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ABSTRACT

The ability of estrogen receptor a (ERa) to modulate
gene expression is influenced by the recruitment of
a host of co-regulatory proteins to target genes. To
further understand how estrogen-responsive genes
are regulated, we have isolated and identified
proteins associated with ERa when it is bound to
DNA containing the consensus estrogen response
element (ERE). One of the proteins identified in this
complex, proliferating cell nuclear antigen (PCNA),
is required for DNA replication and repair. We show
that PCNA interacts with ERa in the absence and
in the presence of DNA, enhances the interaction
of ERa with ERE-containing DNA, and associates
with endogenous estrogen-responsive genes.
Interestingly, rather than altering hormone respon-
siveness of endogenous, estrogen-responsive
genes, PCNA increases the basal expression of
these genes. Our studies suggest that in addition
to serving as a platform for the recruitment of
DNA replication and repair proteins, PCNA may
serve as a platform for transcription factors involved
in regulating gene expression.

INTRODUCTION

Estrogen receptor alpha (ERa) is a ligand-activated
transcription factor that alters the expression of a wide
variety of estrogen-responsive genes in target cells (1,2).
It is essential for development of the reproductive tract
and maintenance of reproductive function (3,4).
ERa is comprised of six functional domains (A–F) that

have been evolutionarily conserved (5,6). The most highly
conserved region is domain C, the DNA-binding domain
(DBD), which is comprised of two zinc finger domains.
The DBD is necessary and sufficient for specific interac-
tion of the receptor with its DNA recognition sequence,
the estrogen response element (ERE). Domain E, the

ligand-binding domain (LBD), is also highly conserved
and directs the specific interaction of the receptor with
hormone. In addition to these two highly conserved
domains are regions with considerable variation in amino
acid sequence, including the amino terminal A/B domain,
the carboxy terminal F domain, and the centrally located
hinge region, domain D. Sequence analysis of ERa from
different species in combination with functional studies of
mutant receptors have identified two regions of the
receptor that are important in enhancing estrogen-
responsive gene expression (7,8). The ligand-independent
activation function 1, AF-1, is localized in the amino
terminal A/B domain of the receptor and the hormone-
inducible activation function 2, AF-2, is present in the
LBD (9,10).

Upon binding hormone, ERa undergoes a conforma-
tional change, binds to EREs residing in estrogen-
responsive genes, and recruits co-regulatory proteins to
initiate changes in gene expression (11,12). These
co-regulatory proteins include chromatin remodelers,
modifiers of post-translational acetylation and phosphor-
ylation, and an increasing number of cell-cycle and DNA
repair-related factors (13–22). This extensive array of
co-regulatory proteins, which possess a wide variety
of functional activities, helps to ensure fine-tuned control
of estrogen-responsive gene expression.

In order to identify novel co-regulatory proteins
involved in ERa-mediated gene expression, we utilized a
modified gel mobility shift assay to isolate proteins
associated with the DNA-bound receptor and then
identified the isolated proteins by mass spectrometry
analysis (22,23). One protein of particular interest was
proliferating cell nuclear antigen (PCNA), which is
required for DNA replication and repair. Interestingly,
PCNA interacts directly with the DNA repair protein
flap endonuclease-1 [FEN-1 (24–26)], which we recently
identified as a modulator of ERa-mediated transcription
(22). In addition, PCNA has been used as an independent
marker of breast, renal and skin cancer (27–30).

We have characterized the association of PCNA with
ERa and find that PCNA interacts with ERa, enhances
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the receptor–DNA interaction in vitro, and associates with
endogenous, estrogen-responsive genes. Rather than
influencing estrogen responsiveness in MCF-7 breast
cancer cells, PCNA helps to maintain the basal expression
of estrogen-responsive genes.

MATERIALS AND METHODS

Isolation and identification of PCNA

Nuclear extracts (20mg) from HeLa cervical cancer cells
were incubated with annealed, 32P-labeled oligos contain-
ing the Xenopus laevis vitellogenin A2 ERE (50-GAT TAA
CTG TCC AAA GTC AGG TCA CAG TGA CCT GAT
CAA AGT TAA TGT AA-30 and 50-TTA CAT TAA CTT
TGA TCA GGT CAC TGT GAC CTG ACT TTG GAC
AGT TAA TC-30) in the absence or presence of 400 fmol
of purified, baculovirus-expressed ERa. Incubations were
performed in agarose-binding buffer (15mM Tris pH 7.9,
56mM KCl, 0.2mM EDTA, 4mM DTT, 5mM MgOAc,
0.05mM ZnCl2) with 10% v/v glycerol, 100 ng of poly dI/
dC, 1 mg salmon sperm DNA and 10 nM 17b-estradiol
(E2) in a final volume of 12.5 ml for 10min on ice. Proteins
associated with the ERE-bound ERa were separated on a
1.75% low melt agarose gel with modified TBE buffer
(4.5mM Tris pH 7.9, 44.3mM boric acid, 5.2mMMgOAc
and 1mM EDTA).

