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ABSTRACT

Metabolic engineering aims to maximize the production of bio-economically important substances (compounds,
enzymes, or other proteins) through the optimization of the genetics, cellular processes and growth conditions of
microorganisms. This requires detailed understanding of underlying metabolic pathways involved in the pro-
duction of the targeted substances, and how the cellular processes or growth conditions are regulated by the
engineering. To achieve this goal, a large system of experimental techniques, compound libraries, computational
methods and data resources, including multi-omics data, are used. The recent advent of multi-omics systems
biology approaches significantly impacted the field by opening new avenues to perform dynamic and large-scale
analyses that deepen our knowledge on the manipulations. However, with the enormous transcriptomics, pro-
teomics and metabolomics available, it is a daunting task to integrate the data for a more holistic understanding.
Novel data mining and analytics approaches, including Artificial Intelligence (AI), can provide breakthroughs
where traditional low-throughput experiment-alone methods cannot easily achieve. Here, we review the latest
attempts of combining systems biology and Al in metabolic engineering research, and highlight how this alliance
can help overcome the current challenges facing industrial biotechnology, especially for food-related substances

and compounds using microorganisms.

1. Introduction

With the growing population of our planet, food security remains a
major challenge facing mankind. This is especially true for countries that
do not possess large land spaces for agriculture, such as those in the
Middle East (deserts), Japan (mostly mountainous), and Singapore (land
scarce). Moreover, nature conservationists are mostly against the
clearing of wild flora and fauna to feed the world. With the rapid phase of
global population growth, food security has become even more important
during the ongoing COVID-19 pandemic when countries have largely
closed their borders, affecting the food import-export trade (Laborde
et al., 2020). Furthermore, some countries have decided to stop food
export until the end of the year (Laborde et al., 2020). Therefore, in times
of crises such as pandemics, there is an imminent need to find alternative
sources of food and food ingredients.

One possible way to supplement conventional food and ingredients
stock is to adopt carefully engineered GRAS microorganisms, such as
bacteria and yeast, for the production of food compounds (e.g. total

protein production) or targeted substances (e.g. alcohol or vitamins) by
optimizing the genetics and/or growth conditions (Nozzi et al., 2014;
Xiao et al., 2015). In nature, however, the microorganisms explored or
used often do not produce the needed amounts of the required proteins,
substances or compounds. In such a situation, metabolic engineering can
play a major role. The process involves identifying key pathways and
enzymes that can be modified for the optimal production of the target
molecule (Kallscheuer, 2018). This can be achieved through transcrip-
tional and/or translational control, enzyme engineering (mutation
and/or truncation) and growth optimization (Garcia-Granados et al.,
2019; Shukal et al., 2019). Furthermore, it is also an excellent platform to
produce rare and economically valuable products such as taste sub-
stances, fragrance and cosmetic compounds. The overall increase in the
yield has to be maximized so that the production can be economically
viable. Therefore, metabolic engineering approaches aim to maximize
the titres-rates-yields (TRYs) to be industrially competitive as compared
to other methods such as chemical synthesis and extraction from natural
substances (Zhang et al., 2020a; Comba et al., 2012). To achieve this
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Fig. 1. Overview of the modeling strategies in the metabolic engineering research. (A) Data from different sources are used to construct (B) the metabolic
pathways that produces the substance of interest. (C) An appropriate computational modeling approach is used to simulate the pathway response to a given
perturbation in silico. The simulation results are analyzed to identity key regulatory steps, such as bottlenecks, which will then be tested using data from different
conditions (e.g. gene knockouts or different growth conditions) (figure adapted from Helmy et al., 2009). (D) Finally, the model predictions are experimen-

tally validated.

goal, limiting one’s efforts only through experimental approaches may be
insufficient. Interdisciplinary approaches linking mathematics, compu-
tational science and physics with metabolic engineering could most
likely pave the best way forward (Fig. 1).

2. Modeling strategies in metabolic engineering

Computational modelling uses mathematical and statistical approaches
built into computer algorithms that analyses experimental data to provide
better understandings of the biological systems and/or predictions that
guide subsequent lab work in an iterative manner (Helmy et al., 2009;
Piras et al., 2014; Selvarajoo, 2017, 2018). It has become an integral and
indispensable part of modern day biological research, especially when
studying cellular networks through systems biology approaches (Kim
et al., 2018). In the field of metabolic engineering, several types of

computational models are employed and they provide new insights in
identifying and tackling its challenges (Saa and Nielsen, 2017).

2.1. Dynamic and constraint-based metabolic modelling

There are several types of modelling approaches today, that can be
largely grouped into i) parametric approaches such as dynamic modeling
using ordinary differential equations (Kim et al., 2018), and ii)
non-parametric models using Boolean logics, stoichiometric matrix and
Bayesian inference algorithms (John et al., 2019; Toya and Shimizu,
2013). A dynamic model built using differential equations constructs an
organism’s metabolism step by step using known biochemical reactions
and reaction kinetics from their genomic, enzymatic and biochemical
information derived from experiments (Fig. 2A). Using this information,
the models are used to predict metabolic outcomes for different in silico
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Fig. 2. Schematic representation of dynamic and constraint-based modeling approaches used in metabolic engineering. A) Dynamic kinetic modeling of
metabolic pathways using differential equations. B) Flux balance analysis (FBA) modeling.

perturbations, or to understand the key regulatory mechanisms (such as
bottlenecks) and flux distributions to a given perturbation (Selvarajoo
et al., 2008; McCloskey et al., 2013). In other words, the dynamic models
utilize a priori knowledge of metabolic pathways, enzymatic mechanisms
and temporal experimental data to simulate the concentrations of me-
tabolites over time. These models are usually referred to as kinetic
models (Selvarajoo and Tomita, 2013).

