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A B S T R A C T

Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and
breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided
the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the
late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In
particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently
emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a
contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been
reviewed. The goal of this literature review is to examine at multiple levels – molecular, cellular (e.g. microglia, gut microbiota) and holistic – how the interaction
between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms
the vicious cycle that perpetuates and amplifies AD.

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative dementia that
currently affects more than 40 million people worldwide and is ex-
pected to affect more than 131 million people by 2050 (Prince, 2015). A
deeper understanding of its pathophysiology and potential risk factors
is critical to develop effective strategies at preventing or delaying de-
velopment of AD. Intriguingly, stress, sleep disturbance, and circadian
rhythm disruption share many common molecular signaling and ana-
tomic pathways that promote the neurodegeneration of AD. For ex-
ample, the hypothalamus-pituitary-adrenal (HPA) axis – the main
mediator of stress – is regulated by the circadian rhythm (Girotti et al.,
2009). In particular, cortisol levels exhibits circadian fluctuations
(Cohen et al., 2015) and is elevated and deregulated in people with AD
(Brureau et al., 2013; Huang et al., 2009; Swaab et al., 1994; Pomara
et al., 2003). Stress, sleep disturbance, and circadian disruption interact
at many levels to affect neurogenesis, neuroinflammation, and meta-
bolic disruption. In this review, we will discuss circadian rhythm, sleep,
and stress physiologies, their bidirectional relationships, and how these
interactions promote the development of AD.

2. Physiology of circadian rhythms, sleep and stress

2.1. Circadian rhythms

Living organisms evolved to adopt a circadian rhythm (circa-: about,
-dia: a day) that matches with the light-dark cycle for their protection,
feeding, mating and survival (Takahashi et al., 2008). In humans, the
intrinsic period of the circadian rhythm is slightly longer than 24 h
while in mice, its period is about 23.5 h (Scheer et al., 2007). This
period compresses daily to 24 h by using cues from the environment,
such as light, and from the organism's behavior, such as feeding and
activity (Czeisler et al., 1999). The circadian system governs several
physiologic functions, such as sleep and wake, activity, temperature,
and cognitive function (Wyatt et al., 1999).

At the molecular level, the circadian rhythm is controlled by oscil-
lations of transcriptional-translational negative feedback loops
(Shearman et al., 2000). Brain and Muscle ARNT-Like-1 (BMAL1) het-
erodimerizes with Circadian Locomotor Output Cycles gone Kaput
(CLOCK), forming a complex that binds to E-box enhancers of circa-
dian-controlled genes. The CLOCK/BMAL1 heterodimer also activates
transcription of Period (Per) and Cryptochrome (Cry), forming the po-
sitive-limb of the loop. Per and Cry heterodimerize and inhibit the
Clock-BMAL1 heterodimers, thereby inhibiting their own transcription
and forming the negative loop (Ko and Takahashi, 2006). In addition,
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an accessory loop is formed by CLOCK/BMAL1 heterodimers enhancing
transcription of ROR and REV-Erb genes. These genes bind to the RORE
region of the BMAL1 gene and regulate the core circadian gene loop
(Kondratova and Kondratov, 2012). Colcontrol sleep and wakecy-
cleslectively, these interwoven loops result in rhythmic oscillations of
circadian-controlled gene expression. This feedback loop is the mole-
cular basis of the circadian rhythm and sets the timing and period of
central and peripheral clocks in animals.

Nearly all peripheral tissues in the body have a circadian rhythm –
with the ability to oscillate independently (Schibler and Sassone-Corsi,
2002; Nagoshi et al., 2004), at least in the short term – and are regu-
lated and synchronized by a central circadian pacemaker, the su-
prachiasmatic nucleus (SCN) (Saper et al., 2005; Akhtar et al., 2002).
This master clock is in the ventral most part of the hypothalamus, just
above the optic chiasm. The SCN sends output signals via direct or
indirect neural projections or humoral controls to areas to regulate
timing and period of peripheral rhythms (Akhtar et al., 2002; Dai et al.,
1998). For example, the SCN sends signals to the various nuclei in the
hypothalamus and areas beyond that control sleep and wake cycles
(Sherin et al., 1996; Chou et al., 2002), temperature (Buhr et al., 2010),
and hunger/satiety (Kalsbeek et al., 2001).

The SCN receives input from various time cues to regulate the cir-
cadian timing and synchronize the peripheral circadian rhythms.
Specifically, the SCN receives light exposure input from the retina by a
direct pathway. In the retina are specialized melanopsin-containing
retinal ganglion cells (mRGCs) (Gooley et al., 2001) which carry light
input via the retinohypothalamic tract to the SCN (Berson et al., 2002;
Hattar et al., 2002). Light exposure can compress or expand the circa-
dian period and therefore change the timing, or phase, of the circadian
rhythm; the direction and magnitude of change depend on the timing,
intensity, and duration of light exposure (Khalsa et al., 2003). In blind
people who lack light signaling to the SCN, the circadian period can
oscillate closer to its intrinsic period, resulting sleep-wake cycle that is
slightly longer than 24 h (Sack et al., 1992). Another example of a
timing input to the SCN is melatonin. Melatonin is naturally produced
by the pineal gland in a circadian manner and is under control by the
SCN (Teclemariam-Mesbah et al., 1999). During the day, melatonin
levels are low; at night, melatonin levels rise just prior to circadian
timing for sleep, peak during sleep, and fall around the circadian timing
for wake (Lewy and Sack, 1989). Melatonin feeds back to the SCN to
adjust timing of the circadian rhythm. Melatonin administration can
also adjust the phase of circadian rhythm depending on the timing and
dose (Lewy et al., 1998).

Circadian rhythm outputs can be measured in various means. For
example, the rest/activity rhythm, which can be used as a proxy for
sleep/wake rhythms, can be measured using actigraphy over several
days (Ancoli-Israel et al., 2003). Melatonin levels can be measured in
plasma (Benloucif et al., 2008) or saliva (Voultsios et al., 1997), and
melatonin metabolites can be measured in urine (Benloucif et al.,
2008). These outputs can be used to examine the period, phase, and
amplitude of the circadian rhythm. In people with circadian rhythm
sleep-wake phase disorders, the circadian timing of the sleep-wake
cycle is misaligned, either early or late, with respect to the environment
(American Academy of Sleep Medicine, 2014). Loss of amplitude and
therefore rhythmicity of the sleep-wake rhythm results in irregular
sleep-wake disorder, in which patients – typically those with dementia –
have no major bout of sleep and instead have frequent bouts of sleep
and bouts of wake throughout the 24-h cycle (American Academy of
Sleep Medicine, 2014).

The circadian system also influences cognitive function. Cognitive
performance varies throughout the 24-h cycle day and is high during
the day about 24 hrs after waking except for a dip in the afternoon and
low at night (Wertz et al., 2006; Burke et al., 2015). Several cognitive
processes are affected by circadian timing; for reviews, see (Wright
et al., 2012; Krishnan and Lyons, 2015). The SCN controls cognitive
function indirectly through its effects on sleep and wakefulness and

perhaps through more direct effects (Sherin et al., 1996; Chou et al.,
2002; Wright et al., 2012). Circadian misalignment, where the timing of
daily activities – such as sleep and wake – are not aligned to the en-
dogenous circadian timing, results in impaired cognitive function.
Chronic jet lag leads to cognitive performance and is associated with
increased cortisol levels (Cho, 2001; Cho et al., 2000) Experimental jet
lag in rodents result in long term cognitive deficits (Gibson et al., 2010).
Thus when circadian rhythm is misaligned and circadian amplitude is
lowered in old age and dementia patients, it also coupled with cognitive
impairment (Smarr et al., 2014).