For large-scale isolation of protein complexes, reactions
were increased 10-fold and proteins were identified using
mass spectrometry analysis essentially as previously
described (23). Nine discrete peptide fragments with
amino acid sequence identical to that found in PCNA
(LVQGSILKK, NLAMGVNLTSMSK, FSASGELGNG
NIK, LMDLDVEQLGIPEQEYSCVVK, YLNFFTK,
ATPLSSTVTLSMSADVPLVVEYK, DLSHIGDAVVIS
CAK, FSASGELGNGNIKLSQTSNVDKEEEAVTIEM
NEPVQLTFALR, AEDNADTLALVFEAPNQEK)
were identified in two independent experiments. These
peptides comprised 57% of the total PCNA amino acid
sequence. Control lanes lacking ERa were run on the
agarose gels in parallel to ensure that PCNA was
associated with the DNA-bound ERa and did not
simply co-migrate with the receptor–DNA complex.

Expression and purification of his-tagged PCNA

A bacterial expression vector encoding his-tagged
PCNA (pHKEp-PCNA) was graciously provided by Zvi
Kelman [University of Maryland Biotechnology Institute,
Rockville, MD, USA (31)]. Expression and purification of
his-tagged PCNA was performed as previously described
(23). Protein purity was assessed on Coomassie stained
gels and protein concentration was determined using the
BioRad protein assay (BioRad, Hercules, CA, USA) with
BSA as a standard.

Pull-down assays using truncated ERa proteins

Pull-down assays using in vitro transcribed and translated
35S-labeled full-length ERa or truncated ERa proteins
ABC, AB, CD and DEF (32–34) were performed
essentially as described (23). Expression vectors for

�CD1 (amino acids 180–292), �CD2 (amino acids 180–
272) and C (amino acids 180–262) were provided by
Kendall Nettles (The Scripps Institute, Jupiter, FL, USA)
and synthesized as described in Stols et al. (35). Full length
and truncated ERa proteins were synthesized using the
TNT T7 Quick Coupled Transcription/Translation system
(Promega, Madison, WI, USA) and incubated with
immobilized, his-tagged PCNA. For E domain interaction
studies, pET15b-ERa (304–554) [kindly provided by
Benita Katzenellenbogen, University of Illinois, Urbana,
IL (36)] which encoded the his-tagged E domain of ERa,
was transformed into Escherichia coli, expressed and
immobilized on Ni-NTA beads as previously described
(23), followed by incubation with full length, untagged
PCNA (a gift from John Bruning and Kendall Nettles,
The Scripps Institute, Jupiter, FL, USA). Incubations
were done at 48C for 45min in binding buffer (15mM Tris
pH 7.9, 20mM KCl, 0.2mM EDTA, 4mM DTT) with
or without 10 mM E2.
Bound proteins were washed once with binding buffer,

once with wash buffer (15mM Tris pH 7.9, 100mM KCl,
0.2mM EDTA, 4mM DTT), and then eluted with
2� loading buffer (125mM Tris pH 6.8, 4% v/v SDS,
20% v/v glycerol, 1.44M b-mercaptoethanol). Eluted
proteins were separated by SDS–PAGE and subjected to
autoradiography (for 35S-labeled proteins). For pulldowns
using purified PCNA, eluted proteins were separated
by SDS–PAGE and subjected to western blot analysis
with antibodies specific for PCNA, his-tag and ERa
(sc-7907, sc-803 and sc-8002, respectively, Santa Cruz
Biotechnology, Santa Cruz, CA, USA). The blots were
probed with a horseradish peroxidase-conjugated second-
ary antibody and developed using a chemiluminescent
detection system as previously described (37).

Pull-down assays using full-length proteins

Flag-tagged full-length ERa was expressed in Sf9 cells as
previously described (38,39), immobilized on M2-agarose
(Sigma, St Louis, MO, USA), and washed with purifica-
tion buffer (20mM Tris pH 7.5, 300mM NaCl, 1.5mM
MgCl2, 0.2mM EDTA and 10% v/v glycerol). Twenty
micrograms of MCF-7 nuclear extracts or purified,
untagged PCNA (a gracious gift from John Bruning and
Kendall Nettles, The Scripps Institute, Jupiter, FL, USA)
were incubated with immobilized ERa in the absence or
presence of DNA oligos containing an ERE (described
above for PCNA isolation) or non-specific DNA sequence
(50-CTA GAT TAC TTC TCA TGT TAG ACA TAC
TCA GAT CTA GAC ATA CTC AGA TC-30 and
50-GAT CTG AGT ATG TCT AGA TCT GAG TAT
GTC TAA CAT GAG AAG TAA TCT AG-30) in binding
buffer, followed by washing and elution as described.
Eluted proteins were separated by SDS–PAGE and
subjected to western blot analysis with PCNA (sc-56 or
sc-7907) or ERa (sc-8002) specific antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). The blots were
probed with a horseradish peroxidase-conjugated second-
ary antibody and developed using a chemiluminescent
detection system as previously described (37).
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Polyacrylamide gel mobility shift assays

