
sensors

Article

Prediction of Head Movement in 360-Degree Videos Using
Attention Model

Dongwon Lee 1, Minji Choi 2 and Joohyun Lee 1,*

����������
�������

Citation: Lee, D.; Choi, M.; Lee, J.

Prediction of Head Movement in

360-Degree Videos Using Attention

Model. Sensors 2021, 21, 3678.

https://doi.org/10.3390/s21113678

Academic Editor: Nikolaos Doulamis

Received: 16 March 2021

Accepted: 23 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Korea;
dw2689@hanyang.ac.kr

2 Division of Electrical Engineering, Hanyang University, Ansan 15588, Korea; mjlilac97@hanyang.ac.kr
* Correspondence: joohyunlee@hanyang.ac.kr

Abstract: In this paper, we propose a prediction algorithm, the combination of Long Short-Term
Memory (LSTM) and attention model, based on machine learning models to predict the vision
coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR)
system. Predicting the vision coordinates while video streaming is important when the network
condition is degraded. However, the traditional prediction models such as Moving Average (MA)
and Autoregression Moving Average (ARMA) are linear so they cannot consider the nonlinear
relationship. Therefore, machine learning models based on deep learning are recently used for
nonlinear predictions. We use the Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) neural network methods, originated in Recurrent Neural Networks (RNN), and predict the
head position in the 360-degree videos. Therefore, we adopt the attention model to LSTM to make
more accurate results. We also compare the performance of the proposed model with the other
machine learning models such as Multi-Layer Perceptron (MLP) and RNN using the root mean
squared error (RMSE) of predicted and real coordinates. We demonstrate that our model can predict
the vision coordinates more accurately than the other models in various videos.

Keywords: LSTM; GRU; head movement; time-series prediction; machine learning; attention model

1. Introduction

Virtual Reality (VR) is a simulated experience that is similar or different from the
real world. VR can be applied to entertainment and education. Another type of VR is
Augmented Reality (AR) which contains a combination of real and virtual worlds, real-time
interaction, and accurate 3D registration of virtual and real objects [1]. To implement these
systems, they require VR headsets to generate images, sounds, and other sensations. The
headsets consist of a Head-Mounted Display (HMD) with a small screen in front of the
eyes which shows 360-degree images.

Currently, VR systems are generally based on desktop computers containing a virtual
world. In other words, it displays the virtual world on a regular desktop display without
using any positional tracking equipment. However, as Sergio et al. presented an end-
to-end system for VR and AR telepresence called Holoportation in 2016 [2], low-latency
communication became a core issue. As it is not possible to guarantee the low-latency
network in any place, we propose another method to implement a real-time VR and AR
system. This method predicts the head movement of various users watching a 360-degree
video with HMD. Therefore, it can automatically track the focus in the real-time VR system
even though the network condition is poor.

Prediction is used in a variety of fields including economics and statistics. Recently, it
is expanded to communication systems. The traditional prediction models are generally
Moving Average, Autoregression, Autoregression Moving Average model [3]. These
models have been used in economics or statistics based on correlations among the data.
However, they are not suitable in communication systems because their data may have

Sensors 2021, 21, 3678. https://doi.org/10.3390/s21113678 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7698-1568
https://www.mdpi.com/article/10.3390/s21113678?type=check_update&version=1
https://doi.org/10.3390/s21113678
https://doi.org/10.3390/s21113678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113678
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3678 2 of 22

few correlations. Therefore, the novel prediction models are based on machine learning
approaches such as Random Forest [4], Support Vector Machine [5], or neural network [6].

Neural networks have a variety of models and are generally classified into feedfor-
ward and Recurrent Neural Network (RNN). Feedforward neural network is the first and
simplest type of artificial neural network. The information moves in only one direction,
from the input to the output nodes. Therefore, there are no cycles or loops in the network.
Single-layer perceptron and Multi-Layer Perceptron (MLP) are kinds of feedforward neural
networks. On the other hand, in the RNN, nodes form a graph or cycle along a sequence.
Due to this cycle, RNNs can deal with the internal state to process variable length of
inputs [7].

Inspired by the neural networks, the attention model has appeared to solve two big
problems of previous machine learning methods. First, as RNN tries to compress all the
pieces of information in one fixed-size vector, information loss occurs. Second, there is a
vanishing gradient problem, which is the chronic problem of RNN. In other words, when
the input data are long, there is a phenomenon of poor quality. Therefore, in order to
correct this phenomenon, an attention technique focuses on important data and deliver
them directly to the decoder appeared.

In this paper, we propose a prediction algorithm using an LSTM or GRU model with
an attention model. The contributions of our paper are as follows: (i) to our knowledge, it is
the first work that predicts the head movement coordinates, which are kinds of time-series
data, using attention technique, and (ii) we generate an attention model motivated by
transfer learning [8] and online learning [9], and employ various experiments to verify the
effectiveness of our algorithm.

We introduce related work regarding various models to predict time-series data and
several methods to predict head movement in Section 2. Subsequently, we formulate the
prediction problem and architecture and internal operations of the LSTM unit, GRU, and
attention model [10] in Section 3. Then, we analyze a dataset that we are going to use and
apply the algorithm to the head movement data, which is described in Section 4. Finally, we
verify the result by playing the video and compare its performance with other prediction
models in Section 5.

2. Related Work
2.1. Time-Series Data Prediction Models

Time-series data represent a series of data points listed in time order. There are
various models for predicting time-series data. The models can be classified into linear and
nonlinear models depending on the distribution of the data. Autoregressive integrated
moving average (ARIMA) models [11] represent one of the linear models that has been
widely used for time-series prediction. Adebiyi et al. [12] built the ARIMA model for stock
price prediction and concluded that it has a strong ability for short-term prediction. In the
1990s, more various types of models using machine learning were introduced. Support
vector machine (SVM) or support vector network is a linear model that analyzes data used
for classification and regression. However, ARIMA and SVM models require parameters for
prediction. Therefore, an additional algorithm is needed to obtain the optimal parameters
since they determine the accuracy of the model. Xibin et al. [13] used the particle swarm
optimization algorithm [14] to find the optimal parameters of the SVM model for predicting
the real estate price.

