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Abstract

Background: Principal component analysis (PCA) is a standard method to correct for population stratification in
ancestry-specific genome-wide association studies (GWASs) and is used to cluster individuals by ancestry. Using the
1000 genomes project data, we examine how non-linear dimensionality reduction methods such as t-distributed
stochastic neighbor embedding (t-SNE) or generative topographic mapping (GTM) can be used to provide improved
ancestry maps by accounting for a higher percentage of explained variance in ancestry, and how they can help to
estimate the number of principal components necessary to account for population stratification. GTM generates
posterior probabilities of class membership which can be used to assess the probability of an individual to belong to a
given population - as opposed to t-SNE, GTM can be used for both clustering and classification.

Results: PCA only partially identifies population clusters and does not separate most populations within a given
continent, such as Japanese and Han Chinese in East Asia, or Mende and Yoruba in Africa. t-SNE and GTM, taking into
account more data variance, can identify more fine-grained population clusters. GTM can be used to build
probabilistic classification models, and is as efficient as support vector machine (SVM) for classifying 1000 Genomes
Project populations.

Conclusion: The main interest of probabilistic GTM maps is to attain two objectives with only one map: provide a
better visualization that separates populations efficiently, and infer genetic ancestry for individuals or populations.
This paper is a first application of GTM for ancestry classification models. Our code (https://github.com/hagax8/
ancestry_viz) and interactive visualizations (https://lovingscience.com/ancestries) are available online.
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Background
As of 2018, most genome-wide association studies
(GWASs) have used populations of European ancestry.
However, larger sample sizes are now available and both
societal need and funders are mandating more studies
focused on other populations. Visualizing and accurately
defining complex population structure is therefore of
paramount importance. In this paper, we have three aims:
to find a better way to visualize population substructures,
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to define a new procedure to estimate the optimal number
of principal components accounting for population strati-
fication, and to obtain an ancestry classification algorithm
which can also estimate probabilities to belong to different
ancestry groups. This paper focuses on global (genome-
wide) ancestry rather than local ancestry defined within
chromosome segments.
Principal component analysis (PCA) is widely used

to investigate population structure in genetics [1], and
to account for population stratification in GWASs (cf.
EIGENSTRAT software [2]). However, the 2 or 3 principal
components used to build a PCA plot generally account
for a small percentage of variance explained and lead
to a simplified visualization of population substructures,
focused on major continental ancestry, with only partial
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sensitivity for the identification of admixed individuals
or more complex ancestry. Model-based methods such
as STRUCTURE [3] and ADMIXTURE [4] provide maxi-
mum likelihood estimations of ancestry based on ancestry
proportions and allele frequencies but do not provide the
simple 2D maps that can be obtained with PCA, multidi-
mensional scaling (MDS), and other multivariate analysis
methods.
A PCA ancestry map is constructed from a genotype

matrix G of dimension N × D, where the N instances are
individuals and the D features correspond to genetic vari-
ants - typically single nucleotide polymorphisms (SNPs)
which are pruned to remove SNPs in high linkage dise-
quilibrium with each other so that the identified principal
components do not reflect local haplotype structure, but
instead reflect genome-wide ancestry. For example, Gnd
could be the minor allele count for SNP d in individual
n. For visualization purposes, PCA is used to map G to a
more interpretable latent or hidden space of 2 or 3 dimen-
sions: G → X, where X has dimension N × 2 or N × 3.
The new variables - typically two for a PCA plot - are the
first principal components, which account for the high-
est percentage of the overall variance. However, the total
percentage of variance explained by such a small number
of principal components can be low for high-dimensional
genotype matrices.
More complex visualization methods such as t-

distributed stochastic neighbor embedding (t-SNE) [5]
or generative topographic mapping (GTM) [6], which
are manifold-based and non-linear dimensionality reduc-
tion algorithms, are able to capture more information by
embedding a D-dimensional space in a low-dimensional
latent space, where D can be any number of features.
Instead of two or three principal components, any number
of principal components can be used with these methods.
To assess the percentage of variance to account for pop-
ulation substructures, we propose to execute two map-
pings, first carrying out PCA to select principal compo-
nents and then using t-SNE or GTM:G → X’ → X, where
X’ is the matrix of F principal components (F > 2), and X
is the final t-SNE or GTM projection in a 2-dimensional
space. The performance of ancestry classification models
built withX or the visual assessment of clusters inX could
then provide a way to estimate the number of principal
components to account for population stratification.
Both t-SNE and GTM are used for clustering tasks.