2.2. Sleep

A vast array of literature has described various functions of sleep,
including cognitive function, metabolism, and inflammation. Although
a detailed review of the structure, function and regulation of sleep are
beyond the scope of this paper, we will describe in general the phy-
siology, anatomy, and functions of sleep as it relates to cognitive
function and AD.

Sleep and wake states are regulated by a 2-process model: the cir-
cadian system, as described above, and a homeostatic process (Borbely,
1982). The homeostatic drive for sleep indicates that the greater period
of wakefulness, the greater need for sleep an organism has. As the sleep
homeostat increases, the circadian alerting system also increases to
maintain wakefulness during the day. At night, the circadian alerting
signal drops; this, in conjunction with a high sleep need, results in
transition to sleep (Borbely, 1982).

From a brain physiology level, sleep is characterized by two general
sleep states measured by polysomnography: non-rapid eye movement
sleep (NREM) – which consists of three stages, N1, N2, and N3 – and
rapid eye movement (REM) sleep. As NREM sleep becomes deeper,
there is slowing of electroencephalographic frequencies and increasing
synchronization of cortical neuronal activity. At its deepest point –
stage N3 or slow wave sleep (SWS) – the neuronal synchrony appears as
large slow wave activity on the electroencephalogram (Berry et al.,
2012). SWS is considered a marker of the sleep homeostat, as it re-
bounds during recovery sleep after prolonged wakefulness (Dijk et al.,
1990). REM sleep is characterized by cortical desynchrony and rapid
eye movements and is associated with dream states (Berry et al., 2012).

From an anatomical standpoint, sleep and wake states are controlled
by a balance between sleep-promoting nuclei and wake-promoting
nuclei. The sleep-promoting nuclei are the GABAergic ventrolateral
preoptic (VLPO) and the median preoptic area located in the hy-
pothalamus (Szymusiak and McGinty, 2008). These areas inhibit the
wake-promoting centers in the lateral hypothalamus, the tuber-
omammillary nucleus, and several brainstem nuclei (Szymusiak and
McGinty, 2008). Conversely, the monoaminergic wake-promoting nu-
clei inhibit the VLPO (Szymusiak and McGinty, 2008). These two sys-
tems form a flip-flop switch, in which the orexinergic neurons in the
lateral hypothalamus promote the activity of wake-promoting nuclei
and inhibit the VLPO, thereby stabilizing the wake state (Saper et al.,
2010). In addition, the VLPO also receives input from the SCN to reg-
ulate circadian rhythm of sleep/wake states (Saper et al., 2005a). REM
sleep is generated by neurons in the peri-locus ceruleus area and sub-
laterodorsal area in the upper pons. The sublaterodorsal area projects to
the basal forebrain and cortex, leading to dream states, and to medul-
lary and spinal cord areas to inhibit movements during REM sleep
(Peever et al., 2014).

Sleep plays an important role in various cognitive functions. Acute
sleep deprivation impairs attention and vigilance, but even chronic
sleep deprivation of 6 h nightly can cumulatively impact cognitive
functions (Van Dongen et al., 2003). Beyond just sleep duration, SWS
and REM sleep each have roles in impacting cognitive performance.
SWS has been linked primarily to learning and memory, particularly
declarative memory, which includes remembering facts and events
(Wilckens et al., 2018; Leger et al., 2018). In contrast, REM sleep
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appears to play a role in non-declarative memory, or procedural
memory, and emotional memory (Boyce et al., 2017). However, some
data suggest that SWS and REM sleep have complementary roles in
memory consolidation, as SWS does also benefit procedural memory
(Mednick et al., 2011). In addition, sleep spindles, which are pre-
dominantly in stage N2 and SWS, are also linked to cognitive function
and appear to be involved in memory consolidation during sleep (Rasch
and Born, 2013).

Much research has focused on the role of SWS in memory. On a
physiologic level, two hypotheses – which are not mutually exclusive –
have emerged to explain sleep's role in memory consolidation. The
synaptic homeostasis hypothesis postulates that during wakefulness,
synaptic strength increases, and during sleep – particularly SWS – sy-
naptic strength decreases (Tononi and Cirelli, 2006). This downscaling
maintains synaptic homeostasis. The active system consolidation model
postulates that slow wave activity strengthens synapses that are re-
activated during sleep and facilitates transfer of memory from the
hippocampus to neocortex for long-term storage (Diekelmann and Born,
2010).

2.3. Stress

Stress is an aversive stimulus that elicits physiological responses
both at the central (arousal, vigilance, attention) and peripheral sys-
tems (metabolism and oxidation) to minimize the effects of that
stressor. Stressors acutely engage the autonomic nervous system to
prepare the body for the classic “fight or flight” response to avoid im-
mediate danger (Ulrich-Lai and Herman, 2009). Chronic effects of
stressors engage a slower kinetic neuroendocrine response of the hy-
pothalamus-pituitary-adrenal (HPA) axis, leading to deleterious effects
on the organs.

The HPA axis is the major pathway for the stress response and is
activated in allostatic response to return the body to homeostatic state.
The hypothalamus releases two neuro-hormones: corticotropin-re-
leasing factor (CRF) and arginine vasopressin (AVP) into the blood that
directly activates the pituitary via the hypophysial portal system. These
two hormones stimulate the release of adrenocorticotropic hormone
(ACTH) into the main circulation system. ACTH then stimulates the
adrenal cortex to release glucocorticoid in rodents and cortisol in hu-
mans (Stephens and Wand, 2012) Glucocorticoid, in turn, provides
negative feedback by binding to the mineralocorticoid receptors (MRs)
and the glucocorticoid receptors (GRs) both in the hypothalamus and
pituitary gland and shuts off its own production. Glucocorticoid (G) is a
steroid hormone whose primary function is to facilitate the metabolism
of glucose, protein and fat to supply energy for the body during stressful
events. Besides these specific effects, G binds to GR and activates var-
ious signaling pathways with wide-range effects influencing learning
and memory, immune response, arousal, and others. For the healthy
individual, cortisol rapidly increases during a stressful event and
quickly declines following the removal of an acute stressor.

The effects of both acute and chronic stress on the brain are very
broad and beyond the scope of this review but are covered in previous
reviews (Ulrich-Lai and Herman, 2009; Chrousos, 2009). Psychological
and physical stressors incur a wide array of deleterious effects such as
sleep and circadian rhythm disruption, neuroinflammation, oxidative
stress and more. Specifically, the role of stress on AD has been in-
tensively and extensively discussed in these reviews (Pomara et al.,
2003; Machado et al., 2014; Johansson et al., 2010; Futch et al., 2017).
Chronic stress has detrimental consequences on the brain and is thought
to be a contributing to neurodegenerative disease. Both chronic psy-
chological and physical stress also lead to cellular stress. Multiple in-
sults from the environment could damage the macromolecules such as
DNA, lipids, and proteins. These two pathways then integrate signaling
and elicit appropriate responses from the cellular stress signaling re-
sponse network. For example, if DNA is damaged from stress, chromatin
modeling machinery will be recruited for DNA repair. Eventually, if all

attempts to nullify the environment stressor fail, cell apoptosis engages
as the final solution (Kultz, 2005).

2.4. Interactions between circadian rhythms, sleep, and stress

Stress, circadian rhythms, and sleep all have interactive relation-
ships (Fig. 1). For example, psychological stressors result in sleep
fragmentation and reduced sleep duration, SWS, and REM sleep (Kim
and Dimsdale, 2007). One major area where stress responses and sleep
and circadian rhythm disruption intersect is the HPA axis and cortisol
levels. Sleep restriction and circadian misalignment, such as with shift
work, increase the stress response with elevated cortisol levels (Spiegel
et al., 1999) and inflammation (Vgontzas et al., 1999). Circadian mis-
alignment can also result in sleep disruption (American Academy of
Sleep Medicine, 2014) and alter cortisol production (Wright et al.,
2015). In turn, cortisol can reset other peripheral rhythms, such as that
in adipose tissue (Kolbe et al., 2015).