However, setting the optimal parameters using these algorithms takes so much compu-
tation time, so there is a limitation of accurate prediction for these data using only the linear
models. Artificial neural network (ANN) models can capture the nonlinear relationship
in the data through a learning (or training) process. The ANN models can be generally
divided into feedforward [15] and recurrent neural network (RNN) [16] depending on the
structure of the network. Yi-Shian et al. [17] combined ARIMA and ANN model to improve
the prediction performance. As a result, the combined model analyzes the linear part of the
data with the ARIMA model and the nonlinear part with the ANN model. Shiblee et al. [18]

Sensors 2021, 21, 3678 3 of 22

created a multilayer perceptron (MLP) model, which is one type of feedforward neural
network model, for predicting several types of time-series data such as Internet traffic,
stock index, and petroleum sales data.

As the traditional RNNs have a vanishing gradient problem, long short-term memory
(LSTM) and gated recurrent unit (GRU) models are mainly used as the representative RNN
models. Sima et al. [19] proved that the LSTM model can perform better than the ARIMA
model by experimenting on financial time-series data. PERCEIVE [20] used a 2-stage LSTM
model to predict uplink throughput in cellular network. Yuxiu et al. [21] created an LSTM
model with the random connection between nodes. Therefore, it reduced the total number
of parameters to be trained and the computation load.

LSTM models are often combined with other deep learning models. LC-RNN [22] is a
deep learning model with a combination of convolution neural network (CNN) and LSTM
for traffic speed prediction. As the CNN model is suitable for analyzing images, it was
used to capture the spatial traffic flow of a certain area. Then, the LSTM model estimated
the time-series patterns from the extracted data. Guowen et al. [23] predicted short-term
traffic flow with the GRU model. They performed time and spatial correlation analysis
and extracted the traffic flow data as an input feature of the GRU model. Rui et al. [24]
compared the performance of the LSTM and GRU model and concluded that both models
did not show a big difference.

2.2. Head Movement Prediction Methods

There have been new challenges to 360-degree video processing. The resolution and
bit rates of 360 videos are considerably higher than traditional two-dimensional videos.
Therefore, a novel compression method is required to alleviate the network load while
preserving the quality of experience for video streaming. One unique fact for viewing
360-degree videos is that the viewers only focus on the viewport, which is a small part of
the whole 360-degree video. In other words, it is possible to apply the quality degradation
outside of the viewport because this part is rarely seen by the viewers.

Based on this fact, Cornia et al. [25] proposed an Attentive Convolutional LSTM model
that focuses on relevant location, which is usually called salience, in the image. Although
this model predicts salience for two-dimensional images, it is a fundamental method to
estimate salience for 360-degree videos. Zhu et al. [26] predicted a salient area for 360-
degree images and created a scanpath that contains the variance of visual perception and
attention. Stefano et al. [27] presented a trajectory-based viewport prediction algorithm by
grouping past users exhibiting similar viewing trajectories using spectral clustering. They
created a model of the viewport evolution overtime for certain groups. Afshin et al. [28]
and Silvia et al. [29] also used clustering for the viewport prediction method that integrates
viewport pattern information from the previous video frames.

However, the previous salience prediction method focuses on static scenes, so it is
easy to generalize the eye fixation on a certain scene. However, on dynamic scenes, this
method showed lower performance than the static scenes. Therefore, Yanyu et al. [30]
explored gaze prediction in 360-degree videos. In other words, they predicted where a
viewer will see in the future. Ching-Ling et al. [31] developed fixation prediction networks
to predict the viewer fixation. HOP [32], the Historical viewport trajectory of viewers and
Object tracking Prediction, is a deep learning-based viewport prediction model.

3. System Model
3.1. Prediction Problem

We consider a 360-degree video whose length is T time slots. N viewers have
watched this video, and we record the time series of vision coordinate vectors of user i as
Yi = {yi

1, yi
2, · · · , yi

T} for i ∈ {1, · · · , N}, where yi
t is the vision coordinate vector at slot

t. In the machine learning problem, the dataset is split into a training set and a test set.
We choose the datasets of M people for the training set denoted as X = {Y1, Y2, · · · , YM}.
Then, we select the test dataset from the rest of the viewers, YM+1, YM+2, · · · , YN . The

Sensors 2021, 21, 3678 4 of 22

goal of the prediction problem is to estimate YM+k, where k = 1, 2, · · · , N −M, using the
previous data points. We use the set of time-series data to train a prediction model using
machine learning, which will be explained in Section 3.2.

3.2. Sliding Window Method

For this prediction model, we use the sliding window method [33] when training a
time-series dataset. It takes w previous data points as an input vector and computes one
output data. In other words, yi

j = (yi
j−w+1, yi

j−w+2, · · · , yi
j) is an input vector and ŷi

j+1 is

an estimated value of yi
j+1 using an internal function δi

j : yi
j → ŷi

j+1, where j is an index
such that w ≤ j ≤ T − 1.

We can also adjust the time step of the output value, instead of estimating yi
j+1. For

example, if we want to estimate the output after r time steps, δi
j : yi

j → ŷi
j+1 will be switched

to δi
j : yi

j → ŷi
j+r. The function δi

j will be approximated by a neural network introduced in

Section 3.3. δi
j is updated for each time step until the function computes the final output

value ŷi
T . To check that the function δi

j fits the training data, a loss function Li
j is defined.

The function Li
j : (yi

j, ŷi
j) → R computes the error between training and estimated data,

e.g., |yi
j − ŷi

j|, or a square of difference, (yi
j − ŷi

j)
2.

After completing the learning process, the internal function δM
T computes T test

samples ŶM+k = {ŷM+k
1 , ŷM+k

2 , · · · , ŷM+k
T } using the previous w data points, where ŷM+k

j

is the corresponding value of yM+k
j estimated by the function, where j is an integer from 1

to T. Then, we can evaluate the performance of the function by comparing elements in the
real T test set YM+k and the predicted set ŶM+k. We compute the overall error by averaging
the error of each data point, |yM+k

j − ŷM+k
j |, or a square of difference, (yM+k

j − ŷM+k
j)2.

3.3. Methodology

The attention model [34] is an input technique for a neural network that focuses on
certain features of input data. It is an improved model of the encoder–decoder model [35],
which is designed to correspond to the various length of the input sequence. It allows the
decoder to select information from the encoder by generating a different vector for every
time step of the decoder and calculating it in the function of the previous hidden state
and every hidden state of the encoder with weight W. Consequently, the Attention model
adjusts importance to the various elements of the input sequence and focuses on more
relevant inputs (Figure 1).

Figure 1. Structure of the Attention model.

The encoder layer is a stack of recurrent units, such as RNN, LSTM, or GRU cells,
which accept a single element of the input sequence xt. Each hidden state et is computed as
an output of a function of weighted sum of the previous hidden state et−1 and the current
input xt. This process can be expressed as Equation (1).