However, new instances cannot be projected onto a t-SNE
map without training the map once again. GTM, on the
other hand, not only allows for the projection of new data
points, but comes with a probabilistic framework to build
a comprehensive classification model and assign proba-
bilities of class membership. t-SNE is now widely used in
genetics, and has already been applied to visual popula-
tion stratification [7], transcriptome visualization [8], and

single-cell analysis [9]. GTM is more popular in chemin-
formatics, and was used to classify chemical compounds
[10] or to compare chemical libraries [11]. GTM could
easily be transposed to genetics and used to predict ances-
try and relative degree of admixture in an individual or a
group.
In this paper, 1000 Genomes Project Phase III [12]

data is used to build the genotype matrix G. The 1000
Genomes Project has gathered genotypes from 26 dif-
ferent populations corresponding to 5 superpopulations:
Africans (AFR), Admixed Americans (AMR), East Asians
(EAS), Europeans (EUR) and South Asians (SAS). We sep-
arated these populations into a training set of 20 popula-
tions, and an external test set of 6 populations: Americans
of African ancestry in Southwest USA (ASW); African
Caribbeans in Barbados (ACB); Mexican ancestry from
Los Angeles USA (MXL); Gujarati Indian from Hous-
ton, Texas (GIH); Sri Lankan Tamil from the UK (STU);
and Indian Telugu from the UK (ITU). Ancestry maps
are investigated to cluster and visualize superpopulations
and populations using PCA, t-SNE, and GTM. t-SNE and
GTM maps accounting for 3 to 1000 principal compo-
nents are compared to a simple PCA plot. We also com-
pare GTM ancestry classification models to two different
algorithms: k-nearest neighbors (k-NN) models based on
the 2D PCA plot, and linear Support Vector Machine
(SVM), a classical machine learning algorithm [13]. We
also demonstrate how to assess probabilities of ancestry
membership in individuals and populations using GTM.

Results
Classification of 5 superpopulations
Visualizations and complete model performance statistics
can be found in Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14. PCA clusters and predicts the 5 superpopula-
tions in 1000Genomes Project efficiently (F1 score= 0.98,
cf. Table 1 and Fig. 1): Europeans, Africans, South Asians,
East Asians, and Admixed Americans. However, SVM and
GTM models with 3 or 10 principal components have
higher recall for Admixed Americans and higher precision
for South Asians (cf. Additional files 13 and 14). Opti-
mal performances can be achieved by including a third
principal component.
From Figs. 2 and 3, it can be seen that t-SNE and GTM

recognize the same clusters. However, GTM suffers from
a packing effect, which results in data points being packed
together on amap. t-SNE remedies this situation with Stu-
dent’s t-distributions in the latent space, which allow small
distances between data points in the original space to be
translated into larger distances in the 2D latent space.

Classification performances for 19 ancestry classes
In Table 2, we report performance measures (10 times
repeated 5-fold cross-validated F1 score) for SVM, GTM
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Table 1 10 times repeated 5-fold cross-validated F1 score in five 1000 Genomes Project superpopulations using SVM, PCA or GTM

Ancestry 1000G code PCA 8-NN SVM 10 PCs GTM 3 PCs GTM 10 PCs

Africans AFR 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Admixed Americans AMR 0.93 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

East Asians EAS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Europeans EUR 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

South Asians SAS 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Overall F1 score 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

SVM10 = support vector machine classification model using 10 principal components, PCA = k-nearest neighbours model based on 2D PCA map (k = 7), GTM{3,10,100} =
bayesian classification model based on generative topographic mapping using 3, 10 or 100 principal components. Each value is an average with 95% confidence interval

with 3 or 10 principal components, and PCA classifica-
tion models based on 19 ancestry classes (CEU and GBR
populations were merged) from 1000 Genomes Project.
Although the PCA plot performs rather well for the 5
classes problem, it cannot properly classify the 19 finer
population classes - except for Finnish (FIN), Puerto
Ricans (PUR), Peruvians (PEL), Punjabi (PJL) and Bengali
(BEB). On the other hand, GTM and SVM models built
from only 10 principal components can efficiently classify
individuals from most of the 1000 Genomes Project pop-
ulations (F1 score = 0.80). Some populations are never
properly separated, even in sophisticated models taking
into account more principal components; this indicates

that these populations have a high genetic overlap. This
is the case between the Chinese Dai (CDX) and the Kinh
in Vietnam (KHV), between the Yoruba (YRI) and Esan
(ESN) populations in Nigeria, and between Toscani (TSI)
and Iberian populations (IBS) in Europe.
To investigate how the performance of 19 popula-

tions classification models (with CEU and GBR popula-
tions merged into one class) is changing depending on
the percentage of variance explained, the cross-validated
performance of GTM maps was evaluated by varying
the number of principal components included in the
model (Fig. 4). The F1 score increases until it reaches
a plateau around 0.80 at 10-12 principal components