ERa was expressed and purified to near homogeneity as
we have previously described (38). Purified ERa measur-
ing 10–50 fmol were incubated without or with 0.5–2.5 mg
of purified his-PCNA in binding buffer with 10% v/v
glycerol, 100 ng of poly dI/dC and 10 nM E2 in a final
volume of 20 ml for 10min on ice. BSA and His elution
buffer (50mM NaH2PO4, 300mM NaCl, 250mM imida-
zole) were included as needed to maintain constant
protein and salt concentrations. For antibody supershift
experiments, an ERa- or PCNA-specific antibody (sc-8002
or sc-56, respectively, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) was added to the binding reaction and
incubated for 10min on ice prior to addition of DNA.
Radiolabeled ERE-containing oligos were added to the
binding reactions and incubated for 10min at room
temperature prior to fractionation on low ionic strength
polyacrylamide gels (40) at 48C with buffer re-circulation.
Radioactive bands were visualized by autoradiography or
were quantitated by phosphoimager analysis with Image
Quant software (GE Healthcare, Piscataway, NJ, USA).

Chromatin immunoprecipitation assays

MCF-7 cells were maintained in phenol red-containing
MEM supplemented with 5% v/v calf serum, placed on
phenol red-free MEM with 5% v/v CDCS for at least 72 h
and exposed to ethanol vehicle or 10 nM E2 for 2 h.
Chromatin immunoprecipitation assays were carried out
essentially as recommended by Millipore (Charlottesville,
VA, USA) except that pelleted cells were washed three
times in lysis buffer (10mM Tris, pH 7.5, 10mM NaCl,
3mM MgCl2) with 0.5% v/v NP-40, re-suspended in lysis
buffer with 10mM CaCl2 and 4% v/v NP-40, and treated
with 75 U micrococcal nuclease (USB, Cleveland, OH,
USA) for 10min prior to sonication. The ERa- and
PCNA-specific antibodies sc-8002 and sc-56, respectively
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), were
used for immunoprecipitation of protein–DNA com-
plexes. PCR primers (Table 1) flanking the pS2 ERE or
a region 2.8-kb upstream of this site, which contains no
known ERa-binding sequence, were used for quantitative
PCR analysis with iQ SYBR Green Supermix and the
iCycler PCR thermocycler according to manufacturer’s
directions for 40 amplification cycles (BioRad, Hercules,
CA, USA). One thousand, 5000, 10 000 and 25 000
genomic copies were run in parallel with each primer set
during each experiment to derive a standard curve. The
relative copy number for each sample was determined
from the standard curve. Each sample was run in triplicate
and data from four independent experiments is reported
as the relative number of copies of specific DNA sequence.
Significant changes in induction were calculated using
the student’s t-test.
For agarose gel analysis, MCF-7 cells were maintained

as above and treated with ethanol vehicle or 10 nM E2 for
15, 45 or 120min before chromatin was isolated as
described above using antibodies specific to ERa, PCNA
or non-specific mouse IgG (sc-8002, sc-56 and sc-2025,
respectively, Santa Cruz Biotechnology, Santa Cruz, CA,
USA). Purified ChIP DNA or 10% of input was subjected

to 30 cycles of PCR with 0.5–1.0mM MgCl2 and
iTaq DNA polymerase (BioRad, Hercules, CA, USA) in
a 20 ml reaction according to manufacturer’s directions
using primers flanking the oxytocin ERE-containing gene
region, or a control region of the non-estrogen-responsive
36B4 gene which lacks an ERa-binding sequence
(Table 1). The entire PCR reaction was run on a 1.5%
agarose gel and visualized using SYBR Safe DNA gel
stain (Molecular Probes, Eugene, OR, USA) under UV
light on a Gel Doc with Quantity One software (BioRad,
Hercules, CA, USA).