Sensors 2021, 21, 3678 5 of 22

The context vector ct is the output of the encoder layer and becomes the input for the
decoder. It contains the information for the input sequence to allow the decoder to estimate
the final output sequence. To calculate ct, we compute the alignment score s(j, t), that is, a
combination of j-th time step in the encoder and t-th time step in the decoder, expressed
as Equation (2). In Equation (2), W, U, and V are weights of the model that are updated
during the training process. W is the weight in the hidden states of the encoder, U is the
weight in the input layer, and V is the weight in the hidden states of the decoder. The
alignment score is normalized using softmax function expressed as Equation (3), and it is
called the attention weight α(j, t). The attention weight determines the importance of the
input of time step j for the output of time step t. Finally, the context vector is computed as
the weighted sum of every hidden state of the encoder, expressed as Equation (4).

The decoder layer contains a stack of recurrent units, which accept ct as the input
sequence of the decoder. The hidden state dt is computed as an output of a function
of context vector ct, the previous hidden state dt−1, and the previous output ŷt−1. This
process can be expressed as Equation (5). It enables to find the correlation between several
input elements and corresponding output elements. Then, the final output is calculated by
applying the softmax function to the weighted hidden state, expressed as Equation (6).

et = f (Wet−1 + Uxt) (1)

s(j, t) = V tanh(Udt−1 + Wej) (2)

α(j, t) =
exp s(j, t)

∑M
j=1 exp s(j, t)

(3)

ct =
T

∑
j=1

α(j, t)ej (4)

dt = f (dt−1, ŷt−1, ct) (5)

ŷt =
exp Vdt

∑n
t=1 exp Vdt

(6)

4. Dataset and Model Description
4.1. Head Movement Dataset

In this section, we make a brief description of the dataset and analyze the data. The
dataset used in this paper is a 360-degree video head movement dataset obtained from the
navigation patterns of 59 users watching the videos with an HMD in 2017 [36]. The ages of
users are from 6 to 62 with an average age of 34 years. Twenty percent of users are women
and 61% of users have never used an HMD before. They watch five videos for ~70 s each.

The content of the videos is a diving scene, moving roller coaster, time-lapse of New
York, virtual reconstruction of Venice, and guided tour of Paris, respectively. We name
initials for each video and describe them in Table 1. Each video is available on YouTube
searching for its YouTube ID. The spatial resolution of the videos is 3840 × 2048 pixels
for all videos and the frame rate ranges from 25 to 60 fps (frame per second). Every 360-
degree video is converted into an equirectangular format, which is one stitched image
of 360 degrees horizontally and 180 degrees vertically. This dataset represents the head
position using the unit Hamiltons quaternion, which is denoted as Equation (7):

q = (q0, q1, q2, q3) = (q0, q1i + q2j + q3k) = (cos(θ/2), sin(θ/2)v) (7)

where i, j, k are orthonormal bases, θ is a given angle, and v is an unit vector such that
v = (x, y, z) = xi + yj + zk [37]. This quaternion expression has some advantages. It is
simpler than the matrix representation, and it is not affected by the gimbal lock [38], which
is a critical issue of the Euler angles representation [39]. The length of an epoch (time index)
is the inverse of the frame per second (e.g., 33 ms for 30 fps).

Sensors 2021, 21, 3678 6 of 22

Table 1. Description of the videos used for head movement prediction.

Name YouTube ID Content Description Frame
Rate [fps]

Average Length of
Time Index [ms]

Diving 2OzlksZBTiA Diving scene 30 33
Timelapse CIw8R8thnm8 Timelapse of streets in New York 30 33
Paris sJxiPiAaB4k Virtual guided tour of Eiffel Tower district 60 16
Rollercoaster 8lsB-P8nGSM Riding a rollercoaster 30 33
Venice s-AJRFQuAtE Virtual reconstruction of Venice 25 40

Then, the dataset records the head positions for each frame using quaternion. Our
main task is to predict these values using the machine learning models. In order to apply the
data to the machine learning models, we normalize the value using min-max normalization,
which sets the range of the data to [0, 1] given in Equation (8);

y′i =
yi −min(Y)

max(Y)−min(Y)
(8)

where yi is an original value, and y′i is the normalized value. In learning, y′i is used instead
of yi.

4.2. Correlation among Coordinate Components

We investigate correlation among four coordinate components, q0, q1, q2, q3, in the
head movement dataset. We use Pearson correlation coefficient [40] defined as Equation (9),

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(9)

where n is the number of data points, xi and yi are data points, and x̄ and ȳ are mean of data

points, i.e. x̄ =
1
n

n

∑
i=1

xi and ȳ =
1
n

n

∑
i=1

yi, in each component. rxy denotes the correlation

coefficient of component x and y. The range of rxy is |rxy| ≤ 1, so if the absolute value of
rxy is close to 1, then two components are highly correlated. Conversely, if |rxy| is close to
0, then two components are rarely correlated.

We choose several data samples in the head movement dataset and compute the
correlation coefficients. The result of a data sample for the entire videos is shown in
Table 2. We only denote indices of components for correlation. For example, r13 denotes
the correlation coefficient between q1 and q3.

Table 2. Pearson Correlation Coefficient for head movement dataset.

Correlation r01 r02 r03 r12 r13 r23

Diving 0.2 −0.2 0.5 0.01 0.5 −0.2
Timelapse −0.07 −0.1 0.5 0.2 0.3 −0.08
Paris 0.004 −0.2 0.6 0.2 0.2 −0.1
Rollercoaster 0.1 −0.7 0.6 0.01 0.6 −0.4
Venice 0.05 −0.1 0.5 0.1 0.3 −0.06

If all components are correlated with each other, we can integrate coordinate compo-
nents as one input vector. In other words, we can use (q0, q1, q2, q3) as an input vector of
the model. As shown in Table 2, some components such as q0 and q2, q0 and q3, and q1 and
q3 are correlated each other to a certain degree. However, other components have little
correlation. We also discover that these correlations differ from each dataset. Therefore,
we can use four coordinate components as one input vector of the prediction model when
every component is correlated with each other. Otherwise, we must use each component
individually as the model may learn incorrect correlations and degrades the performance.

