]

Minimum MAE log10(LF )Wavelet

Fractal Hexp,[j1 ,j2=5,12] C2,[j1 ,j2=5,12]

For each feature set, the features that have been selected more than 40% of times have

been reported. σRR and µRR stand for the standard deviation and the mean of HRV.

log10 (LF ) and log10 (VLF ) stand for the absolute power in the LF and VLF bands. Results

are reported for the Wigner-Ville distribution (SPWD) or the wavelet transform. Hexp,[j2 ,j2 ]

and c2,[j2 ,j2 ] stand for the Hurst exponent and the parameter c2 in the range [j1, j2 ].

together with the absolute power in all investigated frequency
bands. These findings also confirm the results by Mulkey et al.
(2018), who found a greater discrimination ability of the absolute
power than relative indices in the classification between preterm
and full-term neonates. The lack of stationarity and the 1/f
spectrum behavior makes it difficult to describe the autonomic
maturation without all the frequency bands in place or the fractal
indices Hexp and c2, which are also involved in the estimation of
the development (Table 5).

These findings seem to suggest that the ratio LF
HF is not

the most suitable index for the sympathovagal balance and

the common HRV frequency bands are suitable for infants. As

anticipated, David et al. noticed that the fetal heart-rate has
such enhanced slow-wave baseline, which increases the power

in the VLF band such that both David et al. (2007) and Hoyer

et al. (2013) used the ratio VLF
LF as a possible index to describe

the sympatho-vagal interplay. This approach is confirmed by

the results in Figure 4. As discussed by Abry et al. (2010) and

Doret et al. (2015), the spectral ratio is linked to Hexp via (10).

The panels suggest that the ANS modulation and its fractal

regularity lie in the lower-frequency bands since theHexp is more

correlated with VLF
LF . The Pearson correlation coefficients ρxy

between VLF
LF and H are respectively 21, 49, 43% according to

different windowing schemes. These are significantly higher than

ρxy between LF
HF and Hexp (18, 20, and 36%). It is important to

notice that the Hexp matches the spectral ratio if its estimation
range [j1, j2] matches the frequency bands with most of the
exponential decay in the PSD. In this study, [j1, j2 = 5, 12]
covers specifically the lower frequency bands. These frequency
band’s importance is confirmed by the features selected by
LASSO (Table 5). In line with Doret et al. (2015), the current
findings clearly suggest a redefinition of LF

HF with an extension of
frequency bands from the most common adults’ range, e.g., LF =

[0.02−0.15]Hz andHF = [0.15−1.3]Hz. They also highlight the
greater prominence of the slower oscillations in the description of
premature ANS.

However, the results also highlight the disruptive role of
bradycardias in maturation analysis. As anticipated, the best
regression results are achieved in the between bradycardia epochs
(Table 4), and the relationship between the spectral ratios and
the Hexp is disrupted with WB windowing (panels with magenta
circle in Figure 4). Most importantly, the relationship between
the temporal features and maturation is lost, as highlighted
by the poor R2 (Table 4 and panels with magenta circles in
Figure 3). In addition, Gee et al. (2017) observed that the LF
power, the variance and the regularity of the heart-rate increase
before bradycardias. The results in Figure 3 and Supplementary

Tables 4, 5 support this increase in variance and regularity (as
can be easily noticed by the y-axis of σRR or any other features
of the left column in Figure 3). This finding clearly implies
that the exclusion of bradycardias is fundamental whenever
using the standard deviation and the mean of the tachogram
to assess the maturation of ANS. Figure 4 also shows that
bradycardias annihilate the expected relationship between the
spectral ratios and the Hurst exponent. This is further proof that
bradycardias disrupt the vagal tone (Porges, 1995), which can
distort the PSD power-law in Equation (8). However, Table 4
shows that the autonomic age models within bradycardia can
maintain comparable performance to the other two windowing
schemes thanks to the spectral features. In particular, Table 5
confirms that the most selected power attribute is the power
in LF = [0.08 − 0.2] Hz, as further proof of the central role
of this range in the bradycardic event and ANS maturation
(David et al., 2007; Hoyer et al., 2013; Gee et al., 2017). The
role of bradycardias might be further investigated via proper
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conditioning with respiration or SpO2 signals. Unfortunately,
saturation and respiration data were not available in this dataset
and ECG derived respiration does not properly estimate the
breathing activity due to the small rib cage of the infants
and possible skin stripping (Pereira et al., 2017). As already
mentioned, bradycardias can also arise independently from
hypoxic or apneic events (Poets et al., 1993). Therefore, this study
solely looked at the HR instabilities, but future analysis might
comprehend a full cardiovascular assessment to describe the ANS
maturation and take into account the influence of the recovery
period from the bradycardia spike.