Fig. 1 PCA clustering Principal Component Analysis (PCA) plot of 20 populations from 1000 Genomes Project, built using 2 first principal
components. The following populations were not used to build the map: ASW = Americans of African Ancestry in SW USA; ACB = African
Caribbeans in Barbados; MXL = Mexican Ancestry from Los Angeles USA; GIH = Gujarati Indian from Houston, Texas; STU = Sri Lankan Tamil from
the UK; ITU = Indian Telugu from the UK
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Fig. 2 GTM clustering with 10 principal components Generative Topographic Mapping (GTM) plot of 20 populations from 1000 Genomes Project,
built using 10 first principal components. The following populations were not used to build the map: ASW = Americans of African Ancestry in SW
USA; ACB = African Caribbeans in Barbados; MXL = Mexican Ancestry from Los Angeles USA; GIH = Gujarati Indian from Houston, Texas; STU = Sri
Lankan Tamil from the UK; ITU = Indian Telugu from the UK

Fig. 3 t-SNE clustering with 10 principal components t-distributed stochastic neighbor embedding (t-SNE) plot of 20 populations from 1000
Genomes Project, built using 10 first principal components. The following populations were not used to build the map: ASW = Americans of African
Ancestry in SW USA; ACB = African Caribbeans in Barbados; MXL = Mexican Ancestry from Los Angeles USA; GIH = Gujarati Indian from Houston,
Texas; STU = Sri Lankan Tamil from the UK; ITU = Indian Telugu from the UK
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Table 2 10 times repeated 5-fold cross-validated F1 score for 19 population classes from 1000 Genomes Project using SVM, PCA or GTM

Ancestry 1000G code Population PCA 8-NN SVM 10 PCs GTM 3 PCs GTM 10 PCs

EAS CHB Han Chinese 0.20 ± 0.01 0.78 ± 0.01 0.45 ± 0.04 0.75 ± 0.01

EAS JPT Japanese 0.37 ± 0.02 1.00 ± 0.00 0.80 ± 0.01 1.00 ± 0.00

EAS CHS Southern Han Chinese 0.34 ± 0.02 0.80 ± 0.01 0.54 ± 0.02 0.80 ± 0.01

EAS CDX Chinese Dai 0.24 ± 0.02 0.10 ± 0.02 0.51 ± 0.03 0.44 ± 0.08

EAS KHV Kinh in Vietnam 0.44 ± 0.01 0.68 ± 0.00 0.63 ± 0.01 0.71 ± 0.01

EUR CEU+GBR Northern/Western Eur. 0.75 ± 0.01 0.99 ± 0.00 0.79 ± 0.01 0.99 ± 0.00

EUR TSI Toscani 0.46 ± 0.01 0.74 ± 0.02 0.58 ± 0.01 0.54 ± 0.06

EUR FIN Finnish 0.95 ± 0.01 0.99 ± 0.00 0.91 ± 0.01 0.99 ± 0.01

EUR IBS Iberian 0.35 ± 0.03 0.81 ± 0.01 0.35 ± 0.04 0.74 ± 0.02

AFR YRI Yoruba in Nigeria 0.30 ± 0.02 0.69 ± 0.00 0.15 ± 0.03 0.66 ± 0.03

AFR LWK Luhya 0.67 ± 0.01 1.00 ± 0.00 0.59 ± 0.01 1.00 ± 0.00

AFR GWD Gambian 0.26 ± 0.02 0.94 ± 0.02 0.23 ± 0.02 0.78 ± 0.07

AFR MSL Mende 0.25 ± 0.03 0.93 ± 0.02 0.35 ± 0.03 0.81 ± 0.04

AFR ESN Esan in Nigeria 0.28 ± 0.02 0.00 ± 0.01 0.19 ± 0.05 0.28 ± 0.13

AMR PUR Puerto Ricans 0.90 ± 0.01 0.86 ± 0.02 0.90 ± 0.01 0.87 ± 0.03

AMR CLM Colombians 0.69 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.82 ± 0.02

AMR PEL Peruvians 0.88 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 0.95 ± 0.01

SAS PJL Punjabi 0.89 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.00

SAS BEB Bengali 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

Overall 0.54 ± 0.00 0.80 ± 0.00 0.61 ± 0.01 0.80 ± 0.01

SVM 10 PCs = support vector machine classification model using 10 principal components, PCA 8-NN= k-nearest neighbours model based on 2D PCA map (k = 8), GTM 3 or
10 PCs = bayesian classification model based on generative topographic mapping using 3 or 10 principal components. Ancestry codes: EAS = East Asians, EUR = Europeans,
AFR = Africans, AMR = Admixed Americans, SAS = South Asians. CEU and GBR were merged into one class. Each value is an average with 95% confidence interval