Sensors 2021, 21, 3678 7 of 22

4.3. Algorithm Description

The proposed attention model, generated by PyTorch machine learning library [41], is
shown in Algorithm 1. As mentioned in Section 3.1, we combine M samples of N users’
datasets as one training set and select one dataset from the remaining samples as a test
set. Then, we normalize the training set as shown in Equation (8). After processing the
data with the min-max normalization, we decide the parameters of the attention model:
numbers of input (input) and output (output) features, hidden layers in the encoder and
decoder (hidden), and fully connected layers (fc_layer). The learning rate is lr and the
number of data points in the training set is n. We also set the size of the sliding window w
and time step r for the estimation. Then we train the model with these parameters.

Algorithm 1 Prediction with an attention model.

Input: time-series dataset Yi = {yi
1, yi

2, · · · , yi
T}(i = 1, 2, · · · , M) for the training set and

YM+k = {yM+k
1 , yM+k

2 , · · · , yM+k
T }(k = 1, 2, · · · , N −M) for the test set

1: Merge training samples into one training set X = {Y1, Y2, · · · , YM} = {y1, y2, · · · , yn}
2: Normalize the training set using min-max normalization
3: Parameter: input, output, hidden, f c_layer, lr, t, w, r
4: Create an attention model with parameters input, output, hidden, f c_layer
5: while epoch ≤ t do
6: Compute an internal function δi : yi = (yi−w+1, yi−w+2, · · · , yi)→ ŷi+r

7: Apply adam optimization algorithm with initial learning rate lr
8: Extract features from the hidden states in the encoder layer; X → {e1, e2, · · · , en}
9: Multiply the attention weight; {e1, e2, · · · , en} → X̃ = {c1, c2, · · · , cn}

10: Compute the output from the hidden states in the decoder layer; X̃ →
{y1, y2, · · · , yn}

11: Compute the mean squared of loss function Li (i = 1, · · · , n− r) such that

Li =
1

n− r

n−r

∑
i=1

(ŷi+r − yi+r)
2

12: Apply back propagation and update the internal function; δi → δi+1

13: end while
Output: ŷM+k

j (j = 1, · · · , T), RMSE, and coefficient of determination (R2)

In the training process, we use the backpropagation method, which is one of the methods
for computing the gradient in the multi-layer neural networks [42], and the adam optimization
algorithm, which is one of the adaptive learning rate algorithms that can alternate the gradient
while training [43]. As explained in Section 3.3, some meaningful features are extracted in the
encoder layer from the training data. This process is expressed in Equation (10).

et = vT
e tanh(We[ht−1; ct−1] + UeXt), (10)

where et = {e1, e2, · · · , en} is an output vector from the encoder, ve, We, Ue are the param-
eters in the training, ct−1 is the previous cell state of LSTM, and ht = f1(ht−1, Xt) is the
hidden state of the encoder with an input sequence Xt = {yt, yt+1, · · · , yt+w−1} from the
input vector X = {y1, y2, · · · , yn} and a nonlinear function f1 such as an LSTM unit.

Then, these features are multiplied with the attention weights and become the input
of the decoder layer. Finally, we can get the output values from the hidden states in the
decoder. The output vector can be denoted as Equation (11).

dt = vT
d tanh(Wd[gt−1; st−1] + Udht), (11)

where vd, Wd, Ud are the parameters in the training, st−1 is the previous cell state of LSTM,
and gt is the hidden state of the decoder.

Sensors 2021, 21, 3678 8 of 22

Applying these methods, we can get the loss function that can evaluate the training
performance. This process is iterated for a certain number of times (epoch) and the value of
the loss function got smaller as the model can estimate the values well in the training set.

When the training is completed, we can predict the data in the test set that has never
been used for training with the trained model. To evaluate the performance of this model,
we use root mean squared error (RMSE) and coefficient of determination (R2) defined as
Equation (12) and square of rŷy in Equation (9), respectively, where ŷi and yi indicate the
predicted and real values, respectively.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (12)

5. Results and Evaluation

In this simulation, we first augment datasets of 40 people as one training set, then
we use each dataset of the remaining 19 people as the test set. In the head movement
prediction, the input and the output features are both the coordinate values. As the input
and output features are stored in a one-dimensional array, the numbers of the input and
output features are both 1. However, as mentioned in Section 4.2, if we can guarantee that
all components are correlated with each other, we may use a coordinate vector (q0, q1, q2, q3)
as an input of the model. In this case, we should set input as 4.

Then, we set hidden as 64 and fc_layer as 1, as too many hidden layers spend too much
time for learning and may cause overfitting and fail to estimate the test data. We also set
the time step for prediction considering the average length of time index in Table 1 and
transmitting time to a video streaming server. For example, we set w as 4 and r as 100 for
the “Diving” video, predicting the coordinate after 3 s. In this experiment, we set lr to 0.01
and iterate the training for 500 times. These parameter values are maintained the same in
the following subsections unless specifically mentioned.

We conduct the simulation on a PC with Intel i7-9700KF CPU, NVIDIA GeForce RTX
2070 GPU, 64GB RAM, and Linux Ubuntu 20.04 operating system. The prediction result
for the “Diving” video applying an attention model is shown in Figure 2. Each RMSE
value for four quaternion components is shown in Figure 3a. The average RMSE for the
“Diving” video is about 0.009, achieving approximately 90% prediction accuracy. R2 score
for each component is shown in Figure 3b. The average R2 score for the “Diving” video is
around 0.985.

We also measure the computing time for estimating the head movement coordinates of
the video. In detail, we measure the average time it took to estimate the next data point in
the test set and evaluate the performance of the model. As a result, the average computing
time for training the model is around 300 microseconds on our PC.

In the following subsections, we compare the performance of our model with several
criteria. We aim to prove that our model outperforms the previous models.

Sensors 2021, 21, 3678 9 of 22

0 500 1000 1500 2000 2500
Timestep

0.5

0.6

0.7

0.8

0.9

1.0

Co
or

di
na

te
 q

[0
]

Head Movement Coordinate Prediction

Predicted
Real Data

(a)

0 500 1000 1500 2000 2500
Timestep

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Co
or

di
na

te
 q

[1
]

Head Movement Coordinate Prediction

Predicted
Real Data

(b)

0 500 1000 1500 2000 2500
Timestep

0.3

0.4

0.5

0.6

0.7

0.8

Co
or

di
na

te
 q

[2
]

Head Movement Coordinate Prediction

Predicted
Real Data

(c)

0 500 1000 1500 2000 2500
Timestep

0.5

0.6

0.7

0.8

0.9

1.0

Co
or

di
na

te
 q

[3
]

Head Movement Coordinate Prediction

Predicted
Real Data

(d)
Figure 2. Prediction result for each quaternion component of head movement in the “Diving” video for coordinate (a) q0,
(b) q1, (c) q2, and (d) q3.

q0 q1 q2 q3 Average
Coordinate Components

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

RM
SE

RMSE for 'Diving' video

(a)

q0 q1 q2 q3 Average
Coordinate Components

0.95

0.96

0.97

0.98

0.99

1.00

R2
 sc

or
e

R2 score for 'Diving' video

(b)
Figure 3. (a) RMSE and (b) R2 score for the “Diving” video for q0, q1, q2, and q3, and the average of four coordinates.