Although kinetic models have been widely used and have proven
their benefits (Saa and Nielsen, 2017), for large-scale modeling, such as
genome-scale modeling, it is a daunting challenge to use dynamic
modeling due to the absence of large-scale experimentally measured and
reliable kinetics (Kim et al., 2018). To overcome this major challenge, as
a trade-off, scientists use other types of modeling such as the
parameter-less stoichiometric constraint-based modeling approaches.
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Constraint-based models, have constraints for each decision that repre-
sent the minimum and maximum values of the decision (e.g. the mini-
mum and maximum reaction rates) (Bordbar et al., 2014). A widely used
constraint-based modeling is the flux balance analysis (FBA) (Orth et al.,
2010). The FBA models thousands of metabolites and reactions with
reasonable computational cost and prediction outcome (Fig. 2B). With
FBA, the contribution of each individual gene to certain trait can be
determined, and it can be used for the analysis, optimization and design
of metabolic pathways (Skraly et al., 2018).

2.2. Transcriptional control and ensemble modeling for metabolic pathway
analysis

Although numerous works have used metabolic regulation to control
the production of targeted metabolites, recent works indicate that tran-
scriptional and translation control can provide significant fold increase in
the intended yield output (Shukal et al., 2019; Curran et al., 2014). The
transcriptional control changes the way the gene of interest is regulated
by manipulating its promoter region. This includes modifications such as
mutating the ribosomal binding sites (RBS), the transcription factor
binding sites (TFBS), designing and inserting shot sequencing (e.g. new

A

Model Construction

Literature Review

Metabolic Engineering Communications 11 (2020) e00149

binding sites), or designing an artificial promoter region (Curran et al.,
2014). The transcriptional control requires deep understanding of how
the gene of interest is regulated (activators, enhancers and suppressors)
as well as the knowledge of its genomic structure around the binding
sites, such as the nucleosome positions (Sharon et al., 2012) (Fig. 3A).
Thus, modeling the transcriptional control remains a challenge as it re-
quires complex data involving quantitative gene expression under each
mutation condition to train a model that simulates the effect of each
mutation and then use it to predict the impact on the new mutation.
Nevertheless, statistical approaches such as the position weight matrix
(PWM) modeling, which measures or scores aligned sequences that are
likely functionally related, have shown promise for understanding the
mutational impact on the transcriptional regulation in mammalian dis-
ease cells (Yiu Chan et al., 2019; Ji et al., 2018). Such methods could be
explored in the future for controlling the transcriptional efficiency for
metabolic engineering outcome.

Another modeling strategy that is used to model the metabolic
pathways is ensemble modeling. Ensemble modeling is a strategy where
multiple models with different modeling algorithms or multiple training
sets are used to model and predict an outcome of a pathway. The pre-
diction results of each base model are aggregated into one prediction
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Fig. 3. Schematic representation of different modeling approaches used in metabolic engineering. Modeling steps of A) promoter-strength simulations using
statistical models and mutations data, B) Ensemble modeling combining different sub-model simulations.
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(Kotu and Deshpande, 2015) (Fig. 3B). This strategy has been employed
in metabolic engineering to create large-scale models that predict the
outcome of engineered pathways, by allowing the simulation of the
network change upon perturbations, such as changes in growth condi-
tions or in enzyme expression levels. This, therefore, waives the need of
detailed kinetic parameters. The availability of perturbation data and its
accuracy plays a crucial role in the development of the ensemble pre-
dictions, thereby, reducing the number of models to a smaller set (Tran
et al., 2008).

An example of ensemble modeling was performed for two non-native
central pathways for carbon conservation, the non-oxidative glycolysis
(NOG) and the reverse glyoxylate cycle (rGC) pathways, using ensemble
modeling robustness analysis (EMRA). EMRA successfully determined
the probability of system failure and identified possible targets for flux
improvement (Lee et al., 2014). In another study, ensemble modeling
was used to help in developing a L-lysine-producing strain in E. coli
(Contador et al., 2009). Nevertheless, ensemble modeling come with
some major challenges. Building an ensemble with different modeling
algorithms is more difficult than using any standard modeling strategy.
The requirement of perturbation-response data makes it similar to many
other data-dependant modeling strategies that perform poorly in the
absence of reliable data, and the difficulty in interpreting its overall re-
sults. These limitations hinder the utility of this powerful modeling
approach.