Fig. 4 Ancestry classification performance vs. variance explained Generative Topographic Mapping (GTM) ancestry classification model
performance as a function of number of principal components used to train the model
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accounting for around 8% variance explained. Interest-
ingly, beyond 100-200 principal components the perfor-
mance starts decreasing. This could be due to including
more individual-level variance, which would disperse
population clusters, or to the curse of dimensionality,
which occurs when the number of variables increases
but not enough data points are provided to populate
the high-dimensional space. This indicates that the num-
ber of principal components should be optimized - our
curve suggests to use 10-12 components for this pruned
genotype matrix.
A final map was built with 10 principal components and

the complete training set of 20 populations (cf. Fig. 5). The
six populations that were not used to build the GTMmap
were used to generate posterior probabilities of super-
population membership, which can be interpreted as the
probability for a tested population pop to belong to a
superpopulation: P(AFR|pop) would be the probability of
African ancestry for tested population pop. Results are
presented in Table 3. Indian Telugu from the UK (ITU),
Sri Lankan Tamil from the UK (STU), and Gujarati Indian
from Houston (GIH) are all predicted as South Asians
with P(SAS|pop) = 1 - none of them is mapped to another
ancestry group. Individuals with Mexican ancestry from

Los Angeles (MXL) are mostly mapped as Admixed
Americans with a small European membership probabil-
ity, whereas Americans of African ancestry in Southwest
USA (ASW) and African Caribbeans in Barbados (ACB)
show more mixed results - with high probabilities for
both African and Admixed American superpopulations.
Figure 5 shows how Americans of African ancestry in
Southwest USA are distributed on the map: most of them
are mapped near the African ancestry group but are
assigned to empty nodes, where no African individual in
the training set was mapped; some others are close to the
Colombian/Peruvian group (AMR 1) and others to the
Puerto Rican group (AMR 2).

Additional analysis 1: African-only GTM
A separate GTMwas built with African populations exclu-
sively (cf. Additional file 15). Americans of African ances-
try in Southwest USA (ASW) and Africans Caribbeans
in Barbados (ACB) were excluded from the training set,
which included: Esan in Nigeria (ESN); Yoruba in Ibadan,
Nigeria (YRI); Gambian in Western Divisions in The
Gambia (GWD); Luhya in Webuye, Kenya (LWK); and
Mende in Sierra Leone (MSL). We projected onto this
African-only map ASW and ACB populations, but also

Fig. 5 Projected Americans of African ancestry in Southwest USA (ASW) on a GTMmap. Generative Topographic Map (GTM) trained with 10
principal components. Coloured points represent individuals coloured by ancestry or superpopulation (AFR, AMR, EAS, EUR, SAS). Squares represent
GTM nodes coloured by most probable ancestry. The highlighted black points represent mean positions of ASW individuals projected onto the
map. Grey lines map mean positions of individuals on the map to their most probable node. Ancestry codes: EAS = East Asians, EUR = Europeans,
AFR = Africans, AMR = Admixed Americans, SAS = South Asians
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Table 3 Posterior probabilities of superpopulation memberships
in 6 test populations obtained by a GTMmodel trained with all
superpopulations

Population
(pop)

P(AFR|pop) P(AMR|pop) P(EAS|pop) P(EUR|pop) P(SAS|pop)

ASW 0.55 0.45 0 0 0

ACB 0.89 0.11 0 0 0

MXL 0 0.98 0 0.02 0

GIH 0 0 0 0 1

STU 0 0 0 0 1

ITU 0 0 0 0 1

NB: GTM classification models are restricted by an applicability domain defined by
the training set. Here, the training set contains twenty 1000 Genomes Project,
excluding [ASW, ACB, MXL, GIH, STU, ITU]. These posterior probabilities should be
considered as a similarity measure between test populations and populations used
to build the map, and not as an absolute measure of population admixture.
Abbreviations: ASW = Americans of African Ancestry in SW USA; ACB = African
Caribbeans in Barbados; MXL = Mexican Ancestry from Los Angeles USA; GIH =
Gujarati Indian from Houston, Texas; STU = Sri Lankan Tamil from the UK; ITU =
Indian Telugu from the UK; EUR = Europeans; EAS = East Asians; AMR = Admixed
Americans; SAS = South Asians

other superpopulations (EUR, EAS, SAS, AMR), in order
to distinguish populations based on their African varia-
tion. ASW and ACB are both mapped near Nigerian pop-
ulations, whereas all other superpopulations (EUR, EAS,
SAS, and AMR) are mapped in the same approximate
location near the Luhya (LWK) - posterior probabilities
of ancestry membership are provided in Table 4. How-
ever, these superpopulations are mapped in locations that
are not populated by the training set; no strong conclu-
sion should be inferred from these results. Moreover, the
1000 Genomes Project does not contain many African
ethnic groups. Constructing an African-only map with

Table 4 Posterior probabilities of African ethnicity membership
in 6 test populations obtained by a GTMmodel trained on
African populations exclusively

Population
(pop)