Sensors 2021, 21, 3678 10 of 22

5.1. Machine Learning Models

We compare the RMSE values and R2 scores for the entire videos applying MLP, RNN,
and GRU model. We also compute an average of the RMSE and R2 values for all coordinate
components. As shown in Figures 4 and 5, we discover that the MLP model show the
highest RMSE and the lowest R2 score, and LSTM and GRU models show the lowest
value and the highest R2 score even though there is a little difference between LSTM and
GRU model. Therefore, we can conclude that MLP model leads to the worst forecasting
performance and LSTM and GRU model perform best among the four models.

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RM
SE

RMSE for machine learning models
MLP
RNN
LSTM
GRU

(a)

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

RMSE for machine learning models
MLP
RNN
LSTM
GRU

(b)

q0 q1 q2 q3 Average
Coordinate Components

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

RMSE for machine learning models
MLP
RNN
LSTM
GRU

(c)

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

RMSE for machine learning models
MLP
RNN
LSTM
GRU

(d)

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.02

0.04

0.06

0.08

0.10

RM
SE

RMSE for machine learning models
MLP
RNN
LSTM
GRU

(e)
Figure 4. RMSE for MLP, RNN, LSTM, and GRU models for four coordinates and average (a) Diving, (b) Time-lapse,
(c) Venice, (d) Rollercoaster, and (e) Paris video.

Sensors 2021, 21, 3678 11 of 22

q0 q1 q2 q3 Average
Coordinate Components

0.90

0.92

0.94

0.96

0.98

1.00

R2
 sc

or
e

R2 score for machine learning models
MLP
RNN
LSTM
GRU

(a)

q0 q1 q2 q3 Average
Coordinate Components

0.75

0.80

0.85

0.90

0.95

1.00

R2
 sc

or
e

R2 score for machine learning models
MLP
RNN
LSTM
GRU

(b)

q0 q1 q2 q3 Average
Coordinate Components

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R2
 sc

or
e

R2 score for machine learning models
MLP
RNN
LSTM
GRU

(c)

q0 q1 q2 q3 Average
Coordinate Components

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R2

 sc
or

e
R2 score for machine learning models

MLP
RNN
LSTM
GRU

(d)

q0 q1 q2 q3 Average
Coordinate Components

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R2
 sc

or
e

R2 score for machine learning models
MLP
RNN
LSTM
GRU

(e)
Figure 5. R2 score for MLP, RNN, LSTM, and GRU models for four coordinates and average (a) Diving, (b) Time-lapse,
(c) Venice, (d) Rollercoaster, and (e) Paris video.

5.2. Impact of Motions

To see the impact of motions in the videos, we compare the performance with several
videos. Some objects move slowly in the “Diving” and “Venice” videos, and there are many
static objects in the “Paris’ video. However, in the “Timelapse” and “Rollercoaster” videos,

Sensors 2021, 21, 3678 12 of 22

objects in the video move very fast and have a lot of motions. We compare the RMSE of
each video with an LSTM model. The result is shown in Figure 6a including an average of
four quaternion components. As a result, we find that the model shows better performance
in the slowly moving videos than in the fast-moving videos.

We also compare the computing time for these videos. The result is shown in Figure 6b.
The computing time is the longest for the “Venice” video and the shortest for the “Paris”
video. Besides, the computing time is almost the same for the “Diving”, “Time-lapse”, and
“Rollercoaster” videos. Therefore, we can conclude that the computing time is irrelevant
to the motions of video and only relevant to the amount of the dataset, as the prediction
model and its parameters are identical for every video.

We also conduct many simulations for various test sets by randomly selecting test
sets, e.g., cross-validation. We randomly selected datasets for 40 people as a training set
and tested the model for the remaining 19 people, respectively. Figure 7 shows the box
plot of the RMSE and and R2 score for each video. For the “Diving” and “Venice” video,
the RMSE and R2 score have a narrow range of minimum and maximum values with few
outliers. As a result, we can conclude that the model has high generalization ability on
these datasets. On the other hand, the RMSE and R2 scores have a wide range of minimum
and maximum values for the “Paris” and “Rollercoaster” videos, which contain many
fluctuations. Therefore, we can say that the model has low generalization performance on
datasets with many fluctuations.

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.02

0.04

0.06

0.08

RM
SE

RMSE for videos
Diving
Timelapse
Venice
Rollercoaster
Paris

(a) RMSE

q0 q1 q2 q3 Average
Coordinate Components

0

2

4

6

8

10

12

14

Ti
m

e
[s

]

Computing time for videos
Diving
Timelapse
Venice
Rollercoaster
Paris

(b) Computing time
Figure 6. (a) RMSE and (b) computing time for ’Diving’, ’Timelapse’, ’Venice’, ’Rollercoaster’, and ’Paris’ videos.

Sensors 2021, 21, 3678 13 of 22

Diving Timelapse Paris Rollercoaster Venice
Video Title

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RM
SE

(a)

Diving Timelapse Paris Rollercoaster Venice
Video Title

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R2
 sc

or
e

(b)
Figure 7. Box plot of (a) RMSE and (b) R2 score for each video.

5.3. Impact of Attention

As explained in Section 3.3, the attention model improves the performance of the
prediction model. To see the importance of the attention model, we compare the perfor-
mance of the attention and a baseline LSTM, GRU, and MLP model. Figure 8a,b show
the comparison result with and without attention for every video. The RMSE is lower
and the R2 score is higher in the attention model than the baseline models for all videos.
Figure 9 shows the detailed comparison using the attention model. The prediction error is
lower in Figure 9b than in Figure 9a, especially after 2000 time steps. As a result, we can
conclude that applying the attention model reduces the prediction error and improves the
performance of the fundamental neural network models for all videos.