Obstructive sleep apnea (OSA) is a sleep disorder that is particularly
relevant to stress. OSA is characterized by recurrent obstructions in the
upper airway when asleep, leading to intermittent hypoxemia and
arousals. The prevalence of OSA increases with age and affects 9% of
women and 17% of men age 50–70 years (Peppard et al., 2013). With
frequent arousals, OSA can cause sleep to be fragmented. OSA impairs
cognitive function, especially executive function. Furthermore, OSA
may increase cortisol activity (Vgontzas et al., 2007), and greater
nighttime cortisol correlates with worse cognitive function beyond that
expected for OSA alone (Edwards et al., 2014).

The HPA axis and its main effector, cortisol in humans and corti-
costerone (where glucocorticoid is the main example) in rodents, are
also under circadian regulation. The release of G is controlled by a dual-
rhythm regulation: circadian rhythm for 24-h control and pulsatile ul-
tradian rhythm for hourly control (Windle et al., 1998). Since the levels
of CRF, ACTH, and G are circadian regulated (Girotti et al., 2009;
Chrousos, 1998), it is not surprising that the level of stress responses is
time dependent (Dunn et al., 1972). Rodents, which are nocturnal an-
imals, have heightened stress responses at the beginning of the light
cycle (when corticosterone is already high) than at the beginning of the
dark cycle even with the same stressor (Kant et al., 1986). Furthermore,
Bmal1 (Leliavski et al., 2014) and Clock (Turek et al., 2005) positively
regulate the level of glucocorticoid. Ablating the Bmal1 gene results in
lower basal G level and blunted effects on the stress-induced responses
(Leliavski et al., 2014). In contrast, Cry represses glucocorticoid pro-
duction; in the absence of Cry gene, glucocorticol is elevated (Barclay
et al., 2013; Lamia et al., 2011).

The molecular clock is critical for adrenal function and therefore
HPA axis. Through different experiments, it was unambiguously de-
monstrated that the molecular clock of the adrenal gland is cell-au-
tonomous. Specifically, the mRNA levels of Bmal1, Per1, and Per2 in the

Fig. 1. A model of interactions among sleep disruption, circadian disruption
and stress.

T.X. Phan and R.G. Malkani Neurobiology of Stress 10 (2019) 100133

3



adrenal gland are still rhythmic following hypophysectomy
(Fahrenkrug et al., 2008), while in vitro experiments demonstrate that
ACTH controls phase setting of the adrenal core molecular clock (Yoder
et al., 2014). Genetic ablation of Bmal1 (Son et al., 2008) or Per1/Per2
(Oster et al., 2006) demonstrate that rhythmic GC release is due to
localized peripheral clock in the adrenal gland. Through the HPA axis
and potentially other pathways, the SCN still regulates this peripheral
rhythm to control the adrenal activity (Chung et al., 2011). Thus, cir-
cadian activity of the adrenal gland is controlled both by the upstream
signaling and localized molecular clock machinery.

In short, sleep and circadian rhythm functions modulate the HPA
axis in basal conditions; however, under chronic stress, the HPA axis
becomes constantly activated and therefore overrides the circadian
rhythm control and can disrupt the circadian rhythm. It is reasonable to
conclude that these interconnected relationships, when dysfunctional,
will form a perpetual feedback loop that synergistically exacerbates
pathophysiologic changes in each other.

3. Alzheimer's disease (AD)

AD is a progressive dementia associated with complex etiologies and
affects an increasing aging population (Huang and Mucke, 2012;
Masters et al., 2015). The pathological hallmarks of AD are the extra-
cellular plaques, intracellular tangles, and neuronal loss (Masters et al.,
1985; Glenner and Wong, 1984; Hardy and Higgins, 1992). Following
the identification of amyloid peptide at the core of the plaques, the
amyloid precursor protein (APP) and the enzymes that cleave APP were
identified (Hardy, 2017). The mechanistic insights integrated from
multidisciplinary discoveries constitute the elements of the of amyloid
cascade hypothesis (ACH), which postulates that aberrant accumulation
of amyloid beta (Aβ) leads to intracellular fibrillary tangle build up and
ultimately cellular death (Hardy and Higgins, 1992; Hardy, 2017). The
newly emerged pathological signature of AD is neuroinflammation,
which has recently become the center of research interest in AD
(Heneka et al., 2015; VanItallie, 2017; Regen et al., 2017). Neuroin-
flammation contributes to formation of plaques and reduction of sy-
napses through over-pruning by the microglia (Hong et al., 2016a).
Thus, inflammation is a tangible therapeutic avenue (Tan et al., 2012).

The ACH accentuates the role of amyloidosis and places the amy-
loidocentric perspective at its center, but it is inadequate to fully ex-
plain the disease pathologies. For instance, it remains enigmatic as to
why there is a long quiescent period, where patients remain asympto-
matic for decades despite accumulation of amyloid plaques.
Nevertheless, the ACH provides an important frame work for all the
recent therapeutic approaches. As such, many clinical trials aimed at
reducing amyloid plaques have yielded no tangible successes. Among
all the probable confounders, limitations, and technical challenges, one
important reason may be the missed therapeutic window; patients even
at mild and moderate stage at the time of commencing the clinical trials
were already at potentially irreversible stage due to significant synaptic
and neuronal losses (Selkoe and Hardy, 2016; Karran and De Strooper,
2016).

Alternative theories were thus engendered to explain the seemingly
contradictory evidence, including the temporal course of disease pro-
gression and the spatial discordance of the disease. These theories di-
verge on the origins and the primary factors of AD pathogenesis, yet all
evidence converges on the perspective that AD must be detected early
to maximize the effectiveness of treatment. Thus, it is imperative to
have a reliable, simple, and non-invasive biomarker to detect early
stage of AD. One potential early biomarker for detecting AD is sleep and
circadian rhythm dysfunction (SCRD). It has been reported many dec-
ades ago that some AD patients exhibited confusion in the early evening
hours, hence the term “sundowning” (Volicer et al., 2001). Recent and
mounting evidence further strengthened the connection between SCRD
and AD (Holth et al., 2017) as we discuss below.

3.1. The challenges of early detection and treatment of AD

At the mechanistic level, according to the ACH, Aβ peptides are
generated by a sequential protease-mediated cleavage of the APP by β-
secretase enzyme 1 (BACE1) followed by γ-secretase. Aβ42 is sy-
naptotoxic and is the main constituent of neuritic plaques. The ele-
vation of Aβ42 initiates a cascade of failure resulting in accumulating
intracellular Tau and ultimately neuronal demise (Hardy and Higgins,
1992; Selkoe and Hardy, 2016; Hardy and Selkoe, 2002). In support of
the ACH, people who inherit mutations in the APP, Presenilin 1
(PSEN1) or PSEN2 genes produce the longer forms of Aβ peptides
(> 42aa) and have an accelerated symptomatic onset. In contrast,
most AD patients have late-onset symptoms of dementia with un-
defined causes. Recent results from genome wide association studies
(GWAS) provide several genes that associated with AD (Lambert et al.,
2013; Moustafa et al., 2018; Van Cauwenberghe et al., 2016); how-
ever, the mechanisms between these genes and AD pathophysiology
remain to be elucidated.