RNA interference assays

For siRNA experiments, MCF-7 cells were maintained
as stated above and seeded in 12 well plates 24 h prior to
transfection. Cells were transfected with 50 pmol of
control (renilla luciferase, 4630, Ambion, Austin, TX,
USA) or PCNA-specific siRNA oligos (Silencer validated
siRNA ID 42853, Ambion, Austin, TX, USA) in the
absence of antibiotics using siLentFect (BioRad, Hercules,
CA, USA) for 48 h. Medium was replaced with phenol
red-free MEM containing 5% v/v CDCS for an additional
24 h, followed by treatment with 10 nM E2 or ethanol
vehicle for 24 h. Preliminary time course experiments were
performed with 0–72 h of siRNA exposure to determine
the amount of time required to maintain reduced PCNA
protein levels. Protein knockdown was monitored by
western blot analysis of whole cell lysates as described
above using antibodies to PCNA and Sp1 (sc-56 and
sc-59, respectively, Santa Cruz Biotechnologies, Santa
Cruz, CA, USA). RNA was harvested using Trizol
(Invitrogen, Carlsbad, CA, USA) and processed according
to manufacturer’s directions. cDNA was synthesized using
the Reverse Transcription System (Promega, Madison,
WI, USA). Real-time PCR was performed using iQ SYBR

Table 1. PCR primer sequences

ChIP analysis

pS2 ERE-containing
region

50-CCCGTGAGCCACTGTTGTC-30

50-CCTCCCGCCAGGGTAAATAC-30

pS2 control region 50-GTATGGTGTGGTCTTGGGTTCC-30

50-GGGTTGGAGCGGCTGGAG-30

Oxytocin ERE-containing
region

50-AAGGCACCTCACCTTCTGTG-30

50-TCGGTGGAGCTCTGTTTAAGA-30

36B4 control region 50-GTGTTCGACAATGGCAGCAT-30

50-GACACCCTCCAGGAAGCGA-30

RT-PCR analysis

PCNA mRNA 50-CCTGTAGCGGCGTTGTTG-30

50-CGTTGATGAGGTCCTTGAGTG-30

PR mRNA 50-GTGCCTATCCTGCCTCTCAATC-30

50-CCCGCCGTCGTAACTTTCG-30

pS2 mRNA 50-GCTGTTTCGACGACACCGTT-30

50-TTCTGGAGGGACGTCGATG-30

ERa mRNA 50-TGCCCTACTACCTGGAGAAC -30

50-CCATAGCCATACTTCCCTTGTC-30

36B4 control mRNA 50-GTGTTCGACAATGGCAGCAT-30

50-GACACCCTCCAGGAAGCGA-30
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Green Supermix and the iCycler PCR thermocycler
(BioRad, Hercules, CA, USA) according to manufac-
turer’s directions with primer sequences specific for the
PCNA, progesterone receptor (PR), pS2 and ERa mRNA
(Table 1). The 36B4 gene, which is not regulated by E2,
was used as a control. Samples were run in duplicate for
each primer set during each experiment and standard
curves were derived using serial dilutions of cDNA
equivalent to 0.02, 0.2, 2 and 20 ng of input RNA. The
relative nanogram of RNA was determined from the
standard curve. Significant changes in RNA levels due to
specific siRNA or hormone exposure were calculated
by analysis of variance (ANOVA) with ezANOVA
(C. Rorden, www.mricro.com, Columbia, SC, USA).

RESULTS

Isolation and identification of PCNA as a potential
ERa-interacting protein

To isolate novel proteins associated with the DNA-bound
ERa, we performed agarose-based gel mobility shift
assays with 32P-labeled ERE-containing oligos, purified
ERa and HeLa nuclear extracts. Although ERa slightly
altered the migration of the ERE-containing oligos
(Figure 1A, compare lanes 1 and 2), HeLa nuclear extracts
alone did not alter migration of the radiolabeled probe
(compare lanes 1 and 3). However, when both ERa and
HeLa nuclear extracts were utilized, a higher order
protein–DNA complex was formed (lane 4). We have
shown previously that these higher-order complexes are
supershifted by an ERa-specific antibody (23). This large
protein–DNA complex was excised from the gel, proteins
were subjected to trypsin digestion and the peptides were
subjected to mass spectrometry analysis. Nine discrete
peptides, which had amino acid sequence identical to that
found in PCNA, were identified. As seen in Figure 1B,
these peptides, which were identified in two independent
experiments, represented a major portion (57%) of the
PCNA protein. Since we had previously identified two
DNA repair proteins, N-methylpurine DNA glycosylase
(MPG) and FEN-1, which alter the ability of ERa to
activate gene expression (21,22), we were intrigued by the
identification of another DNA repair protein associated
with the DNA-bound receptor.

PCNA and ERa interact

Because PCNA was isolated as a component of a large,
multi-protein complex associated with the DNA-bound
ERa, it was possible that other proteins were required
for the ERa–PCNA interaction. To determine whether
purified PCNA and ERa could interact, flag-tagged ERa
was immobilized and incubated with purified, untagged
PCNA. The purified PCNA was able to interact with the
immobilized ERa in the absence and in the presence of E2

(Figure 2A, lanes 3 and 4), but did not interact with
the resin alone (lane 2). Thus, PCNA interacts directly
with ERa.