Diving Timelapse Venice Rollercoaster Paris
Video Title

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RM
SE

RMSE for attention and neural network model
Attention
LSTM
GRU
MLP

(a)

Diving Timelapse Venice Rollercoaster Paris
Video Title

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R2
 sc

or
e

R2 score for attention and neural network model
Attention
LSTM
GRU
MLP

(b)
Figure 8. (a) RMSE and (b) R2 score for the attention and baseline LSTM, GRU, and MLP model without attention for
’Diving’, ’Timelapse’, ’Venice’, ’Rollercoaster’, and ’Paris’ videos.

Sensors 2021, 21, 3678 14 of 22

0 500 1000 1500 2000 2500
Time index

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
 q

[3
]

Head Movement Coordinate Prediction

Real Data
Prediction

(a) Without attention

0 500 1000 1500 2000 2500
Timestep

0.5

0.6

0.7

0.8

0.9

1.0

Co
or

di
na

te
 q

[3
]

Head Movement Coordinate Prediction

Predicted
Real Data

(b) With attention
Figure 9. Comparison results (a) without and (b) with attention for coordinate q3 in ’Diving’ video.

5.4. Impact of Hyperparameters

There are many hyperparameters in machine learning. These hyperparameters are
initialized to certain values when implementing the model. As mentioned in Algorithm 1,
hidden, lr, t, w, r can be hyperparameters. In this subsection, we conduct experiments on
various hidden, lr, and t. Experiments on time window (w, r) are implemented in Section 5.6.
In these experiments, we use only ’Diving’ video for prediction, as conducting on entire
videos has been implemented in Section 5.2 thus it might be redundant. We adapt RMSE
and R2 score for the performance evaluation metrics.

Figure 10 depicts performance metrics on various hidden layer size. We conduct ex-
periments on 16, 32, 64, and 128 hidden layers. As a result, we can get the best performance
on 64 hidden layers and the worst performance on 16 hidden layers. We conclude that too
small number of hidden layers leads to the worst performance but too many hidden layers
also degrade the performance of the model.

16 32 64 128
Hidden size

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

RM
SE

RMSE for various hidden size

(a)

16 32 64 128
Hidden size

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

R2
 sc

or
e

R2 score for various hidden size

(b)
Figure 10. (a) RMSE and (b) R2 score for various hidden layers in ’Diving’ video.

We also conduct experiments on initial learning rates of 0.001, 0.005, 0.01, and 0.02,
shown as Figure 11. We obtain the best performance at the rate of 0.01, which is the default

Sensors 2021, 21, 3678 15 of 22

setting of the model. Too low or high learning rate makes the model hard to converge, thus
resulting in bad performance.

0.001 0.005 0.01 0.02
Learning rate

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RM
SE

RMSE for various learning rate

(a)

0.001 0.005 0.01 0.02
Learning rate

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R2
 sc

or
e

R2 score for various learning rate

(b)
Figure 11. (a) RMSE and (b) R2 score for various initial learning rate in ’Diving’ video.

Figure 12 shows experimental results on various training epochs. The RMSE and R2
score are the best in 500 epochs, but we can say that more training epochs do not guarantee
better performance. In other words, an overfitting occurs when the training epochs are
too much.

250 500 1000 2000
Epoch

0.018

0.020

0.022

0.024

0.026

0.028

RM
SE

RMSE for various epoch

(a)

250 500 1000 2000
Epoch

0.93

0.94

0.95

0.96

0.97

0.98

R2
 sc

or
e

R2 score for various epoch

(b)
Figure 12. (a) RMSE and (b) R2 score for various epochs in ’Diving’ video.

5.5. Regularization

We apply several regularization methods in the LSTM model. The regularization
methods used in the model are Dropout [44], AlphaDropout [45], and weight decay. In this
subsection, we set the training epoch as 1000 and an initial learning rate of 0.02. We use the
’Rollercoaster’ dataset for prediction and RMSE and R2 score for evaluation metrics.

Figure 13 shows performance metrics on various Dropout rates. The Dropout rate
means the rate of not using neurons in the hidden layer. We use 0.1, 0.2, 0.5, and 0.7 as the

Sensors 2021, 21, 3678 16 of 22

Dropout rates. As a result, we found that the rate of 0.2 makes the optimal performance
but too high Dropout rate degrades the performance of the LSTM model.

0 0.1 0.2 0.5 0.7
Dropout rate

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

RM
SE

RMSE for various Dropout rate

(a)

0 0.1 0.2 0.5 0.7
Dropout rate

0.70

0.72

0.74

0.76

0.78

R2
 sc

or
e

R2 score for various Dropout rate

(b)
Figure 13. (a) RMSE and (b) R2 score for various Dropout rates in ’Rollercoaster’ video.

Figure 14 describes performance metrics on various AlphaDropout rates. We use the same
rates as the Dropout rates. We conclude that the rate of 0.1 makes the optimal performance.

0 0.1 0.2 0.5 0.7
AlphaDropout rate

0.13

0.14

0.15

0.16

0.17

0.18

0.19

RM
SE

RMSE for various AlphaDropout rate

(a)

0 0.1 0.2 0.5 0.7
AlphaDropout rate

0.72

0.73

0.74

0.75

0.76

0.77

0.78

R2
 sc

or
e

R2 score for various AlphaDropout rate

(b)
Figure 14. (a) RMSE and (b) R2 score for various AlphaDropout rates in ’Rollercoaster’ video.

We use the AdamW [46] optimization algorithm instead of Adam to see the impact of
weight decay. AdamW adds weight decay in Adam. We choose 0.001, 0.002, and 0.005 as
rates of weight decay. From the experimental result depicted in Figure 15, we can say that
the weight decay rate of 0.002 leads to the best performance.

Sensors 2021, 21, 3678 17 of 22

0 0.001 0.002 0.005
Weight decay rate

0.140

0.145

0.150

0.155

0.160

0.165

RM
SE

RMSE for various weight decay rate

(a)

0 0.001 0.002 0.005
Weight decay rate

0.74

0.75

0.76

0.77

0.78

0.79

R2
 sc

or
e

R2 score for various weight decay rate

(b)
Figure 15. (a) RMSE and (b) R2 score for various weight decay rates in ’Rollercoaster’ video.

These regularization methods show similar performance under each optimal rate.
Even though the regularization generally improves the performance the model without
regularization, excessive Dropout or AlphaDropout rate degrades the performance. These
methods discard some nodes in the input and hidden layer, thus removing too much nodes
might result in bad performance.