Much efforts in identifying the genetic underpinnings of AD had
yielded only a handful of genes. Mutations in APP, PS1, and PS2 were
identified as causes of early onset AD but are seen in less than 1% of
people with AD overall (Alzheimer's, 2013). Apolipoprotein E ε4 (APOE
ε4) mutation is cause of late onset AD and consistently comes up in
many genome wide association studies (GWAS) (Castellano et al., 2011;
Ma et al., 2016). Genetically, APOE ε4 poses the highest risk factor for
late onset AD. We will mention a few important points about APOE.
First, APOE encodes for a lipid/cholesterol carrier, a lipoprotein that
binds to the APOE receptor (Mahley, 1988). Individuals with one APOE
ε4 allele have a 4-fold higher risk of AD, and those with two alleles have
a 10-fold higher risk of AD compared to those without an APOE ε4
allele. Second, the APOE ε2 allele appears to have a protective effect on
AD. Recent experiments in mice have shown the APOE ε4 is associated
with greater amyloid plaques compared to APOE ε2 isoform (Castellano
et al., 2011). Third, APOE transcription appears to fluctuate in a cir-
cadian manner (Ma et al., 2016); the APOE protein, however, does not
fluctuate across the day (Ulrich et al., 2013), so the significance of these
fluctuations and the role of circadian rhythm control on APOE is un-
clear (Zhao et al., 2018; Liu et al., 2013; Yu et al., 2014; Bu, 2009;
Kanekiyo et al., 2014). Fourth, another relevant aspect of APOE is its
protective role in oxidative stress. Specifically, a significant increase in
lipid peroxidation in plasma and lipoprotein was observed in mice with
APOE ablated (Hayek et al., 1994). Furthermore, APOE ε4 confers
higher risk of cell death compared to APOE ε2 in when cells are exposed
to hydrogen peroxide. (Miyata and Smith, 1996). Consistently, freshly
dissected prefrontal cortex postmortem tissues of people with AD
showed that APOE ε 4 is strongly associated with higher levels of lipid
oxidation (Ramassamy et al., 1999). Taken together, these results
showed that APOE has an essential role in protecting the cells against
oxidative damage in an allele specific manner, where APOE ε2 is the
most protective and APOE ε4 is the most harmful allele.

The ACH is not universally accepted for several reasons (for reviews,
see (Karran and De Strooper, 2016; Herrup, 2015; De Felice, 2013)).
The ACH parsimoniously expounds the temporal and spatial dis-
cordance between the region of brain where Aβ and tangles originate.
Aβ plaques first appear in the precuneus and the frontal cortex, but
hyper-phosphorylated Tau first appears in the entorhinal cortex
(Musiek and Holtzman, 2015). Recently, therapeutic strategies aimed at
reducing Aβ peptides, such as the BACE1 inhibitor verubecestat
(Mullard, 2017) and the anti-Aβ antibody treatments (Solanezumab, Eli
Lily) (Mullard, 2016) both failed in phase III clinical trials (Huang et al.,
2009). The failures could be due to confounders such as the drug po-
tency, brain penetrance, and stage of AD at the time of treatment
(Sperling et al., 2011). Results from a new verubecestat phase III trial
that treats early stage (or prodromal) patients will be revealed in early
2019, and positive results from this study would corroborate the va-
lidity of the ACH. Nevertheless, the ACH accommodates many findings
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and discoveries thus far. It is the most validated hypothesis providing
framework for the mechanistic understanding and potential therapeutic
treatments to date (Selkoe and Hardy, 2016).

Currently available medications for AD only manage symptoms and
include cholinesterase inhibitors (donepezil, rivastigmine, galanta-
mine) and an NMDA receptor antagonist (memantine) (Lleo et al.,
2006). Although these drugs show some short-term benefits, the po-
tential side effects (e.g nausea, vomiting, dizziness, loss of appetite,
confusion) often outweigh the benefits (Lleo et al., 2006; Inglis, 2002).

Due to the recent litany of failure of pharmaceutical approaches to
ameliorate cognitive impairments in mild-moderate AD patients, the
current goal is to detect and treat AD before it starts, especially in the
quiet prodromal period (Sala Frigerio and De Strooper, 2016). Until
recently, the only way to confirm the diagnosis of AD was by post-
mortem immunostaining of the brain. It is now possible to detect Aβ
plaques in living patients with synthesized PET-scan dyes, e.g. the 11C-
PIB (Pittsburgh compound B). Although 11C-PIB can detect the fibrillary
form of Aβ peptides (mainly Aβ40 and Aβ42) (Klunk et al., 2004) and
was heralded as a new diagnostic tool, current large scale usage of this
tool is limited because of availability and cost and is not appealing to
the general population due to the use of radioactive tracers (Khan and
Alkon, 2015). Innovative and less invasive approaches, such as blood-
based biomarkers (O'Bryant et al., 2016; Nakamura et al., 2018) and
retina scans for Aβ deposition (Hart et al., 2016; Koronyo et al., 2017;
Koronyo-Hamaoui et al., 2011), show promise for detection of early
signs of AD in general population but are still in their infancy. Alter-
natively, a wealth of recently accumulating evidence demonstrate that
SCRD could serve as early biomarkers (Sterniczuk et al., 2013;
Cedernaes et al., 2017; Lim et al., 2014a; Lucey and Bateman, 2014),
providing an intriguing possibility to understand the physiology and
identify modifiable risk factors to prevent the development or delay the
progression of AD.

3.2. Circadian rhythms and AD

Alterations in circadian rhythm function in AD has long been re-
cognized. Most notably, people with AD often develop a loss of the
sleep/wake rhythm, resulting in short bouts of wakefulness interspersed
with short bouts of sleepiness throughout the 24-h day but no major
sleep or wake bout (Witting et al., 1990). This finding has led to further
study degeneration of circadian function in AD. In general, such dys-
function may occur due to loss of time cues to the SCN, dysfunction in
the SCN itself, or changes in the output rhythms directly, which also
lead to impaired feedback to the SCN.

Failure of appropriate inputs to the SCN occur in AD and may also
play a role in the associated circadian rhythm disruption. People with
AD experience decreased light exposure, even if not institutionalized
(Figueiro et al., 2012). Beyond having less light exposure, signaling of
light to the SCN may be impaired, as mRGCs are significantly reduced
in AD patients (Feng et al., 2016). Evidence from optical coherence
tomography and post-mortem histological analysis of AD patients show
a significant reduction of nerve fiber layer thickness and a reduced
number of mRGCs (La Morgia et al., 2016; La Morgia C et al., 2013).
These findings were further corroborated by multiple lines of evidence,
both in humans and mice, that Aβ plaque deposits and phosphorylated
Tau are present in the retina (Koronyo-Hamaoui et al., 2011; Yoneda
et al., 2005; Ning et al., 2008). Reduction of mRGCs may impair proper
SCN entrainment, and protecting the mRGCs from degeneration could
potentially improve circadian function in AD and perhaps delay the
progression of AD.

The SCN anatomically and functionally deteriorates in aging and
neurodegenerative diseases (Mattis and Sehgal, 2016), and the degree
of SCN degeneration correlates with the degree of circadian disruption
(Harper et al., 2008; Stopa et al., 1999). The number of neurons posi-
tive for vasoactive intestinal peptide (VIP) and arginine-vasopressin
(AVP) are significantly reduced in the SCN of AD patients compared to

control cohorts in post-mortem analysis (Wang et al., 2015; Swaab
et al., 1985). Moreover, there is a high concordance between the degree
of degeneration of these SCN-specific neurons and the severity of sleep-
wake disruption. Interestingly, AVP is an anxiogenic and purported to
mediate long term stress and depression which often seen in AD (Beurel
and Nemeroff, 2014). The loss of these critical neurons results in
asynchronous firing patterns among SCN neurons and diminished am-
plitude outputs, thus rendering the SCN unable to synchronize the
peripheral clocks. Degeneration of the SCN invariably disrupts the
circadian rhythm with many consequences, including sleep fragmen-
tation (Liu et al., 2012), memory impairment (Phan et al., 2011), and
metabolic changes (Kalsbeek et al., 2011).