2.3. Protein modeling for metabolic engineering

Another widely used modeling approach for metabolic engineering is
in silico three-dimensional (3D) molecular modeling for the study of re-
ceptor/enzyme-ligand docking and protein homology design (Wang
et al., 2018). It has a wide range of applications in drug design and
metabolism research, and therapeutic antibodies design and molecular
interactions research (protein-protein and protein-DNA interactions). In
metabolic engineering, 3D modeling is used to design, and simulate
engineered enzymes that are indispensable for the optimization process
of the microorganism’s metabolism (Fisher et al., 2014). In protein en-
gineering, where no structural data is available, molecular modelling is
used to model the 3D-structures of enzymes, and coupled with
enzyme-substrate docking studies, can be used to target regions of in-
terest to improve various attributes, such as specificity, activity and
stability under a given environment. This has been used to great effect for
single enzymes as in vitro industrial biocatalysts (e.g. sitagliptin (Savile
et al.,, 2010)), as well as for entire enzyme cascades (e.g. islatravir
(Huffman et al., 2019)) for the production of active pharmaceutical
ingredients.

2.4. Limitations of current modeling strategies

Dynamic modeling strategies, as mentioned above, often depend on
the parameters that are used to build the model. The parameters (such as
reaction kinetics or flux ranges) can be determined using bottom-up or
top-down approaches (Cuperlovic-Culf, 2018). The bottom-up approach
is highly dependent on experiments (such as in vitro enzymatic assays)
since it requires information on the reaction kinetics of each enzyme,
which is highly challenging to determine for all the enzymes in a
pathway or network. Furthermore, even if information is obtained from
in vitro experiments, the data are often several orders of magnitude
different from actual in vivo experiments (Selvarajoo et al., 2009).
Moreover, modeling usually requires data (kinetics or flux rates) for
multiple conditions or time points to train the model and test its accuracy
or applicability, which requires iterative experimental work (Helmy
et al., 2009). Despite the fact that the bottom-up modeling approaches
often use optimization algorithms to estimate the model parameters, such
as the genetic algorithm, the complex and non-linear nature of the re-
lationships between metabolites limit the usefulness of the model fitting
algorithms (Cuperlovic-Culf, 2018; Srinivasan et al., 2015).
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Another aspect of limitations is the scale of the model. Since the
bottom-up approach requires detailed experimental measurements, it is
more suitable for small-scale models. Extending the model size requires
either more experiments (higher cost and longer time) or more compu-
tational estimation reliance of the parameter values (lower accuracy).
Thus, an accurate dynamic model based on a bottom-up approach is
difficult to establish due to the extended level of uncertainty in the ki-
netic properties of the enzymes and their reactions (Andreozzi et al.,
2016). Ensemble modeling helps in building large-scale models, how-
ever, it also suffers from major limitations as mentioned earlier.

On the other hand, top-down approaches utilize time series metab-
olomic data to indirectly infer the kinetics, flux rates or concentrations of
metabolites, through the establishment of correlation and causation
networks between metabolites (Cuperlovic-Culf, 2018). The causation
network establishes the cause-effect relationships between the metabo-
lites in the networks and is usually built using time series metabolomic
data, while the correlation network uses mathematical and statistical
methods to determine the probable relation between the enzymes and
metabolites in the network (Srinivasan et al.,, 2015). Most of the
top-down methods utilize optimization algorithms, such as genetic al-
gorithms and evolutionary programming, to estimate the model param-
eters based on the available experimental data. However, the complex
(and usually non-linear) relationships, within the metabolic models and
the heterogeneous nature of its parameters (e.g., kinetic parameters,
concentrations) limits the capacities of the fitting algorithms (Cuperlo-
vic-Culf, 2018).

Nevertheless, the top-down approach has shown notable success in
analyzing cellular pathways with simple linear response or mass-action
kinetic models with little parameter sensitivity (Selvarajoo, 2011, Sel-
varajoo et al. 2009).

For the comparative 3D protein modelling, it is most commonly
performed using template-based methods, where homologous protein
structures are used to generate models using stand-alone programs such
as MODELER (Sali and Blundell, 1993) or through online servers such as
ROBETTA, which incorporates the RosettaCM method (Song et al.,
2013), HHPRED (Zimmermann et al., 2018), and ITASSER (Yang et al.,
2014). These methods produce useful models where good templates are
available, but many protein sequences of interest have limited template
information, and so poor-quality models are common which hinders their
practical applications in guiding protein engineering works.

Most of the above-mentioned modeling strategies require the avail-
ability of sufficient and high-quality experimental data. The data includes
metabolite concentrations, and their chemical structures, properties,
pathways, reaction rates, genomic sequences, genome annotations,
transcriptome sequence, gene expression data and many other types of
data, as required for their respective modeling strategies. Fortunately, a
large number of bioinformatics databases and servers are now freely
available with most of these data. Many of them are meta-databases that
collect and aggregate data from multiple sources such as KEGG and
MetaCyc (Kanehisa, 2004; Caspi et al., 2020). Despite the benefits of
these bioinformatics resources, the challenge is in finding the correct
dataset and modeling/analytical approaches to take advantage of this
wealth of data. This, therefore, raises the need of the involvement of
novel data mining and data analytics approaches, such as artificial in-
telligence (AI).