P(ESN|pop) P(YRI|pop) P(GWD|pop) P(LWK|pop) P(MSL|pop)

ASW 0.24 0.37 0.11 0.13 0.14

ACB 0.29 0.42 0.07 0.07 0.15

EUR 0.04 0.10 0.21 0.62 0.04

EAS 0.09 0.19 0.21 0.44 0.07

AMR 0.07 0.15 0.23 0.49 0.06

SAS 0.06 0.13 0.21 0.53 0.05

NB: GTM classification models are restricted by an applicability domain defined by
the training set. Here, the training set contains only African populations, excluding
ASW and ACB subsets. These posterior probabilities should be considered as a
similarity measure between test populations and populations used to build the
map, and not as an absolute measure of population admixture. Abbreviations: ASW
= Americans of African Ancestry in SW USA; ACB = African Caribbeans in Barbados;
ESN = Esan in Nigeria; YRI = Yoruba in Ibadan; Nigeria; GWD = Gambian in Western
Divisions in the Gambia; LWK = Luhya in Webuye, Kenya; MSL = Mende in Sierra
Leone; EUR = Europeans; EAS = East Asians; AMR = Admixed Americans; SAS =
South Asians

more ethnic groups would be an interesting follow-up to
this analysis.

Additional analysis 2: Arabidopsis thaliana
To test our methods on non-human genomes, we gener-
ated GTM, t-SNE and PCA maps for 1135 Arabidopsis
thaliana genomes (a model plant organism) from the 1001
Genomes Consortium [14]. Visualizations are available in
Additional files 16 and 17. PCA can separate the strains
by continent but not by individual countries, as opposed
to GTM and t-SNE, which find more fine-grained clusters
corresponding to individual countries or regions, such
as Spain, Southern Sweden, Northern Sweden, Southern
Italy, or Northern Italy.

Discussion
Defining the training set
Our classification models were trained using known
ancestry labels and a reference population (1000 Genomes
Project). However, any other reference population could
be used as a training set. In this application, populations
expected to be more homogeneous were included in the
training set. The choice of training set populations could
also depend on the goal of the study, such as distinguishing
between African populations in an African-only dataset,
in which case a better classification model could be built
using exclusively African samples.

Testing new data
To predict the ancestry of new individuals (test set) using
a model trained on a reference population (training set),
SNPs in the test matrix should correspond to the SNPs in
the train matrix. This was not an issue in this paper, where
populations from 1000 Genomes Project were used for
both training and test. But in the more general case, many
of the SNPs in the training set will be missing from the test
set. Missing values in the test matrix should be imputed
using the reference population, which can be achieved
using genome imputation softwares such asMaCH [15] or
IMPUTE2 [16].

Outliers
GTM or t-SNE maps can also be used to identify ancestry
outliers, i.e. mislabeled individuals. Outliers are typically
mapped to single points far away from their expected
clusters. These data points should be removed from the
training set used to build the classification model. By
observing t-SNE and GTM maps, outliers can readily be
identified in the 1000 Genomes Project.

Hyperparameter optimization
One major drawback of GTM and t-SNE is hyperparam-
eter optimization. GTM has at least four hyperparam-
eters to optimize, and t-SNE at least three. The maps
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presented in this paper have fixed hyperparameters (cf.
Methods). However, hyperparameters might have a sig-
nificant impact on the shape of the map, and can be
optimized to obtain better visualization and classifica-
tion performance. For GTM classification models, typical
performance measures such as the F1 score, balanced
accuracy, area under the curve (AUC) or Matthews corre-
lation coefficient (MCC) can be used to select the optimal
values for these hyperparameters.

Conclusion
PCA provides a good visualization of the superpopula-
tions in the 1000 Genomes Project (AFR, AMR, EUR,
EAS, SAS), but is not ideal for more fine-grained cluster-
ing and does not provide probabilistic models for admixed
populations. On the other hand, both t-SNE and GTM
provide a way to cluster and visualize more complex pop-
ulation substructures. GTM, as opposed to t-SNE, can be
harnessed to generate comprehensive ancestry classifica-
tion models. Moreover, new individuals can be directly
projected onto a pre-constructed GTM map - which
makes it the ideal choice to cluster individuals based on
pre-defined panels. We showed how to assess ancestry
membership probabilities using GTM and interpret them
through visualization. By generating t-SNE or GTMmaps
with increasing number of principal components, we can
estimate the percentage of variance explained to iden-
tify population substructures - this could also be useful
to account for population stratification in genome-wide
association studies.