Besides the sleep-wake cycle, other disrupted circadian rhythms,
including a delayed phase of the core body temperature rhythm (Peter-
Derex et al., 2015), low amplitude of the melatonin rhythm (Weissova
et al., 2016), and changes in circadian gene expression (Cermakian
et al., 2011) and circadian period (Sethi et al., 2015; Schneider et al.,
2014) are also observed in AD patients. Conversely, recent evidence has
implicated that circadian rhythm disruption is not only consequence of
AD but also may increase the risk of AD (Musiek, 2015; Musiek and
Holtzman, 2016). For example, alterations in the rest/activity rhythm is
a predictor of dementia in the elderly (Tranah et al., 2011). In addition,
variations in the coding sequence of BMAL1 (Chen et al., 2015) or
CLOCK (Chen et al., 2013a, 2013b; Yang et al., 2013) genes increase the
propensity of developing AD. By definition, these studies only demon-
strate a correlation between the risk of getting the disease and having a
variation in the gene but do not imply causation.

In short, the SCN orchestrates a complex symphony of neuronal
activity. When the SCN function is compromised as in AD patients, the
symphony becomes cacophony. The SCN is “the strange case of Dr.
Jekyll or Mr. Hyde”, when functional, it is beneficial, but when it breaks
down, it becomes a stressor, leading to sleep disruption and sleep
fragmentation.

3.3. Sleep and AD

Sleep disruption manifests in several ways in AD. It is not surprising
that AD patients frequently exhibit nighttime sleep fragmentation and
daytime sleepiness. With aging, sleep tends to become more fragmented
and some sleep stages, particularly SWS, decline. These changes are
accentuated in AD, and furthermore, stage REM sleep declines (Mander
et al., 2017; Brown et al., 2012; Ju et al., 2014). These sleep problems
are also manifestations of underlying circadian rhythm disturbances,
such as low amplitude of the rest and activity rhythm, the degree of
which correlates with the degeneration of the SCN (Harper et al., 2008;
Stopa et al., 1999). Sleep fragmentation may also be related to Aβ ac-
cumulation and neuronal loss in structures that regulate sleep-wake
states, such as the intermediate nucleus of the hypothalamus, the
human homologue of the VLPO (Lim et al., 2014b). Moreover, animal
models that were engineered to express human Aβ peptides reveal that
a high level of Aβ induces fragmented sleep in Drosophila (Gerstner
et al., 2017). Other sleep architecture changes, such as a decline in SWS
is seen even in people with mild cognitive impairment, who are at risk
for developing AD (Westerberg et al., 2012). This change may be of
particular importance as SWS plays a role in cognitive performance as
discussed above (Westerberg et al., 2012).

Recent evidence has shown that sleep disruption is a risk factor for
AD. Sleep disruption can begin years or even decades before the onset
of AD. Sleep fragmentation impairs memory consolidation in animals
(Rolls et al., 2011) and has been demonstrated to be a risk for AD
(Djonlagic et al., 2012; Lim et al., 2013). Cognitively normal in-
dividuals with self-reported sleep problems have a higher likelihood of
having AD biomarkers such as lower levels of Aβ42 and higher levels of
total Tau and phosphorylated-Tau in the cerebrospinal fluid (Sprecher
et al., 2017). Several studies have shown that rest/activity rhythm al-
terations predict cognitive decline (Walsh et al., 2014) and mild
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cognitive impairment and dementia (Tranah et al., 2011). Recently, a
large meta-analysis reported that both insomnia and sleep disordered
breathing increase the risk of AD by 49% (Shi et al., 2017). Although
these data do not demonstrate casual effects, recently there are me-
chanistic studies pointing to this possibility (Bellesi et al., 2017; Roh
et al., 2012; Lucey et al., 2017). For example, sleep deprivation de-
creases leptin levels and increases ghrelin levels (Taheri et al., 2004);
these two hormones appear to play protective roles from Aβ peptides.

Two seminal discoveries provide mechanistic insights between cir-
cadian rhythm, sleep and AD through production and clearance of Aβ:
1) the relationship between the sleep-wake cycle and Aβ metabolism
and 2) clearance of Aβ from the brain. First, the sleep-wake cycle drives
the oscillations of interstitial fluid Aβ peptides (mainly Aβ40 and
Aβ42). Aβ level peaks during the active phase and reaches a trough
during the sleep phase both in mice and in humans (Roh et al., 2012;
Huang et al., 2012). During sleep deprivation, Aβ levels increase in
humans and mice (Roh et al., 2012; Bateman et al., 2007; Kang et al.,
2009). In contrast, inhibition of neuronal activity by tetrodotoxin sig-
nificantly reduces the level of interstitial fluid Aβ peptide (Cirrito et al.,
2005). Second, through experiments using in vivo two-photon imaging,
it was shown that clearance of Aβ peptides occurs through the elusive
glymphatic system, which is analogous to the lymphatic system but in
the central nervous system and mediated by the glia. Toxic metabolites
egress through bulk flow that carries metabolic wastes, including Aβ
and Tau, more efficiently during natural or substance-induced sleep
than during wakefulness (Xie et al., 2013).

Blood brain barrier (BBB) disruption may also be a mechanism by
which sleep disruption promotes AD. Breakdown of the BBB – a finding
consistently observed in people with AD (Zlokovic, 2011) – can be
detected before any symptomatic onset of cognitive impairment and
any AD pathology in the brain (Montagne et al., 2017) and even before
changes in cerebrospinal fluid Aβ and tau levels (Montagne et al.,
2015). Chronic sleep restriction induces the breakdown of the BBB in
rodents (Gomez-Gonzalez et al., 2013; He et al., 2014). Selective de-
privation of REM sleep also impairs BBB integrity (Gomez-Gonzalez
et al., 2013). Further studies are needed to clarify the role of BBB in-
tegrity and AD and the effect of chronic sleep disruption on the BBB.

The mechanism of sleep disruption on Aβ following one night of
sleep deprivation could be due to either overproduction of Aβ, reduced
clearance or a combination of both. Bateman and colleagues present
evidence that sleep deprivation increases production of Aβ peptides
(Lucey et al., 2018). Experimental sleep disruption, either pharmaco-
logically (Kang et al., 2009) or with sounds (Ju et al., 2017), also in-
creases Aβ levels. Although these studies cannot distinguish between
increased Aβ production and impaired glymphatic clearance of Aβ
peptides, wakefulness does appear to promote Aβ production. Aβ
peptide levels increase in the barrel cortex when mouse whiskers are
physically stimulated, and removal of whiskers (thereby inhibiting
neuronal activity) decreases Aβ peptide level (Bero et al., 2011). Col-
lectively, these results suggest that neuronal activity drives the pro-
duction of Aβ peptides. Although the biological function of Aβ42 is not
fully understood, evidence indicates that Aβ peptides inhibit synaptic
transmission through NMDA receptor activation, perhaps to dampen
neuronal activity (Kamenetz et al., 2003). Whether the daily oscillation
of Aβ peptide levels has any functional role remains to be explored;
however, disruption of Aβ peptide oscillations increases the likelihood
of plaque accumulation (Roh et al., 2012; Bateman et al., 2007; Kang
et al., 2009). Furthermore, impaired clearance of Aβ could play a role.
Indeed, it was demonstrated that the glymphatic system was suppressed
before an abundant accumulation of Aβ plaques (Peng et al., 2016),
supporting impaired glymphatic clearance as a mechanism in AD pa-
thophysiology. More studies are needed to determine how well glym-
phatic system clears Aβ and Tau in sleep-deprived and sleep-frag-
mented states to conclude with certainty the roles of Aβ production and
clearance.

Levels of Aβ and sleep fragmentation appear to have a bidirectional

relationship. While sleep disruption increases Aβ levels, Aβ may pro-
mote sleep disruption. Aβ peptides promote degradation of BMAL1 and
Creb-Binding Protein (CBP), which causes further sleep and circadian
disruption in an AD mouse model (Song et al., 2015). Therefore, sleep
fragmentation increases Aβ release – increasing the risk of amyloid
plaque formation and neuronal injury – which in turn exacerbates sleep
fragmentation and disturbance. If such damage occurs in structures
controlling sleep and wake, further sleep fragmentation would ensue,
worsening the neurodegenerative process (Ju et al., 2013).