3. Integrating artificial intelligence in metabolic engineering
research

Artificial intelligence (AI) provides computers the ability to make
decisions based on analyzing the data independently by following pre-
determined rules or pattern recognition models. In the biomedical and
biotechnology fields in particular, Al is heavily employed in addressing
certain research challenges while being under-utilized in other aspects.
The drug and vaccine discovery fields, for instance, are employing Al to
address the challenges of developing new drugs, repurposing existing
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drugs, understanding drug mechanisms, designing and optimizing clin-
ical trials and identifying biomarkers (Smith, 2020a). Recent surveys
show that more than 40 pharma companies and 230 startup companies
are employing Al in different aspects of drug discovery (Smith, 2020b,
2020c). This has resulted in the development of over one hundred drugs
that are in different development phases in the fields of oncology,
neurology and infectious diseases (Smith, 2020d). Furthermore, the
research on COVID-19 drugs and vaccination development is employing
Al and this has resulted in dozens of promising drug lead compounds and
vaccines in such a short period of time (Regulatory Affairs Professionals
Society, 2020; Ledford, 2020). Al is also employed in the fields of ge-
nomics, protein-protein interaction prediction, signaling pathways pre-
diction and analysis, protein-DNA binding, cancer diagnosis, and
genomic mutation variant calling among several other applications
(Alipanahi et al., 2015; Hui et al., 2013; Poplin et al., 2018).

On the other hand, Al is not similarly utilized in the fields of metab-
olomics and metabolic engineering, especially for food applications.
Although the idea of combining systems biology and AI (machine learning
in particular) to study metabolism is relatively old (Zelezniak et al., 2018),
the applications of it is still under explored.

Machine learning (ML) is the field of Al that is interested in devel-
oping computer programs that learn and improve its performance auto-
matically based on experience and without explicitly being. In the last
few years, ML research and techniques have improved as large datasets
generated by modern analytical lab instruments become available.
Therefore, in recent reports we are starting to see ML-based research in
identifying weight loss biomarkers (Dias-Audibert et al., 2020), the dis-
covery of food identity markers (Erban et al., 2019) farm animal meta-
bolism (Ghaffari et al., 2019) and many other applications in untargeted
metabolomics (Heinemann, 2019; Liebal et al., 2020). In metabolic en-
gineering, several recent articles review the application of ML in the
biosystems design and microbial bio-manufacturing (Volk et al., 2020;
Choi et al., 2019). In the following sections, we review the advantage of
ML and systems biology integration in pathways discovery and analysis,
identifying essential enzymes, modeling of metabolisms and growth,
genome annotation, the analysis of multi-omics datasets and 3D protein
modeling.

3.1. Machine learning for pathway discovery

Pathways identification and analysis is very crucial for metabolic
engineering. It is common that the biochemical pathway of a targeted
substance (e.g. enzyme or compound) is unknown or poorly studied.
Furthermore, in many cases, the gene(s) or gene cluster that is respon-
sible for producing the targeted substance needs to be transferred to a
model organism so that it can be easily manipulated and optimized
(Garcia-Granados et al., 2019). As mentioned above, the different
modeling techniques have their limitations. On the other hand, when
combining omics data and using standard data analysis approaches for
pathways the final predictions come with its uncertainty (Cheng et al.,
2015).

ML can be utilized to identify the pathways upstream of the sub-
stance. For instance, ML model that used naive Bayes, decision trees,
logistic regression and pathway information of many organisms were
used in MetaCyc to predict the presence of a novel metabolic pathway in
a newly-sequenced organism. The analysis of the model performance
showed that most of the information about the presence of a pathway in
an organism is contained in a small set of used features. Mainly, the
number of reactions along the path from input to output compound was
the most informative feature (Cuperlovic-Culf, 2018). In general, the ML
models used for pathway prediction showed better performance than the
standard mathematical and statistical methods (Quest et al., 2010).
Nevertheless, pathway discovery is still heavily relying on traditional
approaches such as gene sequence similarity and network analysis. Thus,
better ML algorithms/methods for pathways discovery are needed.
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3.2. ML for identifying essential enzymes

ML can be invaluable for the identification of important genes or
enzymes in the pathways of interest. ML classifiers, such as support
vector machine, logistic regression and decision tree-based models, have
been instrumental in predicting gene essentiality within metabolic
pathways through training and testing models (by using labeled data of
essential and non-essential genes) (Nandi et al., 2017). It was also used in
finding new drug targets by determining the essential enzymes in a
metabolic network of each enzyme by its local network topology,
co-expression and gene homologies, and flux balance analyses (Plaimas
et al., 2008). Plaimas et al used an ML model that was trained to distin-
guish between essential and non-essential reactions, which followed an
experimental validation using the phenotypic outcome of single
knockout mutants of E. coli (KEIO collection). The model was used for
error detection to validate experimental data. When the predictions
contradict the KEIO collection, they indicate errors in the experimental
data. Subsequently, the model prediction were experimentally validated
(Plaimas et al., 2008).

In an earlier study, the side effects of drugs on the metabolic network
were investigated by predicting an enzyme inhibitory effect through
building an ML model. The model used network topology, functional
classes of inhibitors and enzymes as background knowledge, with logic-
based representation and a combination of abduction and induction
methods to predict drug inhibitory side effects. The abduction was used
to generate hypotheses based on ground facts about the inhibited en-
zymes (ground hypotheses), while the induction process is to learn
general rules of enzyme inhibition (non-ground hypotheses). The model
simulations show that in the presence of sufficient training data, the non-
ground hypotheses show better predictive accuracy (Tamaddoni-Nezhad
et al., 2006).