To define which regions of the receptor are required for
interaction with PCNA, bacterially expressed, his-tagged
PCNA was immobilized and incubated with in vitro

transcribed and translated full-length or truncated ERa.
As shown in Figure 2B, full-length ERa and the amino-
terminal ABC interacted with PCNA in the absence and in
the presence of E2. Deletion of the C domain abolished the
interaction with PCNA (AB). The failure of AB alone to
interact with PCNA may reflect the relatively unstructured
nature of the AB domains in the absence of the C domain
(41–43).
Interestingly, a small portion of ERa containing only

the DBD and hinge region interacted strongly with PCNA
(CD). To further identify the central region of ERa
required for PCNA interaction, sequential truncations
of the hinge region were made. When 15 (�CD1) or 35
(�CD2) amino acids of the D domain were deleted, the
interaction of ERa with PCNA was maintained. However,
deletion of the entire D domain to amino acid 262 (C)
eliminated the interaction of the two proteins. Thus, the
inclusion of amino acids 262–272, which were previously
defined as the C-terminal extension (CTE) of the
DBD (44,45), is required for interaction with PCNA.
Interestingly, the CTE not only stabilizes the receptor–
DNA interaction, but also serves as a site for ERa
acetylation, which in turn influences ERa-mediated
transcription (46–48).

Figure 1. Isolation of PCNA. (A) Radiolabeled ERE-containing oligos
were incubated with purified ERa in the absence or presence of HeLa
nuclear extracts as indicated. Protein–DNA complexes were resolved on
an agarose gel, excised and analyzed by mass spectrometry. (B) The
locations of peptides identified by mass spectrometry analysis in two
independent experiments are indicated by gray bars.
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In addition to interacting with the central portion of
ERa, PCNA also interacted with the DEF domains.
Unfortunately, because the ERa LBD (E) interacted with
the resin used for PCNA immobilization (data not
shown), we were unable to determine whether PCNA
interacted with the E domain using this method. However,
his-tagged E domain was expressed, immobilized on
nickel-NTA resin and incubated with untagged, purified
PCNA. The his-tagged E domain bound to the resin
(Figure 2C, lower panel), but unlike the full-length ERa
(Figure 2A, upper panel), failed to interact with PCNA
(Figure 2C, upper panel) suggesting that additional
receptor domains must be required for PCNA interaction.
Thus, while neither AB, C, nor E alone was able to
interact with PCNA, combining these individual domains
with additional, adjacent amino acid sequence induced
formation of specific structural features required for
PCNA interaction. These findings are in agreement with
previous studies carried out with the progesterone and
glucocorticoid receptors, which highlighted the inter-
dependence of the receptor domains in maintaining
the structural and functional integrity of these proteins
(41–43).

Since DNA can induce allosteric changes in ERa
conformation (49–52), it seemed possible that binding of
the receptor to DNA might influence the ERa–PCNA
interaction. Baculovirus-expressed, flag-tagged ERa was
immobilized on anti-flag resin and incubated with nuclear
extracts from MCF-7 breast cancer cells, which express
endogenous PCNA (Figure 3, lanes 1 and 2). ERa and its
associated proteins were isolated, run on a denaturing
polyacrylamide gel, and subjected to western blot analysis.
PCNA interacted with ERa (lanes 5 and 6), but not with
the resin alone (lanes 3 and 4). The interaction of PCNA
with ERa was not influenced by addition of oligos
containing a non-specific DNA sequence (lanes 7 and 8)
or an ERE (lanes 9 and 10). Thus, in contrast to another
DNA repair protein, MPG, which interacts more effi-
ciently with the ERE-bound receptor than with free ERa
(21), PCNA interacted with ERa in the absence and in the
presence of DNA.

Figure 2. PCNA interacts with ERa. (A) Flag affinity resin without
(lanes 2) or with (lanes 3 and 4) purified, flag-tagged ERa was
combined with purified, untagged PCNA. (B) Nickel affinity resin
without (lanes 2) or with (lanes 3 and 4) purified PCNA was combined
with in vitro translated 35S-labeled full-length or truncated ERa or
unprogrammed lysate (UPL). (C) Nickel affinity resin without (lanes 2)
or with (lanes 3 and 4) purified his-tagged ERa E domain was
combined with purified, untagged PCNA. E2 was added as indicated.
Proteins were separated on a denaturing gel and proteins were detected
by western analysis (A and C) or autoradiography (B). Ten percent of
PCNA input was included for reference (lane 1). Results are
representative of three independent experiments.