3.4. Circadian rhythms, sleep, stress and AD

Stress has been extensively demonstrated to be a contributing factor
to AD (Machado et al., 2014; Futch et al., 2017; Csernansky et al., 2006;
Mravec et al., 2018; Greenberg et al., 2014). Briefly, stress alters the
allostatic load and effects the brain directly at three levels. At the cel-
lular level, it alters proteostasis – as observed in hyperphosphorylation
and aggregation of Tau – and causes epigenetic changes in neuronal
DNA (Mravec et al., 2018). At the tissue level, stress causes reduction of
synaptic density and number of neurons and accumulation of extra-
cellular Aβ peptides (Mravec et al., 2018). Stress induces changes in the
peripheral organs where it alters metabolic, cardiovascular, and gas-
trointestinal physiology and deregulates the immune system (Mravec
et al., 2018). These effects indirectly worsen brain homeostasis and
increase susceptibility to AD (Mravec et al., 2018). In particular,
chronic stress activates the HPA axis resulting in many deleterious ef-
fects such as increased Aβ plaque load and Tau pathology, memory
impairment, and neurodegeneration (Carroll et al., 2011). Stress also
increases several cytokines and impairs neurogenesis in rodent AD-
models (Ricci et al., 2012). In humans with AD, cortisol is associated
with higher rate of cognitive decline, though this relationship was not
seen in people without dementia (Csernansky et al., 2006).

Given the intertwined nature of sleep and circadian rhythm dis-
ruption and stress and each of their direct relationships with AD pa-
thology, the intersection of these factors likely promotes AD pathology.
Circadian rhythm disruption affects sleep and misalignment of other
physiologic rhythms, which may worsen stress. Sleep disruption in-
creases stress, and stress increases sleep disruption, both leading to
downstream effects on AD pathogenesis. Different forms of stresses alter
sleep architecture and activate the HPA axis (Pawlyk et al., 2008).
Stress-inducing paradigms such as social defeat, restraint or im-
mobilization, foot shock, or water submersion demonstrate the detri-
mental effects of stress on sleep (Sanford et al., 2015).

Remarkably, in humans, one night of sleep deprivation increases
cortisol levels and potentiates the HPA axis (Minkel et al., 2014). In
mice, acute stress potentiates the HPA axis response but chronic
stress blunts the HPA axis response (Novati et al., 2008; Hagewoud
et al., 2011). On the other hand, chronic stress due to isolation housing
and acute stress due to restraints significantly elevate Aβ via a CRF-
dependent mechanism (Kang et al., 2007). Multiple studies have shown
that sleep deprivation increases cellular oxidative stress (D'Almeida
et al., 1998; Mathangi et al., 2012; Ramanathan et al., 2002). There-
after, cellular oxidative stress by reactive oxygen and reactive nitrogen
species instigates AD pathogenesis (Sultana and Butterfield, 2010).
Accordingly, oxidative damage was the first event to be observed in
human post-mortem AD brains (Nunomura et al., 2001). Furthermore,
oxidative stress as indicated by lipid peroxidation presages plaque de-
position in an amyloidosis mouse model (Pratico et al., 2001).

OSA is another potential link between stress and AD. Sleep dis-
ordered breathing, including OSA, raises the risk of incident AD by 20%
(Shi et al., 2017). The sleep fragmentation in OSA may increase neu-
ronal activity and Aβ release and impair Aβ clearance. In addition, the
intermittent hypoxemia has several effects that can raise risk of neu-
rodegeneration. For example, intermittent hypoxemia upregulates β-
secretase, resulting in increased cleavage of APP to Aβ42 (Ng et al.,
2010; Shiota et al., 2013). Cerebrospinal fluid in people with OSA have
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decreased Aβ42 and increased tau protein, findings that like those with
AD (Ju et al., 2016). Furthermore, intermittent hypoxemia increases
oxidative stress, reactive oxygen and nitrogen species, and inflamma-
tion, promoting AD pathophysiology (Heppner et al., 2015), cortical
thinning (Joo et al., 2013), and neuronal apoptosis (Gozal et al., 2003;
Nair et al., 2011).

Interestingly, the anatomical areas controlling the sleep-wake cycle,
including the locus coeruleus (LC), the VLPO, and others, are damaged
by the stress-response in the setting of AD in a manner that can worsen
AD pathophysiology (Coogan et al., 2013; Satoh and Iijima, 2017). For
instance, LC is a wake-promoting center and is activated when exposed
to stress-induced paradigms (McDevitt et al., 2009). Moreover, the LC
and VLPO are degenerated in AD, further strengthening the connection
between stress and the sleep-wake cycle (Harper et al., 2008; Lim et al.,
2014b; Satoh and Iijima, 2017; Mather and Harley, 2016; Saper et al.,
2005b). Intriguingly, the LC was demonstrated to be the first region of
the brain to be damaged in AD patients (Mather and Harley, 2016). In
support of this notion, stress increases phosphorylated Tau, which is a
precursor to neurofibillary tangle and is mediated by CRF (Kvetnansky
et al., 2016). Furthermore, stress increases phosphorylated Tau in the
LC, which might explain why this region is subjected to deterioration in
stress-induced circadian disruption conditions (Kvetnansky et al.,
2016). It is currently a conundrum to determine which comes first,
stress or sleep disruption, to initiate the pathogenesis of AD. However,
the evidence supports the notion that stress, sleep disturbance, and
circadian disruption collaboratively and synergistically exacerbate AD
pathogenesis and cognitive dysfunction in people with AD.

4. Multiple interactions and potential mechanisms

Collectively, each of these factors, sleep, circadian rhythm, and
stress could independently or co-operatively influence the pathogenesis
or maintenance of AD. To recapitulate the complex interwoven nature
of these two factors: the sleep-wake cycle and the circadian rhythm are
tightly intertwined, and stress has bidirectional relationships with both
circadian rhythm dysfunction and sleep disturbance. Consequently,
there are multiple converging pathways where sleep and circadian
disruption can synergistically influence on AD pathophysiology (Fig. 2);
we will discuss these pathways below.

4.1. HPA axis

The HPA axis is preeminent converging pathway and was discussed
above. However, a few important additional points should be men-
tioned. First, the HPA axis activation promotes AD pathogenesis
(Pomara et al., 2003). Indeed, in a 35-year longitudinal population
study the investigators found midlife stress significantly increases the
risk of developing AD (Machado et al., 2014; Johansson et al., 2010). In
particular, stress increases CRF release which then increases γ-secretase
activity, resulting in higher Aβ production (Park et al., 2015). In ad-
dition, cortisol levels in AD patients are high compared to controls.
Although treatment aimed at reducing cortisol levels, such as by taking
dex-amethasone failed to yield any positive effect in AD patients
(Swanwick et al., 1998), approaches to modulate and decrease the HPA
axis activity could still be a viable and promising venue for treating AD
(Futch et al., 2017), particularly if started prior to symptom onset.
Second, Aβ promotes HPA axis activation. Intracerebroventricular in-
jection of Aβ peptides increase corticosterone and elevated HPA axis
activity. These results demonstrate that the HPA axis contributes sig-
nificantly to the development and perhaps the progression of AD
(Brureau et al., 2013). Taken together, the activation of the HPA axis
appears to be a common pathway by which SCRD and stress increase Aβ
production and promotes the development of AD. What remains unclear
is whether stress and SCRD independently activate the HPA axis, stress
causes SCRD leading to HPA axis activation, or SCRD causes stress and
therefore HPA axis activation.