3.3. ML for genome annotation

Newly sequenced genomes undergo two types of annotations; struc-
tural annotation and functional annotation. The structural annotation is
the process of identifying the genome components and their structures
(e.g. identifying genes, their exons, introns and UTRs or their regulatory
regions), while the functional annotation identifies the functions of the
genes and their products. Both types of annotation are important for
metabolic engineering research; the structural annotation identifies the
genes, their sequences, length and structure and, therefore, helps in
finding alternative organisms where the same gene, pathways or gene
clusters exist. The functional annotation helps in identifying organisms
that produce the same substance or tolerate the same growth conditions.
Comparative genomics, network biology and traditional bioinformatics
methods, such as sequence alignment, are usually utilized in this process
(Bradbury et al., 2013; Ikeda et al., 2014).

The rapid advancements in the genome sequencing technologies and
the significant drop in its cost in the last decade raised the advantage for
fast and accurate annotation methods (El-Metwally et al., 2014). This
resulted in the development of several new annotation methods that
analyse the newly sequenced genomes from different sequencing plat-
forms that addressed many of the challenges, however, many other
challenges remain such as missing short genes and erroneous exon start
and end annotation (Armstrong et al., 2019; Li et al., 2019). Thus, several
other methods were introduced with the idea of combining multi-omics
data in the process of the genome annotation and, in particular, the
proteomic and transcriptomic data (Armengaud, 2009; Ang et al., 2019;
Helmy et al., 2012). Despite these efforts, over 20% of the sequenced
genomes in the genome online database (GOLD) are still awaiting
annotation (Mukherjee et al., 2017).

The high-volume and multi-dimensional nature of the genome
sequencing data makes it very suitable for applications of machine
learning algorithms (Yip et al., 2013). The ML model will be trained using
annotated genomes to identify genome structures, e.g. genes or
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regulatory regions, using their features to identify the same structures in
the newly sequenced genomes (Alpaydin, 2020). Yip et al reviewed over
15 different ML methods developed to identify several types of structural
components such as protein-coding genes, non-coding RNAs (ncRNAs),
microRNAs (miRNAs), regulatory elements and protein-binding sites/-
motifs (Yip et al., 2013). More recent reports show the utilization of ML
algorithms in genome annotation process by including multi-omics data;
building successful large-scale models became possible through the in-
cremental expansion of the model architecture, the iterative training
process and the richness of the data, which allow some relaxation in the
initial restrictions in the model parameters (Borodovsky, 2019).

Amin et al demonstrated the potential of deep learning in genome
annotation by using Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) to develop DeepAnnotator, an annotation tool
that outperformed the NCBI annotation pipeline in RNA genes annota-
tion (Amin et al., 2018). The new versions of the annotation tool Gene-
Marks for annotation prokaryotic genome (GeneMarkS2+) and the
eukaryotic self-training gene finder (GeneMark-EP+) both are utilizing
ML algorithms in the annotation process (Borodovsky, 2019; Lomsadze
et al., 2018). Deep convolutional neural networks were used to annotate
gene-start sites in different species by training the model using the sites
from one species as the positive sample and random sequences from the
same species as the negative sample. The model was able to identify
gene-start sites in other species (Khodabandelou et al., 2020).

Although the idea of employing ML in functional annotation started
relatively early, it is still underutilized in functional annotation compared
to structure annotation. An early attempt of using ML in genes functional
annotation from biomedical literature utilized Hierarchical Text Cate-
gorization (HTC) (Kiritchenko et al., 2020), while Tetko et al provided a
high-quality curated functional annotation data as a benchmark dataset
for the developers of machine ML-based functional annotation methods
for bacterial genomes (Tetko et al., 2005). The recent reports show the
applications of ML-based methods in a wide variety of functional anno-
tations such as the discovery of missing or wrong protein function an-
notations (Nakano et al., 2019), predicting gene functions in plant
(Mahood et al., 2020), controlling the false discovery rate (FDR), increase
the accuracy of protein functional predictions (Hong et al., 2020), and
genome-wide functional annotation of splice-variants in eukaryotes
(Panwar et al., 2016).

3.4. ML of multi-omics datasets

The advancements of -omics technologies have resulted in a huge
accumulation of data (genomics, transcriptomics, proteomics and
metabolomics) that is estimated to grow in size to exceed astronomical
levels by 2025 (Stephens et al., 2015). This enormous amount of data has
shifted scientific research more towards data-driven approaches such as
ML (Cuperlovic-Culf, 2018). Combining ML methods with omics data is a
typical systems biology approach to address several biomedical chal-
lenges. An ML approach was used to replace the traditional kinetic
models in estimating the metabolite concentrations over time by
combining ML models, proteomic and metabolomic time series data. This
ML approach leverages arbitrary chunks of new data systematically to
improve predictions without assuming particular interactions, instead it
chooses the most predictive ones. This new approach produces qualita-
tive and quantitative predictions that outperformed the classical kinetic
model (Costello and Martin, 2018). Also, proteomic and metabolomic
data of yeast were combined under several perturbation conditions (97
kinase knockouts), and ML was used to predict the yeast metabolome
using the enzyme expression proteome of each kinase-deficient condi-
tion. The ML quantifies the role of enzyme abundance through mapping
the regulatory enzyme expression patterns then utilizing them in pre-
dicting the metabolome under the knockout condition (Zelezniak et al.,
2018).