5.6. Time Window

In time-series data prediction, a prediction model uses past data in the previous
time steps to estimate the future data. This method is called the sliding window or
window for short. Specifically, an input data with window size of w can be denoted as
{yi−w+1, · · · , yi−1, yi}. We set the window size of 4 as a default value and vary the window
size. We compute the RMSE of each coordinate for ’Timelapse’ video with different window
sizes. We also measure the computing time to estimate the results. As shown in Figure 16,
the smaller window size reduces the computing time but increases the RMSE. In contrast,
the larger window size decreases the RMSE but the computation time is sharply increased.

q0 q1 q2 q3 Average
Coordinate Components

0.00

0.01

0.02

0.03

0.04

RM
SE

RMSE for time window (w)
w=1
w=2
w=4
w=8
w=16

(a) RMSE

q0 q1 q2 q3 Average
Coordinate Components

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[m

s]

Computing time for time window (w)
w=1
w=2
w=4
w=8
w=16

(b) Computing Time
Figure 16. (a) RMSE and (b) computing time for window sizes of 1, 2, 4, 8, and 16.

Sensors 2021, 21, 3678 18 of 22

5.7. Comparison with Other Models

In this subsection, we compare the RMSE values with other models in the previous
studies. We choose PanoSalNet [47], Saliency [25], and ARIMA models for comparison.
The ARIMA model requires three parameters; p, d, and q. p is the order of autoregression, d
is the order of differencing, and q is the order of the moving average [48]. In this simulation,
we set parameters (p, d, q) as (1, 10, 0) for comparison. However, these parameters can
be altered to other values such as (2, 10, 0) or (1, 15, 0) for certain datasets due to LU
decomposition error [49]. The result is shown in Figure 17. The ARIMA model performs
the worst prediction accuracy. In addition, it can only accept univariate data, i.e., we cannot
use (q0, q1, q2, q3) as an input vector of the ARIMA model. Therefore, we can conclude that
the ARIMA model is unsuitable for the head movement prediction.

Diving Timelapse Venice Rollercoaster Paris
Video Title

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

RMSE for various models
Attention
ARIMA
PanoSalNet
Saliency

Figure 17. RMSE for attention, ARIMA, PanoSalNet, and Saliency model.

5.8. Displaying the Results

In order to verify that these predicted values work well in the video, we apply an
algorithm that can display the head movement into a rectangular area. Figure 18a,b show
some captured frames of the video indicating the head movement. The blue rectangle
represents the movement of the original dataset, and the red rectangle represents the
movement of the predicted dataset. Figure 18c shows the overlapped frames of the original
and predicted video. As shown in Figure 18, the area of the predicted movement almost
covers the area of the original movement. Therefore, we can conclude that the attention
model predicts head movement well.

Sensors 2021, 21, 3678 19 of 22

(a) (b) (c)
Figure 18. Prediction result for partial video frames (a) original movement, (b) predicted movement, and (c) overlapped
frames of head movement.

6. Conclusions

In this paper, we created a prediction model based on the Attention model, which
is one of the machine learning methods using RNN. Furthermore, in order to evaluate
the performance of the model, we used RMSE to numerically validate the accuracy of the
model and the algorithm to represent the head movement into a rectangular area. Then,
we compared the performance with the other types of machine learning to verify that
the proposed model can obtain the best accuracy. The simulation results also show that
the Attention model can guarantee the highest performance compared with fundamental
machine learning models.

Sensors 2021, 21, 3678 20 of 22

Although we have proposed the prediction model, there are some limitations. This
model is supposed to run under certain conditions. As the neural networks require training
data, a segment of the file should be equipped in advance. In other words, the model cannot
predict the entire data without the training data. In addition, it may take a considerable
time to train the data depending on the parameters of the model and the specification of
the device. If the training time is longer than the playback time of the video, uninterrupted
video streaming will be impossible.

Author Contributions: Conceptualization, J.L., D.L. and M.C.; methodology, D.L. and M.C.; software,
D.L.; validation, D.L. and J.L.; formal analysis, D.L.; investigation, D.L. and M.C.; resources, D.L.;
data curation, J.L.; writing—original draft preparation, D.L.; writing—review and editing, J.L.;
visualization, D.L.; supervision, J.L.; project administration, J.L.; funding acquisition, J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute of Information & Communications Technol-
ogy Planning & Evaluation(IITP) grant funded by the Korean government(MSIT) (2017-0-00692,
Transport-aware streaming Technique Enabling Ultra Low-Latency AR/VR Services). This work was
supported by the research fund of Hanyang University(HY-2019-N). This work has supported by the
National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.
2021R1C1C1005126). This work was supported by Institute of Information & communications Tech-
nology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2020-0-01343,
Artificial Intelligence Convergence Research Center(Hanyang University ERICA)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets in this paper can be obtained from the following link:
https://dl.acm.org/do/10.1145/3193701/full/, accessed on 23 March 2020.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VR Virtual Reality
AR Augmented Reality
HMD Head-Mounted Display
MA Moving Average
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
ANN Artificial Neural Network
SVM Support Vector Machine
CNN Convolution Neural Network
MLP Multi-Layer Perceptron
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
RMSE Root Mean Squared Error

References
1. Wu, H.K.; Lee, S.W.Y.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education.

Comput. Educ. 2013, 62, 41–49. [CrossRef]
2. Orts-Escolano, S.; Rhemann, C.; Fanello, S.; Chang, W.; Kowdle, A.; Degtyarev, Y.; Kim, D.; Davidson, P.L.; Khamis, S.;

Dou, M.; et al. Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 741–754.

3. Hannan, E.J.; Deistler, M. The Statistical Theory of Linear Systems; SIAM: Philadelphia, PA, USA, 2012.
4. Yue, C.; Jin, R.; Suh, K.; Qin, Y.; Wang, B.; Wei, W. LinkForecast: Cellular link bandwidth prediction in LTE networks. IEEE Trans.

Mob. Comput. 2017, 17, 1582–1594. [CrossRef]

https://dl.acm.org/do/10.1145/3193701/full/
https://dl.acm.org/do/10.1145/3193701/full/
http://doi.org/10.1016/j.compedu.2012.10.024
http://dx.doi.org/10.1109/TMC.2017.2756937

Sensors 2021, 21, 3678 21 of 22

5. Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: Berlin,
Germany, 2016; pp. 207–235.

6. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
7. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
8. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
9. Hoi, S.C.; Sahoo, D.; Lu, J.; Zhao, P. Online learning: A comprehensive survey. arXiv 2018, arXiv:1802.02871.
10. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555
11. Makridakis, S.; Hibon, M. ARMA models and the Box–Jenkins methodology. J. Forecast. 1997, 16, 147–163. [CrossRef]
12. Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock price prediction using the ARIMA model. In Proceedings of the 2014 UKSim-AMSS

16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014; pp. 106–112.
13. Wang, X.; Wen, J.; Zhang, Y.; Wang, Y. Real estate price forecasting based on SVM optimized by PSO. Optik 2014, 125, 1439–1443.