Figure 3. ERa interacts with endogenously expressed PCNA. Flag-
affinity resin without (lanes 3 and 4) or with flag-tagged ERa (lanes 5–
10) was combined with 20 mg MCF-7 nuclear extract in the absence
(lanes 3–6) or presence of oligos containing a non-specific DNA
sequence (lanes 7 and 8) or an ERE (lanes 9 and 10). E2 was added as
indicated. ERa and its associated proteins were eluted and separated on
a denaturing gel. PCNA was detected by western analysis. Ten percent
input was included for reference (lanes 1 and 2). Results are
representative of two independent experiments.
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PCNA enhances the ERa–ERE interaction

Although the addition of DNA did not influence the
ERa–PCNA interaction, it was possible that the interac-
tion of PCNA with ERa might alter the ability of the
receptor to bind efficiently to DNA. To determine whether
PCNA influenced ERa–ERE complex formation, gel
mobility shift assays were performed with purified ERa
in the absence and in the presence of increasing amounts
of purified, his-tagged PCNA. When 10 fmol of purified
ERa was combined with radiolabeled ERE-containing
oligos, the receptor–DNA complex was barely detectable
(Figure 4, lane 1). However, a dose-dependent increase in
complex formation was seen when increasing amounts of
PCNA were included in the binding reactions (lanes 2–4).
Inclusion of an ERa-specific antibody (lane 5), but not a
PCNA-specific antibody (lane 6), supershifted the recep-
tor–DNA complex. Thus, although PCNA dramatically
increased the ERa–ERE interaction, it was not present in

the receptor–DNA complex. The failure of PCNA to form
a stable ternary complex with the DNA-bound ERa could
result from the absence of other nuclear proteins required
for stabilization of the PCNA–receptor–DNA interaction
and/or the extended period of electrophoresis required
for gel mobility shift assays, which could prohibit the
formation of a stable ternary complex containing these
two purified proteins. The ability of purified co-regulatory
proteins to enhance the receptor–DNA complex, but not
form a stable ternary complex in gel mobility shift assays,
has been reported with a number of ERa-associated
proteins by our laboratory and others (23,53–57), includ-
ing the DNA repair proteins MPG and FEN-1 (21,22).
Furthermore, these findings are consistent with the ability
of PCNA to enhance the interaction of FEN-1 with DNA
but not form a ternary complex with the DNA-bound
FEN-1 (58).

Association of PCNA with estrogen-responsive genes

Although we were unable to isolate a ternary complex
containing purified ERa and PCNA with DNA in our gel
mobility shift experiments, it seemed possible that PCNA
might be able to interact with an ERE-containing region
of an endogenous estrogen-responsive gene in its native
chromatin environment. Thus, chromatin immunopreci-
pitation assays were performed to examine the interaction
of endogenously expressed ERa and PCNA with the
native pS2 gene in MCF-7 cells using real-time PCR
analysis. Consistent with previous studies (22,23,59,60),
more ERa was associated with the ERE-containing region
of the pS2 gene in the presence than in the absence of E2

(Figure 5A). In contrast, no change was observed in the
association of ERa with a region 2.8-kb upstream of the
pS2 ERE (Control), which lacked an ERa-binding site.
Likewise, when a PCNA-specific antibody was utilized,
there was no change in the association of PCNA with
the upstream pS2 region in the absence or presence
of E2. However, a modest, statistically significant
increase was observed in the association of PCNA with
the ERE-containing region of the pS2 gene in the
presence of E2.
We also examined another ERE-containing gene region

using agarose gels to visualize the PCR products. While
both ERa and PCNA were present at the ERE-containing
region of the oxytocin gene in the absence of hormone,
more ERa and PCNA were associated with this gene
region when cells had been treated with E2 for 45min or
2 h. The protection of the pS2 ERE and the association of
ERa with the ERE-containing region of the pS2 gene in
the absence of hormone have been reported previously
(38,61). In contrast, neither ERa nor PCNA was
associated with the 36B4 gene, which contains no ERa-
binding site and is unaffected by hormone treatment.
When a non-specific IgG control antibody was utilized,
the amount of amplicon produced was far less than
observed when an ERa- or PCNA-specific antibody was
used. Thus, PCNA was present at the ERE-containing
region of the estrogen-responsive oxytocin gene in the
absence and in the presence of hormone. Combined with
our gel shift assays, which demonstrated that PCNA

Figure 4. PCNA enhances ERa–ERE complex formation. 32P-labeled
oligos containing the consensus ERE were incubated with 10 fmol of
purified ERa in the presence of E2.Purified his-labeled PCNA (lanes
2–6) and ERa- (lane 5) or PCNA- (lane 6) specific antibody (Ab) were
added to the binding reactions as indicated. Bound and unbound
32P-labeled oligos were fractionated on a non-denaturing polyacryla-
mide gel and visualized by autoradiography. Complexes containing
ERa are indicated (ERa!). Results are representative of three
independent experiments.
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enhances the ERa–ERE interaction, these findings suggest
that PCNA may help to stabilize the interaction of ERa
with endogenous, ERE-containing DNA regions in the
absence and in the presence of E2.