The availability of transcriptome data and the ability of ML methods
to deal with big data led to the development of several genome-scale
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methods to predict the phenotype using ML models. To take advantage
of the accumulated transcriptome data, a biology-guided deep learning
system named DeepMetabolism was developed. DeepMetabolism uses
transcriptomics data to predict cell phenotypes. It integrates unsuper-
vised pre-training with supervised training to predict the phenotype with
high accuracy and high speed (Guo et al., 2017). On the other hand,
Jervis et al implemented an ML algorithm to model the bacterial ribo-
some binding sites (RBSs) sequence-phenotype relationship and accu-
rately predicted the optimal high-producers, an approach that directly
apply on a wide range of metabolic engineering applications (Jervis et al.,
2019).

Similar to the proven utility of ML in the analysis of the tran-
scriptomic data, it is also used with the accumulated fluxomic data that
descripts the complete set of metabolic fluxes in a living entity. For
instance, MFlux is a tool that predicts the bacterial central metabolism
utilized machine learning to for mining the existing fluxomic data to
identify the hidden relationships between environmental and genetic
factors and metabolic fluxes. To study the complex relationship between
controlling factors and metabolic fluxes, Mflux used three machine
learning methods, Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN), and Decision Tree (DT). The tool provides predictive models that
significantly accelerate flux quantification and a web-based platform that
predicts the bacterial central metabolism via machine learning via
graphical user interface (GUI) (Wu et al., 2016a). ML approaches were
also integrated with transitional genome-scale modeling to for evaluate
the microbial factory performance. The model used manually curated
databases of over 1,200 experimentally realized E. coli cell factories
enriched with genetic modifications and bioprocess variables. The sim-
ulations from a standard genome-scale metabolic models were used to
add additional features. Consequently, ensemble modelling was used to
improve dealing with data challenges. This hybrid approach predicted
the E.coli factory performance with high cross-validation accuracy
(Oyetunde et al., 2019).

3.5. ML in protein modeling

In the field of 3D protein modeling, several Al-based advances are also
noted. The most recent Critical Assessment of protein Structure Prediction
(CASP) meeting in 2018 saw AI methods come of age. The program
AlphaFold (Senior et al.,, 2020) used a neural net to extract covariant
residue pairs from sequence alignments, coupled with estimated distances
between them (from 2-20A), and then used the ROSETTA energy function
(Alford et al., 2017) to fold the protein based on these Al-derived re-
straints. AlphaFold performed exceptionally well in the competition, giv-
ing high-accuracy models with template-modelling scores of 0.7 or higher
for 24 out of 43 domains (as compared with 14/43 for the next best
method). This has been developed into a lab-based version called ProSPr
(Billings et al., 2019). Yang et al used a similar protocol, but with added
estimation of relative residue orientations, resulting in trROSETTA (Yang
et al., 2020), which improved predictions still further. These 3D modelling
methods may be implemented into a comprehensive metabolic engineer-
ing platform.

One area that could be addressed in the improvement of 3D protein
modelling methods is the inclusion of cofactors. Many enzymes are often
folded around cofactors; small-to-large organic molecules which form
part of the catalytic machinery, such as flavin adenine dinucleotide (FAD)
or haem. These molecules are often removed in template-based model-
ling (both manual and automated versions), yet their presence is often
important for the correct folding of the enzyme (Higgins et al., 2005).
This has the effect of lowering the quality of the model due to the removal
of key restraints from the structure, requiring extra docking or structure
manipulation to reinsert the cofactor after modelling. It should be
possible to include the presence of cofactors through a survey of the
Protein Data Bank (Berman et al., 2002), where ML methods can be used
to identify key determinants of cofactor binding, coupled with identifi-
cation of these determinants within a target sequence, and application of
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a combined sequence-and-template-based optimization protocol inclu-
sive of these structural features.

An extension of this might also be used for identification of substrates
for enzymes within a metabolic pathway or unnatural substrates which is
particularly valuable for the development of synthetic biosynthetic
pathways. One input would be enzyme sequence alignments of known
function, as well as structural information for both enzyme families and
substrates. A neural network could be used to identify common patterns
of binding pocket residues across multiple families of enzymes for
different substrates, and identify potential sequences that would be
suitable for inclusion in a particular metabolic pathway, inclusive of
sequence determinants for ease of inclusion into heterologous expression
systems. Also, if no sequence is available that produces a required
product, it might be possible to predict the binding pocket residues that
might be mutated to give that product. Predictions made can then be
experimentally tested, and results fed back into the model.

3.6. Application of ML models for engineering bio-economy strains

In recent years, the importance of harnessing natural and food in-
gredients from diverse sources is increasingly realized, such as using
engineered microbes or synthetically derived as highlighted in the
introduction section. These approaches provide several benefits for
producing a more sustainable bio-based economy that relies less on
precious land or limited livestock. Nevertheless, the bioengineering
processes utilized still remain suboptimal, due to the complexity of living
systems’ emergent behaviors (such as feedback/feedforward inhibition,
cofactor imbalances, toxicity of intermediates, bioreactor heterogeneity)
that tend to reduce the overall effect of any internal modifications such as
adding or engineering a metabolic pathway (Yadav et al., 2012; Lim and
Kim, 2019). Thus, achieving economically viable large-scale production
of microbial-derived metabolites or compounds requires appropriately
optimized production strains that generate high yields. Until today,
however, metabolic engineering efforts mainly serve for broadening and
further reducing the cost of those molecules of commercial interests.