Methods
Data and quality control
Genotypes of 2504 people in the 1000 Genomes
Project Phase III were downloaded from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
[12]. Variants were removed based on a Hardy-Weinberg
equilibrium exact test p-value filter (< 0.001) and
genotyping rate filter (> 0.02). The Hardy-Weinberg
equilibrium test measures whether the ratio between
homozygous and heterozygous genotypes differs sig-
nificantly from prediction under HWE assumptions.
SNPs from the major histocompatibility complex (MHC)
on chromosome 6 and in the chromosome 8 inversion
region were excluded. The remaining SNPs were pruned
twice using plink 1.9 [17, 18] with windows of 1000
variants and step size 10, pair-wise squared correlation
threshold = 0.02, and minor allele frequency > 0.05.
The pruning operation deals with linkage desequilibrium
or non-random association of alleles at different loci:
it reduces the number of SNPs, keeps SNPs in linkage
equilibrium, and thereby reduces data dimensionality. A
training set was built by removing the following popula-
tions: Americans of African ancestry in Southwest USA

(code = ASW); African Caribbeans in Barbados (ACB);
Mexican ancestry from Los Angeles USA (MXL); Gujarati
Indian from Houston, Texas (GIH); Sri Lankan Tamil
from the UK (STU); and Indian Telugu from the UK
(ITU). We used these populations as an external test set
to predict the degree of relative admixture in individuals
and populations. For the classification models, we also
merged British in England and Scotland (GBR) and Utah
Residents with Northern and Western European Ances-
try (CEU) to obtain a single category for Northern and
Western European Ancestry.

Additional dataset: Arabidopsis thaliana
We used an additional dataset of 1135 Arabidopsis
thaliana genomes extracted from the 1001 Genomes
Project [14]; the genotypes and an imputed SNP matrix
could be downloaded from 1001genomes.org. Arabidop-
sis thaliana was the first plant genome to be sequenced
and is a commonly used model organism. Variants were
removed using a permissive genotyping rate filter (> 0.2).
SNPs were pruned using plink 1.9 [17, 18] with windows
of 100 variants and step size 10, pair-wise squared corre-
lation threshold = 0.1, and minor allele frequency >0.05.
We merged the imputed SNP matrix with our filtered list
of SNPs to obtain a filtered imputed SNP matrix.

Visualization of ancestry clusters using t-SNE and GTM
t-SNE [5] translates similarities between points into prob-
abilities; Gaussian joint probabilities in the original input
space and Student’s t-distributions in the latent space. The
Kullback-Leibler divergence between data distributions in
the input and latent space is minimized with gradient
descent. t-SNE has several parameters to optimize: the
learning rate for gradient descent, the perplexity of dis-
tributions in the initial space, and the early exaggeration.
In this paper, we used the scikit-learn v0.19.1 implemen-
tation for t-SNE [19], with default learning rate = 200,
perplexity = 30, and early exaggeration = 12. The main
disadvantage of t-SNE is its lack of a framework to project
new points onto a pre-trained map - a feature available in
PCA and GTM.
The core principle of GTM [6] is to fit a manifold into

the high-dimensional initial space. The points yk on the
manifold Y in the initial space are the centers of normal
probability distributions of g, which here are individuals
described by the genotype matrix G:

p(g|xk ,W,β) = β

2π

D/2
exp

(
−β

2
‖yk − g‖2

)
(1)

where β is the common inverse variance of these dis-
tributions and W is the parameters matrix of the map-
ping function y(x;W) which maps nodes xk in the latent
space to yk : y(xk ;W) = Wφ(xk), where φ(xk) is a set
of radial basis functions. W and β are optimized with

https://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
https://1001genomes.org
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an expectation-maximization (EM) algorithm maximiz-
ing the overall data likelihood. The responsibility or pos-
terior probability that the individual gn in the original
genotype space is generated from the kth node in the
latent space is computed using Bayes theorem:

Rkn = p(xk|gn,W,β) = p(gn|xk ,W,β)p(xk)∑K
k′=1 p(gn|xk′ ,W,β)p(xk′)

(2)

These responsibilities are used to compute the mean posi-
tion of an individual on the map x(gn), by averaging over
all nodes on the map:

x(gn) =
K∑

k=1
xkRkn (3)

We used the python package ugtm v1.1.4 [20] for gen-
erative topographic mapping, and scripts used for ances-
try classification are available online (https://github.com/
hagax8/ancestry_viz). GTM has several hyperparameters
to tune, which might have a high impact on the shape of
the map: the number of radial basis functions, a width fac-
tor for these functions, map grid size, and a regularization
parameter.