4.2. Microglia

A recent intense focus in AD research has involved elucidating the
role of neuroinflammation, which is one of the defining hallmarks of AD
(Morales et al., 2014). Indeed, there have been multiple studies tar-
geting inflammation as a therapeutic treatment for AD. Specifically,
microglia play an essential role in the initiation and progression of
neuroinflammation. In fact, it is believed that the overactive and con-
stant activation of microglia-mediated pruning could be the cause of the
irreversible synaptic loss. Microglia is as an ideal target for studying the
disease mechanism and is a “druggable” target. Microglia are the re-
sident macrophages in the CNS. Using combination of genetic manip-
ulation and in-vivo life microscopy imaging revealed that microglia
constantly survey the neuronal milieu and when required phagocytose
dendrites such as during development or when marked for pruning
(Kettenmann et al., 2011). Together with the complement system, mi-
croglia play an essential role in synaptic pruning and sculpting of sy-
napses in the brain (Hong et al., 2016b).

Sleep disruption and stress also affect microglia function. Sleep loss
induces microglia activation and astrogliosis in the mouse cerebral
cortex (Bellesi et al., 2017; Wisor et al., 2011). Furthermore, chronic,
but not acute, sleep loss promotes microglia activation without neu-
roinflammation and loss of synapses (Bellesi et al., 2017). This loss of
synapses, and eventually the loss of neurons, have been consistently
reported and widely accepted as pathological hallmark of AD (Selkoe,
2002). Remarkably, a novel and non-invasive approach to activate
microglia using light pulses (40 Hz) to the eyes significantly reduces Aβ
plaque loads and improves cognitive function in mice. The mechanism
is not fully understood but thought to activate microglia and phago-
cytose Aβ plaques in the visual cortex of an AD mouse model (Iaccarino
et al., 2016). In addition, ablation of the prostaglandin E2 receptor, an
activator of microglia, results in reduced AD pathology and improved

Fig. 2. A model of the interaction of stress, sleep disturbance, and circadian
rhythm disruption promotes Alzheimer's disease pathogenesis.
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cognitive function (Johansson et al., 2015). Physiological stress induces
activation of microglia, and mice subjected to chronic restraint have
more Iba-positive microglia, indicating more activated microglia pro-
liferation (Wohleb et al., 2011; Tynan et al., 2010). Taken together,
stressors such as sleep deprivation and circadian disruption activate
microglia, which may result in excessive synaptic pruning and neuronal
loss and ultimately AD.

4.3. Melatonin

Another important converging point between stress and circadian
rhythm is melatonin. Melatonin regulates many circadian aspects in-
cluding sleep-wake cycle and protects cells against oxidative stress.
Contrary to conventional thoughts, other localized structures/organs
also produce melatonin, such as the gut, skin, platelets, bone marrow
and others (Bubenik, 2002; Slominski et al., 2002; Champier et al.,
1997; Cardinali et al., 2003; Stefulj et al., 2001). Melatonin is synthe-
sized from tryptophan by three key enzymes: tryptophan hydroxylase,
arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyl-trans-
ferase. The mRNA level of these three enzymes, and their corresponding
protein levels, oscillate with the day/night rhythm (Bernard et al.,
1999). Due to the lack of melatonin storage, the plasma melatonin
concentration reflects the activity of the pineal gland. Human mela-
tonin levels peak at around 03:00 AM and decline to a barely detectable
level during the day (Claustrat et al., 1986). Melatonin increases SWS
and possibly stimulates the release of growth hormone and neuro-
trophin (Monti et al., 1999).

Melatonin has many characteristics of a free radical scavenger, and
is excellent at reducing oxidative stress (Galano et al., 2011). In parti-
cular, many studies have shown that melatonin protects neurons from
secondary damage following ischemia (Manev et al., 1996; Koh, 2008;
Kilic et al., 1999; Wakatsuki et al., 1999; Pappolla et al., 1997). Mel-
atonin also protects primary neurons in vitro from damage when in-
cubated with synthetic Aβ peptides through an undefined mechanism
(Pappolla et al., 1997). Collectively, melatonin protects neurons against
oxidative stress, ischemia, depression, and cognitive impairment.
However, the effect of stress on melatonin production is largely un-
known, although stress has been reported to decrease the level of
melatonin in trout (Lopez-Patino et al., 2014).

The link between melatonin and AD has been well characterized;
low melatonin levels at night were noticed in the aging population and
correlated with cognitive impairment (Skene and Swaab, 2003) (Lin
et al., 2013). The melatonin levels in the prefrontal cortex is inversely
correlated with an individual's Braak pathology stage, such that lower
melatonin associates with a higher Braak stage (indicating more severe
AD) (Lin et al., 2013). In keeping with this, Aβ peptides impede mel-
atonin synthesis in the pineal gland and interfere with melatonin re-
ceptor signaling via the ERK/MAPK pathway (Cecon et al., 2015).
Given the relationship between melatonin and AD, melatonin has been
examined as a treatment in AD. Such studies have reported positive,
though modest, effects of melatonin in cognitive deficits and attenu-
ating behavioral disturbances (Riemersma-van der Lek et al., 2008;
Haffmans et al., 2001).

4.4. Hypocretin/orexin

Hypocretin (de Lecea et al., 1998) and orexin (Sakurai et al., 1998)
are the same neuropeptide that were cloned in parallel by two in-
dependent research groups in 1998. One of the primary functions of
orexin is to promote and stabilize wakefulness (Kilduff and Peyron,
2000; Sutcliffe and de Lecea, 2002). The orexinergic neurons in the
hypothalamus project their fibers to many different nuclei that govern
sleep-wake cycle such as the LC, septal nuclei, medullary reticular
formation, and others (Peyron et al., 1998). Stressors such as foot shock
and restraint increase c-Fos expression in hypocretinergic neurons;
however, only restraint stress elicits an increase in orexin mRNA levels

(Reyes et al., 2003). The effect of stress on increased c-Fos expression is
nullified in CRH-Receptor 1 (CRHR1) knockout mice, suggesting that an
increase in orexin occurs through activation of the CRH pathway
(Winsky-Sommerer et al., 2004). Subsequent studies have shown that
there is an intricate connection between orexin and the HPA axis.
Furthermore, higher levels of interstitial Aβ were observed in forced
wakefulness using orexin; conversely, lower levels of interstitial Aβ
were observed in forced sleep using almorexant, an orexin antagonist
(Kang et al., 2009). Moreover, deletion of orexin receptors in the APP/
PS1/OR knockout mouse shows a significant reduction of Aβ plaque
deposition in 3.5- and 8-month old mice. Mice lacking orexin receptors
sleep significantly more while plaque deposition was significantly
abated (Roh et al., 2014). When these orexin receptor knockout mice
were sleep deprived, amyloid plaque burden worsened, further sup-
porting the role of sleep on AD pathogenesis sleep. In addition, orexin
has been shown to modulate circadian oscillation of AD risk genes such
as APOE, ABCA1, BACE1, GSKβ, and others (Ma et al., 2016). In sum-
mary, these results demonstrate the role of orexin in sleep regulation,
its interaction with stress through the HPA axis, and most recently that
orexin regulates the oscillatory expression of the AD risk genes. These
results warrant the necessity for further investigation of orexin in AD
pathogenesis (Liguori et al., 2014).

4.5. ERK/MAPK signaling pathway

Memory impairment is the most prominent type of cognitive dys-
function and the first symptom in AD. Memory formation is a multistep
process that requires encoding, consolidation, retrieval, reconsolida-
tion, and extinction (Sindreu et al., 2007; Athos et al., 2002; Chen et al.,
2005). The influence of stress on memory has been well studied (for
reviews, see (Schwabe et al., 2012; Finsterwald and Alberini, 2014)).
Briefly, short-term stress may enhance memory while chronic long-term
stress impairs memory. Chronic stress elevates cortisol levels, which
subsequently decrease the number of dendritic synapses. Stress and
memory impairment are part of the vicious cycle, where memory im-
pairment causes stress and stress causes memory impairment in AD
patients.