To address these issues, Brunk et al engineered eight E. coli lab strains
that produced three commercially important biofuels: isopentenol,
limonene, and bisabolene (Brunk et al., 2016). To understand the key
regulatory or emergent bottleneck scenarios that limit their industrial
applicability, they undertook a large scale -omics based systems biology
approach where they performed time-series proteomics and metab-
olomics measurements, and analyzed the resultant high-throughput data
using statistical analytics and genome-scale modeling. The integrated
approach revealed several novel key findings. For example, they eluci-
dated time-dependent regulation of gene, protein and metabolic path-
ways related to the TCA cycle and Pentose-Phosphate pathway, and the
resultant coupling of the pathways that affected NADPH metabolism.
These emergent responses were collectively implicated to downregulate
the expected biofuel production. The findings, subsequently, led them to
identify a crucial gene (ydbK) whose removal led to a 2-fold increase in
the production of isopentenol in one of the E. coli strains (Brunk et al.,
2016).

Despite their success on one strain (out of eight), the overall dynamic
changes of metabolic pathways at the different stages of growth for all
strains were not understood, as they employed a steady-state genome-
scale model, which provided a qualitative, rather than quantitative,
inference. This, as mentioned earlier (in Dynamic Modeling), is due to the
lack of kinetic parameter values that are required to develop and test a
dynamic model for each strain. To overcome this difficulty, Costello and
Martin (2018) used the same time-series proteomics and metabolomics
data of Brunk et al and developed a ML model to effectively predict
pathway dynamics in an automated fashion (Costello and Martin, 2018).
Their model produced both qualitative and quantitative predictions that
had better predictions compared to a traditional kinetic model
side-by-side. Basically, their ML model derived a mapping function be-
tween the proteomics and metabolomics dataset with the aid of
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regression techniques and neural networks onto a training data, and
finally verifying the prediction on a test data. Apart from better accuracy
in the dynamic profiles of the metabolites predicted, the model also did
not require detailed understanding of the regulatory steps, which is a
major weakness for all modeling approaches. However, their ML model
was short in predicting effective regulator(s) for enhanced production of
any of the biofuels (isopentenol, limonene, and bisabolene), nor was
there any experimental verification. Although this is a major weakness in
current systems metabolic engineering approaches, ML-based modeling
has the future potential to productively guide bioengineering strains
without knowing complete metabolic regulatory processes, which are
very challenging to obtain.

One interesting and popular area of industrially relevant metabolic
engineering product in the food and consumer care industries are the
terpenes and terpenoids; secondary metabolites or organic compounds
naturally found in diverse living species, especially in plants. Due to their
high commercial values, numerous researches have focused on produc-
ing them or their derivatives at industrial scale using microbes (Caputi
and Aprea, 2011; Zhang et al., 2020b). Although several hundreds, or
even thousands, of fold increase has been achieved at test tube or flask
level by engineering microbes (Czajka et al., 2018), the achievement at
large industrial scale bioreactors are far from reality. It is our opinion that
ML models can help to uncover the relations between output and input
more accurately, and identify sweet spots for carefully targeted steps for
generating bioreactor scale targeted output. Although there is no current
workable evidence for this, we believe the future looks promising for this
front, provided large investments are made to generate biological data
that are required by dynamic or ML models to effectively be predictive.

4. Challenges and future projections

Integrating systems biology and ML holds a great promise for
improving the way we study and understand metabolism (Fig. 4), as well
as to improve and engineer alternative food sources that are healthier,
affordable and nutritious. However, as reviewed in this article, this
integration faces several challenges and limitations in order to fully
utilize the power of both systems biology and ML.

A major challenge that faces the application of systems biology and
ML in food-grade or GRAS metabolic engineering is the lack of data.
Systems biology requires high throughput data from multi-omics levels
(genomic, transcriptomic, proteomic and metabolomic), and such data is
only available for a small subset of microorganisms in general, and
significantly lacking for the food-grade or GRAS strains, in particular. The
availability of such data is necessary for more holistic studying of the
organism and helps in discovering new pathways or proteins, simpler,
shorter directed pathways or new enzymes with better production rate
(Garcia-Granados et al., 2019). This information will also help in
choosing the most appropriate organism to be used for the engineering
and production projects. Usually, certain model organisms called
“chassis” such as yeast and E. coli are used in these projects where the
gene(s) or pathways of the substance of interest is transferred from the
donor organism. However, the availability of sufficient information
about both the donor organism and the chassis help choosing the correct
chasse and avoid facing unexpected qualities such as resistance to certain
conditions or missing of important pathways (Khoury et al., 2014).