Ancestry classification models
PCA does not provide a comprehensive framework to
build a probabilistic classification model. However, a sim-
ple classification model associated with the 2-dimensional
plot can be built using the k-NN approach in three steps:
(1) a PCA plot is constructed from a training set, (2) a test
set is projected on the plot, and (3) each test individual is
assigned the predominant ancestry amongst its k nearest
neighbors in the training set. We did not construct k-NN
models for t-SNE since it is not straightforward to project
new points onto a t-SNE map. On the other hand, GTM
provides a probabilistic framework which can be used to
build classification models and generate class member-
ship probabilities [10]. GTM responsibilities can be seen
as feature vectors: they encode individuals depending on
their position on the map, which is discretized into a finite
number of nodes (positions). They can be used to estimate
the probability of a specific ancestry given the position on
map, using Bayes’ theorem

P(a|xk) = P(xk|a) × P(a)∑
a P(xk|a) × P(a)

(4)

where P(xk|a) is computed as follows:

P(xk|a) =
∑

n Rkn
Na

(5)

where Rkn is the responsibility of node xk for an individual
belonging to population a, which countsNa individuals. It

is then possible to predict the ancestry profile P(a|gi) of a
new individual with associated responsibilities {Rki}

P(a|gi) =
∑
k

P(a|xk) × Rki (6)

GTM nodes xk can be represented as points coloured by
most probable ancestry amax using P(amax|xk). We com-
pared performances of visual classifications (PCA and
GTM) with linear support vector machine classification
(SVM), a classical machine learning algorithm. Linear
SVM is only dependent on C, the penalty hyperparame-
ter. Increasing C increases the variance of the model and
decreases its bias. In this application, classification per-
formance is estimated by the average F1 score over all
ancestry classes in a 5-fold cross-validation experiment
(5-CV) repeated 10 times. The F1 score is a harmonic
mean of precision and recall. For each of the 10 repe-
titions, labels are predicted for 5 partitions of the data,
which are concatenated to obtain predicted values for the
entire dataset. From these, F1 scores are computed for
each class a and repetition j. The per-class performance
measure is computed across the 10 repetitions:

F1scorea =

10∑
j=1

F1scoreaj

10
(7)

The overall model performance measure is a weighted
average across per-class F1 scores, with weights equal to
the number of individuals in the class:

F1score =
⎛
⎝ 10∑

j=1

∑
a
F1scoreaj × Na

Ntotal

⎞
⎠ ÷ 10 (8)

This procedure is performed for each parameter combina-
tion and for each algorithm (PCA, GTM, SVM). The best
model for each algorithm is defined as having the largest
overall F1 score. Only the performance of the best model
is reported in the Results section. For PCA, we vary k (the
number of neighbours) from 1 to 10. For GTM, we set the
map grid size (number of nodes) = 16*16, the number of
RBFs = 4*4, regularization = 0.1 and rbf width factor =
0.3. For linear SVM, the penalty parameter is set toC = 2r
where r runs from -5 to 10.

Posterior probabilities of ancestry membership for whole
populations
All our models are trained with only twenty 1000
Genomes Project populations. Six populations are used as
an external test set (cf. foregoing section Data and quality
control). Posterior probabilities of ancestry membership
are estimated for all individuals in these test populations
(Eq. 6) based on observed superpopulation distributions

https://github.com/hagax8/ancestry_viz
https://github.com/hagax8/ancestry_viz
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(Eq. 5). We also generate probabilities of belonging to a
superpopulation for each population as a whole, by replac-
ing individual responsibilities {Rki} in equation 6 by an
overall population responsibility {Rkp}

Rkp =
∑

i Rki
Ni

(9)

It should be noted that these responsibilities {Rkp} corre-
spond to the averaged distribution of the population on
the map, and can be used to compare populations and
estimate their diversity.

Additional files

Additional file 1: GTMmap of twenty 1000 Genomes Project
populations. Interactive GTM map of twenty 1000 Genomes Project
populations. File name: 1000G_GTM_20populations.html. The file can be
viewed in a web browser with internet access. (HTML 2416 kb)

Additional file 2: t-SNE map of twenty 1000 Genomes Project
populations. Interactive t-SNE map of twenty 1000 Genomes Project
populations. File name: 1000G_t-SNE_20populations.html. The file can be
viewed in a web browser with internet access. (HTML 589 kb)

Additional file 3: GTM projection, test set 1: Americans of African ancestry
in SW USA (ASW). Projection of Americans of African ancestry in SW USA
(black points) onto a GTM map trained with 10 principal components. File
name: 1000G_GTM_projection_ASW.html. The file can be viewed in a web
browser with internet access. (HTML 437 kb)

Additional file 4: GTM projection, test set 2: African Caribbeans in
Barbados (ACB). Projection of African Caribbeans in Barbados (black points)
onto a GTM map trained with 10 principal components. File name:
1000G_GTM_projection_ACB.html. The file can be viewed in a web
browser with internet access. (HTML 471 kb)

Additional file 5: GTM projection, test set 3: Mexican Ancestry from Los
Angeles USA (MXL). Projection of individuals of Mexican ancestry from Los
Angeles USA (black points) onto a GTM map trained with 10 principal
components. File name: 1000G_GTM_projection_MXL.html. The file can be
viewed in a web browser with internet access. (HTML 439 kb)