Effect of PCNA on transcription

The ability of PCNA to enhance the ERa–ERE interac-
tion and associate with estrogen-responsive genes

suggested that it might be able to influence ERa-mediated
transcription. To examine the potential effect of PCNA
on transcription of endogenous, estrogen-responsive
genes in their native chromatin environment, siRNA was
employed to knock down PCNA expression in MCF-7
cells. In addition, siRNA directed against renilla luciferase
was used as a control. When PCNA-specific siRNA was
used, PCNA protein levels were decreased and remained
low for 72 h after siRNA treatment (Figure 6A). In
contrast, PCNA levels were not affected by control
siRNA. The level of Sp1 protein was also monitored to
help ensure that neither of the siRNAs utilized had an
overall effect on protein expression. Sp1 is a transcription
factor that plays an important role in regulating expres-
sion of a number of estrogen-responsive genes (62)
including the progesterone receptor (PR) gene (63–68).
The level of PCNA mRNA was also examined using
quantitative real-time PCR. Exposure of MCF-7 cells to
E2 increased PCNA mRNA levels when control siRNA
was used (Figure 6B). When PCNA-specific siRNA was
used, significant decreases in PCNA mRNA were
observed in the absence and in the presence of E2.

To determine whether decreasing endogenous PCNA
expression would alter the expression of endogenous
estrogen-responsive genes, we examined the expression
of the well-studied pS2 gene. Exposure of MCF-7 cells to
E2 increased pS2 mRNA in the presence of control siRNA
as has been reported previously (22,23). Interestingly, the
PCNA-specific siRNA decreased basal pS2 mRNA levels,
but did not affect estrogen-induced pS2 mRNA levels. We
also examined expression of the human PR gene, which
lacks a palindromic ERE sequence, but instead derives
at least part of its estrogen responsiveness from multiple
AP-1 and Sp1 sites (63–68). In agreement with previous
studies (22,23), PR mRNA levels increased when MCF-7
cells were treated with E2 and control siRNA.
Interestingly, as we had observed with the pS2 gene,
basal PR mRNA levels were significantly decreased in the
presence of PCNA-specific siRNA, but no change was
observed in the level of PR mRNA when MCF-7 cells
were treated with hormone.

Since ERa regulates estrogen responsiveness, we also
examined the ERa mRNA levels. When control siRNA
was used, an E2-induced decrease in ERa mRNA level
was observed as has been reported previously (65,69).
However, when PCNA-specific siRNA was utilized, ERa
mRNA levels were decreased in the absence, but not in the
presence of E2 as we had observed with the pS2 and PR
genes. In contrast, no change was observed in the level of
36B4 mRNA, which is constitutively expressed, in the
absence or in the presence of hormone when control
siRNA was used. A slight increase in the level of 36B4
mRNA was detected in the presence of E2 when the
PCNA-specific siRNA was used, but the magnitude of this
increase was less than the decreases in basal mRNA levels
observed for the estrogen-responsive genes.

These experiments demonstrate that although decreased
PCNA levels did not alter the estrogen responsiveness of
the PR, pS2 and ERa genes, significant decreases in basal
mRNA levels were observed. Combined with our ChIP
experiments, our findings suggest that PCNA may help to

Figure 5. PCNA associates with endogenous estrogen-responsive genes.
(A) Sheared chromatin from MCF-7 cells, which had been treated with
ethanol vehicle (white bars) or 10 nM E2 for 2 h (gray bars), was
immunoprecipitated with an ERa- or PCNA-specific antibody. DNA
was isolated and real-time PCR was performed in triplicate to monitor
the association of ERa and PCNA with the region of the pS2 gene
containing an imperfect ERE or a region 2.8-kb upstream of the pS2
ERE (Control). Standard curves were derived for each primer set and
the relative copy number for each sample was obtained based on the
standard curve. Data from four independent experiments are expressed
as the mean� SEM. A significant change in the copies associated
induction in the presence of E2 was determined by Student’s t-test and
is indicated by an asterisk (�, P< 0.05). (B) Sheared chromatin from
MCF-7 cells, which had been treated with ethanol vehicle or 10 nM E2

for 15, 45 or 120min, was immunoprecipitated with an ERa- or
PCNA-specific antibody or non-specific IgG. DNA was isolated and
subjected to PCR amplification to monitor the association of ERa and
PCNA with the ERE-containing region of the oxytocin gene or the
non-estrogen-responsive 36B4 gene. Ten percent of input DNA was
included as a control. PCR products were run on 1.5% agarose gels,
stained and visualized using UV light. Results are representative of
three independent experiments.
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maintain basal expression of estrogen-responsive genes by
stabilizing the interaction of the receptor with DNA in the
absence of hormone.