In addition to the need of large-scale -omics data for building ML
models, another data problem is facing the application of ML in the
metabolic engineering research. Training an ML model for metabolic
engineering requires sufficient quantitative data for multiple conditions.
The multiple conditions can be multiple knockouts, perturbations or
growth conditions. For instance, to build an ML model that predict the
required engineering (e.g. knockouts) to improve the promoter strength,
we need to train the model using quantitative data of the downstream
gene expression under multiple knockouts or mutants. This becomes
more challenging with the differences observed in different cultivation
scales (Zhang et al., 2015). Usually, the behavior of the microorganisms
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Fig. 4. Integrating systems biology and machine learning in metabolic engineering research. Systems biology and ML approaches are highly suitable for
processing and analyzing multi-omics data with massive sizes and features. Starting from an initial strain and design (i), transcriptomics (ii), proteomics and
metabolomics data generation (iii) provide multitudes of data which require integration by data analytics, modelling and machine learning (iv). This will help provide
targets for re-design/-engineering which need to be experimentally tested (v). This will lead to an enhanced engineering process to generate engineered microbes that

can be used in the modern bio-industries such as food industry.

changes when scaling up the cultivation form the lab setup (small bio-
reactors usually 1L or less) to the industrial scale bioreactors (up to 2,
000 L). These differences come from the differences between the lab and
industrial bioreactors in several factors including the lighting systems,
mixing, gas transfer, and the bubbles hydrodynamics (Brennan and
Owende, 2010; Johnson et al., 2018). Thus, data generated from lab
setup will not be suitable for modeling the dynamics of large-scale
cultivation setup. Similarly, the predictive ML models investigating the
translation control, transcription factor binding sites, ribosomal binding
sites, enzyme engineering (mutation or truncation) and growth optimi-
zation require high quality quantitative data in multiple conditions. The
same data can also be used in building different mathematical and sta-
tistical models, which allows the development of more integrated
methods.

It is notable that several systems biology databases for Al application
are available (such as the LASER database, jQMM database and Kbase)
(Winkler et al., 2015; Birkel et al., 2017; Arkin et al., 2018), however, it is
still difficult to find a suitable data for building Al models for metabolic

engineering online and it needs to be created for each project. We need
more research that focus on the generation of high-quality quantitative
data, and on building online resources, such as meta databases, that
collect and combine these data to make it available for the community.
The data should also include details on the experimental conditions and
follow the standards of biological databases design (Helmy et al., 2016).
Many of the current online resources are missing these details which
prevent or limit the application of data miming and machine learning
methods on their contents (Wu et al., 2016b).

Another major challenge in the ML field is what is known as “the
black box problem”. The black box problem of AI techniques in general is
defined as the difficulty of understanding how they work and how and
why they give these results (Zednik, 2019). This causes the end user of
the technique to be uncertain about the quality of the output, and the
often biologically unfamiliar modeler will not be able to intervene to
improve the performance as well as raising some legal concerns (Rieder
and Simon, 2017; MT Ribeiro, 2016; Burrell, 2016). For example, in the
application of ML in 3D structural modelling, as well as enzyme-substrate
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identification, the newer Al-based modelling methods are showing some
promising results, however, due to the nature of neural nets, it is very
difficult to interpret exactly what the programs are learning about the
protein-folding problem. We can predict a structure, but without un-
derstanding the underlying model for folding. If a way could be found to
capture this information, it would be of great use to the community for
further study. To address the black box problem, scientists in the field of
Al developed a group of Al methods called explainable artificial intelli-
gence (XAI) that aim to make the results of Al methods understandable to
humans. Although this is still new, it holds potential to solve the prob-
lems that prevent the systematic performance improvement of AI models
(Zednik, 2019; Dosilovic et al., 2018).

On the other hand, although genome annotation, both structural and
functional, affects most of the biomedical research aspects, it has a spe-
cial impact on metabolic engineering in general and applications in food
industry in particular. The food-grade or GRAS microorganisms are a
small subset of all organisms, and many of them are either not well-
studied, or have not been studied at all. Hence, there is a big challenge
in using these species in ML-based metabolic engineering, as many of
them are either not sequenced or sequenced with draft annotation or
with no annotation. The annotations are usually automated using stan-
dard pipelines which identify the common genes that they share with
other microorganisms and can miss the organism-specific features that
need deeper attention. These features are exactly what make those or-
ganisms suitable for metabolic engineering and food industry. Improved
ML-based genome annotation methods will help improving the annota-
tion of the food-safe and GRAS genomes which will directly impact the
research in this area.

Another area that needs special attention is pathways prediction in
the absence of genome sequence or genome annotation. Since many of
the food-safe and GRAS microorganisms are not sequenced yet, methods
that predict the pathways for important substances using different -omics
data is required. It is easy now to perform whole- or phospho-proteomics,
and transcriptomics across different growth conditions or different life
stages of an organism. These -omics data can be used, in the absence of
genome sequence, to predict the endogenous or biosynthetic pathways of
the substance of interest. Here, ML methods can be used instead of the
traditional pathway prediction approach due its better suitability to the
nature and size of the data.

Overall, despite the challenges and limitations of AI or ML techniques
in dealing with biological datasets, there is no better time than now to
explore the full potential of these techniques and to further develop novel
methods to overcome the many challenges, including “the black box
problem”. This is especially so since we know living systems are highly
complex, and using physical or biochemical theories alone may not be
sufficient to explore all complexities. Thus, heuristic approaches and ML
can and will play a crucial to support all future systems biology efforts. In
parallel, the improvements to the data collection from -omics technolo-
gies in time will help to narrow the gap of uncertainty or ambiguity for
future systems biology and ML integration for optimal metabolic engi-
neering strategies.
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