Additional file 6: GTM projection, test set 4: Gujarati Indian from Houston,
Texas (GIH). Projection of Gujarati Indian from Houston (black points) onto
a GTM map trained with 10 principal components. File name:
1000G_GTM_projection_GIH.html. The file can be viewed in a web
browser with internet access. (HTML 483 kb)

Additional file 7: GTM projection, test set 5: Sri Lankan Tamil from the UK
(STU). Projection of Sri Lankan Tamil from the UK (black points) onto a GTM
map trained with 10 principal components. File name:
1000G_GTM_projection_STU.html. The file can be viewed in a web
browser with internet access. (HTML 482 kb)

Additional file 8: GTM projection, test set 6: Indian Telugu from the UK
(ITU). Projection of Indian Telugu from the UK (black points) onto a GTM
map trained with 10 principal components. File name:
1000G_GTM_projection_ITU.html. The file can be viewed in a web browser
with internet access. (HTML 482 kb)

Additional file 9: 1000 Genomes Project populations. Table of 1000
Genomes Project populations and superpopulations and the number of
individuals in each category. File name: 1000G_populations.html. (HTML 7
kb)

Additional file 10: Variance explained in first principal components of
genotype matrix. Variance explained in 100 first principal components of
the genotype matrix for twenty 1000 Genomes Projects Populations, which
were used as a training set to build our models. File name:
varianceExplained.html. (HTML 13 kb)

Additional file 11: 5-fold cross-validated precision for twenty 1000
Genomes Project populations (19 classes) using SVM, PCA or GTM.
Precision of optimized models for the following algorithms: SVM 10 PCs =
support vector machine classification model using 10 principal
components, PCA 8-NN = k-nearest neighbours model based on 2D PCA
map (k = 8), GTM 3 or 10 PCs = bayesian classification model based on
generative topographic mapping using 3 or 10 principal components. File
name: precision_crossvalidation_19classes.html. (HTML 7 kb)

Additional file 12: 5-fold cross-validated recall for twenty 1000 Genomes
Project populations (19 classes) using SVM, PCA or GTM. Recall of
optimized models for the following algorithms: SVM 10 PCs = support
vector machine classification model using 10 principal components, PCA
8-NN = k-nearest neighbours model based on 2D PCA map (k = 8), GTM 3
or 10 PCs = bayesian classification model based on generative
topographic mapping using 3 or 10 principal components. File name:
recall_crossvalidation_19classes.html. (HTML 8 kb)

Additional file 13: 5-fold cross-validated precision for five 1000 Genomes
Project superpopulations (5 classes). Precision of optimized models for the
following algorithms: SVM 10 PCs = support vector machine classification
model using 10 principal components, PCA 8-NN = k-nearest neighbours
model based on 2D PCA map (k = 8), GTM 3 or 10 PCs = bayesian
classification model based on generative topographic mapping using 3 or
10 principal components. File name:
precision_crossvalidation_5classes.html. (HTML 3 kb)

Additional file 14: 5-fold cross-validated recall for five 1000 Genomes
Project superpopulations (5 classes). Recall of optimized models for the
following algorithms: SVM 10 PCs = support vector machine classification
model using 10 principal components, PCA 8-NN = k-nearest neighbours
model based on 2D PCA map (k = 8), GTM 3 or 10 PCs = bayesian
classification model based on generative topographic mapping using 3 or
10 principal components. File name: recall_crossvalidation_5classes.html.
(HTML 3 kb)

Additional file 15: African-only GTM map. Interactive GTM map for AFR
superpopulation (1000 Genomes Project), excluding ASW and ACB
populations, and projections of following test sets: two African ancestry
populations (ASW and ACB), and 1000 Genomes superpopulations (EUR,
EAS, AMR, and SAS) on the AFR map).File name: AFR_maps.pdf. (PDF 1414
kb)

Additional file 16: Arabidopsis map coloured by country. Interactive map
of 1135 Arabidopsis thaliana genomes from the 1001 Genomes project.
File name: worldmap_arabidopsis_countries.html. The file can be viewed
in a web browser with internet access. (HTML 571 kb)

Additional file 17: Arabidopsis map coloured by admixture group.
Interactive map of 1135 Arabidopsis thaliana genomes from the 1001
Genomes project, coloured by admixture group. File name:
worldmap_arabidopsis_admixed.html. The file can be viewed in a web
browser with internet access. (HTML 571 kb)
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AFR: African; AMR: Admixed American; EAS: East Asian; EUR: European; GTM:
Generative topographic mapping; GWAS: Genome-wide assocation study;
PCA: Principal component analysis; SAS: South Asian; SNP: Single nucleotide
polymorphism; SVM: Support vector machine; t-SNE: t-distributed stochastic
neighbor embedding
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