DISCUSSION

We have identified a novel interaction between ERa and
PCNA, a protein required for DNA replication and
repair. We have shown that PCNA interacts with ERa,

enhances the ERa–ERE interaction and helps to maintain
basal expression of estrogen-responsive genes.
PCNA is present in cells as a homotrimer comprised of

three PCNA monomers that encircle the DNA helix in a
head-to-tail orientation (70). While associated with DNA,
PCNA serves as a loading dock for proteins involved in
DNA replication and repair. It binds to DNA polymerase
d and FEN-1 and increases their catalytic activities
thereby enhancing DNA replication and processing of
Okazaki fragments (58,71).PCNA participates in numer-
ous DNA repair pathways including nucleotide excision
repair, base excision repair, mismatch repair and double-
strand break repair (72–77). The extraordinary versatility
of PCNA is evident in its ability to interact with more than
20 polymerases, ligases, endonucleases and helicases
involved in DNA replication and repair (78).
PCNA functions as a sliding clamp that advances along

template DNA while recruiting DNA replication and
repair factors and tethering them to DNA (79). Although
the association of many replication factors with DNA is
transient, the interaction of PCNA with DNA is more
sustained (80). It has been suggested that the continued
association of PCNA with DNA and the transient
association of its binding partners enables PCNA to
simultaneously coordinate DNA replication, DNA repair
and cell-cycle progression (74,78). This persistent associa-
tion of PCNA with DNA might explain the presence of
PCNA at the endogenous ERE-containing gene regions in
the absence of E2 and the modest increases we observed
in the presence of E2.
In addition to its interaction with ERa, previous studies

have documented the interaction of PCNA with other
transcription factors including the retinoic acid receptor
(RAR) and the nuclear receptor coactivator p300 (81,82).
Since the E2-occupied ERa interacts with p300
(18,47,83,84) and p300 interacts with PCNA, PCNA
may help to form an interconnected network of regulatory
proteins associated with nuclear receptors to modulate
gene expression in the presence of hormone. Our ChIP
assays (Figure 5) suggest that PCNA may also be essential
in stabilizing the receptor–DNA interaction and main-
taining basal expression of estrogen-responsive genes
in the absence of hormone, when fewer co-regulatory
proteins are present to stabilize the ERa–ERE interaction.
Thus, in addition to serving as a platform for the
recruitment of proteins involved in DNA replication and
repair, PCNA may serve as a platform for nuclear
receptors and co-regulatory proteins involved in modulat-
ing transcription.
Recently, Ivanov et al. (85) used computer modeling

to examine PCNA–DNA interaction and showed that
PCNA contacts the minor groove of the DNA helix
and causes the DNA to tilt. Previous work from
our laboratory demonstrated that ERa CTE induces
conformational changes in DNA structure resulting in
compression of the major groove and expansion of the
minor groove (39,86). Since the ERa CTE is required for
interaction with PCNA and stabilizes the ERa–ERE
interaction (46), it is possible that PCNA may foster the
ERa–ERE interaction by altering DNA structure.

Figure 6. Knocking down endogenous PCNA expression alters gene
expression. MCF-7 cells were transfected with 50 pmol of double-
stranded control siRNA directed against renilla luciferase (Control) or
PCNA-specific siRNA. (A) After 0–72 h, whole cell lysates were
subjected to western analysis using a PCNA- or Sp1-specific antibody.
Results are representative of two independent experiments. (B) After
72 h, cells were treated with ethanol vehicle (white bars) or 10 nM E2

(gray bars) for 24 h, RNA was harvested and cDNA was synthesized.
Real-time PCR was performed using primers specific to PCNA, PR,
pS2, ERa or 36B4 mRNA sequences. Standard curves were derived for
each primer set in each experiment. The relative amount of RNA
obtained for each sample was calculated from the standard curve. Data
are reported as the mean of three replicates�SEM. One representative
of four independent experiments is shown. Significant differences
(P< 0.05) in E2-treated cells compared to the corresponding ethanol
vehicle (a) or control siRNA (b) were determined by ANOVA and are
indicated. Some error bars are too small to be visible.
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Although increased PCNA expression has been
reported in proliferating normal cells (73,74,87–89) and
at the site of uterine implantation (90,91), increased
expression of PCNA has also been linked to decreased
survival of breast cancer patients (29,92–94). Interestingly,
a post-translational modification of PCNA that lowers its
DNA replication fidelity has been found in MCF-7 cells
and in malignant breast and ovarian cancers, but not in
normal tissues (95,96). It has been suggested that this
decreased fidelity of the modified PCNA in cancer cells
may play a role in tumor progression and decreased
survival, whereas the unmodified PCNA in normal cells
may help to protect the integrity of the genome.
While PCNA is required for DNA replication and

repair and has been used as a marker of proliferation, our
studies expand the functional repertoire of PCNA from
the realm of DNA replication and repair and highlight
its involvement in altering gene expression.
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