The molecular pathways that intersect between memory and cir-
cadian rhythm has been intensively reviewed (Smarr et al., 2014; Xia
and Storm, 2017; Eckel-Mahan, 2012). The ERK/MAPK pathway is at
the center of memory consolidation. Notably, levels of phospho-ERK,
cAMP and phospho-CREB, and the activity of PKA and MEK were ob-
served to oscillate in a circadian manner (Eckel-Mahan et al., 2008).
Remarkably, multiple approaches, including pharmacological, genetic
and behavioral tests were utilized to demonstrate that the oscillation of
cAMP/PKA/MAPK/CREB is crucial for memory maintenance. More-
over, the cAMP/PKA/ERK/CREB signaling pathway in the hippo-
campus is regulated by the SCN (Phan et al., 2011). Consistently, ab-
lating the Bmal1 gene resulted in reduced Per1 and pERK levels,
dysrhythmia in sleep-wake, and impaired spatial and associative
memories compared to controls (Wardlaw et al., 2014). Interestingly,
the cAMP/PKA/ERK/CREB signaling pathway is specifically increased
during REM sleep (Luo et al., 2013). In addition, Per1 mediates nuclear
shuttling of a CREB kinase, P90RSK, and plays a major role in memory
formation (Rawashdeh et al., 2016). The role of APP and Aβ on memory
are inconclusive, as many studies have shown that short term applica-
tion of Aβ peptides has a positive effect on long-term potentiation (the
molecular correlate of memory) and memory formation (Garcia-Osta
and Alberini, 2009). Yet, long term effects of Aβ are detrimental to
memory and cognition. In short, stress has been shown to effect
memory through the ERK signaling pathway (Shen et al., 2004), and the
circadian rhythm influences this same signaling pathway (Masters
et al., 2015; Lleo et al., 2006; Inglis, 2002). Furthermore, in AD mouse
model, ERK appears overactivated, and pharmacological inhibition of
ERK improves memory (Feld et al., 2014). Downstream of the ERK
pathway, AD mouse model shows reduction of pCREB level, which
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leads to a reduction of CRE-mediated transcription, resulting in re-
cognition memory impairment (Bartolotti et al., 2016). Aß (1–42) re-
portedly interferes with the ERK signaling pathway and impairs
working memory (Faucher et al., 2015). Taken together, the ERK sig-
naling pathway is disrupted in AD perhaps due to Aß (1–42) inference
binding (Hu et al., 2013). Therefore, the ERK/MAPK signaling pathway
plays an integral role not only for memory consolidation but also is a
common pathway downstream of stress, circadian rhythm and sleep.

4.6. Gut microbiome: the unexpected union of stress and circadian rhythm

The gut microbiome has recently become an intense field of re-
search interest. Gut bacteria (1014) outnumber total cells in humans
(3.7 × 1013), and their collective genome outnumbers the human
genome 100 to 1 (Collins et al., 2012). The gut microbiota's density is
1012 cells/ml, and their cumulative mass is around 1.5 kg. Besides fa-
cilitating digestion and providing vitamin B and K, the gut microbiota
plays many essential roles in inflammation and brain protection by
secreting brain derived neurotrophic factor (Maqsood and Stone, 2016).
In particular, the gut-brain axis has been implicated in neurodegen-
erative diseases such as Parkinson's disease and AD (Hill et al., 2014).
Comprehensive reviews of the gut-microbiota are covered in these ar-
ticles (Mancuso and Santangelo, 2018; de la Fuente-Nunez et al., 2018;
Zhang et al., 2017). Remarkably, the gut microbiota display a circadian
rhythm in both the amount and the composition of the microbiota ex-
amined at the transcriptomic level. Furthermore, when the host has
been subjected to a jetlag circadian paradigm, the circadian rhythm of
gut microbiota also changes. This indicates a crucial role of the SCN
master clock on the circadian rhythm of gut microbiota (Thaiss et al.,
2016). Although the role of the circadian rhythm on microbiota has
only recently been examined, the role of stress on gut microbiota was
explored many decades ago. Specifically, rats subjected to multiple
stressors (i.e. wet cage bedding) for two days had decreased Lactobacilli
and fusiform-shaped bacteria in the small and large bowels while the
total number of anaerobic was unchanged (Tannock and Savage, 1974).

Recently, a potential association between gut microbiota and AD
has begun to emerge, largely from studies of mouse models of AD.
Several experiments have suggested that gut microbial dysbiosis may
contribute to AD pathogenesis. First, the 16s rRNA sequence of the gut
microbiome in an AD mouse model was significantly different from the
microbiome of a control mice (Zhang et al., 2017). Second, treatment of
a mouse model of AD with antibiotics ameliorates AD pathologies
(Minter et al., 2016). Thus, immune-activated factors released from the
gut microbiota are thought to cause inflammation in the brain and
exacerbate AD pathology. Reducing the source of inflammation with a
broad-spectrum antibiotic reduces Aβ plaques (Minter et al., 2016).
Consistently, AD mice housed in a germ-free environment, essentially
eliminating gut microbiota from birth, show a similar reduction in Aβ
plaques (Harach et al., 2017). Remarkably, germ-free AD mice that
received microbiota from an AD mouse housed in normal conditions
had worse AD pathologies. In contrast, microbiota from control mice
housed in normal conditions transplanted into germ-free AD mice de-
creases Aβ plaques. A bacteriotherapy approach of feeding probiotics to
a mouse model of AD reduced Aβ plaques, inflammatory signals and
attenuated cognitive decline (Bonfili et al., 2017). Finally, in a first
human study, feeding probiotics to AD patients improved their cogni-
tive functions (Akbari et al., 2016). Collectively, these results support
the novel hypothesis that bacteriotherapy could potentially serve as a
therapeutic intervention to delay the progress of AD. Both stress and
circadian disruption have numerous effects on the gut microbiome
(Maqsood and Stone, 2016), and a few initial studies indicate that
modifying the gut microbiome has the potential to improve cognition in
mouse models of AD and patients. The gut microbiome is therefore an
important target in the search of modifying the disease course of AD.

5. Conclusion and future directions

In summary, SCRD can either independently or cooperatively with
stress exacerbate AD pathology. SCRD and stress worsen AD pathology
by concomitantly increasing production, decreasing clearance of Aβ, or
both. SCRD and stress converge at multiple signaling pathways.
Intriguingly, all of these converging points are under the control of
sleep and the circadian rhythm. Thus, therapeutic strategies should
incorporate new insights to approach through different lens, through
which we can ameliorate SCRD in hope of abating the disease progress.

We envision that sleep and circadian rhythm disruption assessment
might also be used as part of tool for detecting and mitigating risk for
AD. Therapies aimed at improving sleep and circadian rhythm function,
which by corollary decrease stress, may be necessary to prevent or limit
progression of AD. Stress-reduction strategies can also improve sleep
and perhaps could be helpful for preventing AD. Approaches to mod-
ifying circadian rhythm such as lengthening the photoperiod showed a
significant increase of lifespan in a neurodegenerative disease mouse
model (Morton, 2017), suggesting that circadian rhythm modification
could provide a tangible therapeutic avenue. Alternatively, small mo-
lecules could be used to modulate the biological clock and mitigate
SCRD (Chen et al., 2013c). Furthermore, interventional behavior
modifying approaches such as, physical activity, and bright light
therapy have shown limited successes (McCurry et al., 2005, 2011).
Lastly, phototherapy in combination with melatonin has shown some
successes in improving cognitive functions. Logically, combinatorial
approach such as early detection of the disease, bright light therapy and
melatonin to restore circadian rhythm, stress-reduction techniques, and
modification of the gut microbiome, may be necessary to prevent and
treat AD.
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