It is also important to highlight some limitations of the current
study. One may object to the exclusion of proper sleep-staging
in the current analysis, as normally done by Curzi-Dascalova
(1994). However, the specific focus on the bradycardia effect
strongly limits the number of windows available. On top of
that, bradycardias are events normally associated with active
sleep (Porges, 1995) and most of the annotated bradycardias
in this study were found during states that were not associated
with quiet sleep. Similarly, one may also find the number of
patients limited, but it was caused by the difficulties in the
follow-up. All the included patients had normal developmental
outcome at 2 years and the development assessment process
is normally characterized by large drop-outs. Concerning the
methodology, the different spectral methods (Welch, Wavelet,
and Wigner-Ville) show very similar spectral trends, but LASSO
more frequently tends to select time-frequency distribution
features (Wavelet andWigner-Ville, Supplementary Tables 4, 5).
Although there are studies that claim the superiority of the
quadratic time-frequency methods (Orini et al., 2012; Widjaja
et al., 2013), the current findings show the wavelet approach
would suffice for the spectral analysis. Concerning other
sampling frequencies, negligible differences were found and a
full discussion is reported in the Supplementary Material. It
should also be mentioned that the current study was designed
to provide growth charts based on the three principles by
Hoyer et al. (2013): increase of variability, pattern formation
and increase of complexity. We decided to replace the multiscale
entropy with the multifractality due to the non-stationarity of
the HRV signals and the relationship between spectral and
fractal features (especially the spectral ratio in 10). However,
the state space and the increase of complexity could also be
monitored by entropy measures, such as the multiscale entropy
or the asymmetries of HRV (Porta et al., 2008). In order to
have a complete overview of the autonomic changes, future
studies should not only analyze the specific frequency bands
and the fractal properties of the signal, but they should include
changes in the probability densities and the conditional entropy
of the signal (Porta et al., 2015, 2017). This might not only
provide a universal framework to describe the development of
the autonomic nervous system in infants but also a further
assessment of the bradycardia impact on the state-space of the
tachogram. As also mentioned earlier, a full extension of this
analysis should also include respiration signals and arterial blood
pressure to provide a complete overview of the cardiovascular
regulation of the premature infant (Porta et al., 2006; Montalto
et al., 2014).

In a nutshell, the HRV analysis might be a useful tool for
development monitoring, but two important factors have to be
taken into account. First, the neonatal HRV is characterized
by a very-low-frequency tone which requires a redefinition of
the different frequency bands to the autonomic stimulation.
Second, bradycardias have a disruptive role in the assessment
of maturation.

5. CONCLUSION

The present study investigated the maturation of the preterm
autonomic nervous system by means of temporal, spectral
and fractal features of HRV. Three main findings can be
reported. First, infants’ maturation can be described by means
of multifractal and spectral analysis, which show an increasing
trend of LF power as well as a decreasing trend of fractal
regularity with increasing post-menstrual age. The best obtained
performances (R2 = 0.68 andMAE= 1.56 weeks) are obtained as
combination of fractal and spectral features and are comparable
to other developmental models reported by different authors
(Hoyer et al., 2013; De Wel et al., 2017; Lavanga et al., 2017,
2018). Second, this predominance of LF and VLF bands as well
as the lower scales for the multifractal indices suggest that the
sympathovagal balance of neonates might not simply be related
to the ratio LF

HF , but the entire HRV band and the regularity of
the tachogram should be included to have a better understanding
of the ANS maturation. Third, bradycardias might forcefully
increase the variance of the heart rate and disrupt the relationship
between autonomic indices and age, especially for commonly
used metrics in clinical practice. The PMA estimation models
based on novel HRV indices provide a more comprehensive
understanding of post-natal autonomic maturation. They can
be also considered an alternative automated maturity index
to other electrophysiological data analysis for the NICU. This
research might be a first step to design personalized therapies or
preventive care to preserve infants’ development.
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