[CrossRef]
14. Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1945–1950. [CrossRef]
15. Fine, T.L. Feedforward Neural Network Methodology; Springer Science & Business Media: Berlin, Germany, 2006.
16. Medsker, L.R.; Jain, L.C. Recurrent Neural Networks: Design and Applications; CRC Press, Inc.: Boca Raton, MA, USA, 1999.
17. Lee, Y.S.; Tong, L.I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic

programming. Knowl. Based Syst. 2011, 24, 66–72. [CrossRef]
18. Shiblee, M.; Kalra, P.K.; Chandra, B. Time series prediction with multilayer perceptron (MLP): A new generalized error based

approach. In Proceedings of the International Conference on Neural Information Processing, Auckland, New Zealand, 25–28
November 2008; Springer: Berlin, Germany, 2008; pp. 37–44.

19. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the
2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

20. Lee, J.; Lee, S.; Lee, J.; Sathyanarayana, S.D.; Lim, H.; Lee, J.; Zhu, X.; Ramakrishnan, S.; Grunwald, D.; Lee, K.; et al. PERCEIVE:
Deep learning-based cellular uplink prediction using real-time scheduling patterns. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services, Toronto, ON, Canada, 15–19 June 2020; pp. 377–390.

21. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE
Commun. Mag. 2019, 57, 114–119. [CrossRef]

22. Lv, Z.; Xu, J.; Zheng, K.; Yin, H.; Zhao, P.; Zhou, X. Lc-rnn: A deep learning model for traffic speed prediction. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI, Stockholm, Sweden, 13–19 July 2018;
pp. 3470–3476.

23. Dai, G.; Ma, C.; Xu, X. Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU.
IEEE Access 2019, 7, 143025–143035. [CrossRef]

24. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016
31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016;
pp. 324–328.

25. Cornia, M.; Baraldi, L.; Serra, G.; Cucchiara, R. Predicting human eye fixations via an lstm-based saliency attentive model. IEEE
Trans. Image Process. 2018, 27, 5142–5154. [CrossRef] [PubMed]

26. Zhu, Y.; Zhai, G.; Min, X. The prediction of head and eye movement for 360 degree images. Signal Process. Image Commun. 2018,
69, 15–25. [CrossRef]

27. Petrangeli, S.; Simon, G.; Swaminathan, V. Trajectory-based viewport prediction for 360-degree virtual reality videos. In
Proceedings of the 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Taichung, China,
10–12 December 2018; pp. 157–160.

28. Nasrabadi, A.T.; Samiei, A.; Prakash, R. Viewport prediction for 360 videos: A clustering approach. In Proceedings of the 30th
ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, Istanbul, Turkey, 10–11 June 2020;
pp. 34–39.

29. Rossi, S.; De Simone, F.; Frossard, P.; Toni, L. Spherical clustering of users navigating 360 content. arXiv 2018, arXiv:1811.05185.
30. Xu, Y.; Dong, Y.; Wu, J.; Sun, Z.; Shi, Z.; Yu, J.; Gao, S. Gaze prediction in dynamic 360 immersive videos. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5333–5342.
31. Fan, C.L.; Lee, J.; Lo, W.C.; Huang, C.Y.; Chen, K.T.; Hsu, C.H. Fixation prediction for 360 video streaming in head-mounted

virtual reality. In Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video,
Taipei, Taiwan, 20–23 June 2017; pp. 67–72.

32. Tang, J.; Huo, Y.; Yang, S.; Jiang, J. A Viewport Prediction Framework for Panoramic Videos. In Proceedings of the 2020
International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
http://dx.doi.org/10.1016/j.ijleo.2013.09.017
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1016/j.knosys.2010.07.006
http://dx.doi.org/10.1109/MCOM.2019.1800155
http://dx.doi.org/10.1109/ACCESS.2019.2941280
http://dx.doi.org/10.1109/TIP.2018.2851672
http://www.ncbi.nlm.nih.gov/pubmed/29994710
http://dx.doi.org/10.1016/j.image.2018.05.010

Sensors 2021, 21, 3678 22 of 22

33. Dietterich, T.G. Machine learning for sequential data: A review. In Proceedings of the Joint IAPR International Workshops
on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Windsor, ON,
Canada, 6–9 August 2002; pp. 15–30.

34. Rush, A.M.; Chopra, S.; Weston, J. A Neural Attention Model for Abstractive Sentence Summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 379–389.

35. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder
Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014; pp. 103–111.

36. Corbillon, X.; De Simone, F.; Simon, G. 360-degree video head movement dataset. In Proceedings of the 8th ACM on Multimedia
Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 199–204.

37. Choe, S.B.; Faraway, J.J. Modeling Head and Hand Orientation during Motion Using Quaternions; SAE Transactions: Warrendale, PA,
USA, 2004; pp. 186–192.

38. Vince, J. Rotation Transforms for Computer Graphics; Springer Science & Business Media: Berlin, Germany, 2011.
39. Euler, L. Introductio in Analysin Infinitorum; MM Bousquet: Lausanne, Switzerland, 1748; Volume 2.
40. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin,

Germany, 2009; pp. 1–4.
41. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8026–8037.

42. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, The
Netherlands, 1992; pp. 65–93.

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
45. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. arXiv 2017, arXiv:1706.02515.
46. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
47. Nguyen, A.; Yan, Z.; Nahrstedt, K. Your attention is unique: Detecting 360-degree video saliency in head-mounted display

for head movement prediction. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26
October 2018; pp. 1190–1198.

48. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

49. Bartels, R.H.; Golub, G.H. The simplex method of linear programming using LU decomposition. Commun. ACM 1969, 12, 266–268.
[CrossRef]

http://dx.doi.org/10.1145/362946.362974

	Introduction
	Related Work
	Time-Series Data Prediction Models
	Head Movement Prediction Methods

	System Model
	Prediction Problem
	Sliding Window Method
	Methodology

	Dataset and Model Description
	Head Movement Dataset
	Correlation among Coordinate Components
	Algorithm Description

	Results and Evaluation
	Machine Learning Models
	Impact of Motions
	Impact of Attention
	Impact of Hyperparameters
	Regularization
	Time Window
	Comparison with Other Models
	Displaying the Results

	Conclusions
	References

