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Application of neural machine interface in individuals with chronic hemiparetic stroke 
is regarded as a great challenge, especially for classification of the hand opening and 
grasping during a functional upper extremity movement such as reach-to-grasp. The 
overall accuracy of classifying hand movements, while actively lifting the paretic arm, 
is subject to a significant reduction compared to the accuracy when the arm is fully 
supported. Such a reduction is believed to be due to the expression of flexion synergy, 
which couples shoulder abduction (SABD) with elbow/wrist and finger flexion, and is 
common in up to 60% of the stroke population. Little research has been done to develop 
methods to reduce the impact of flexion synergy on the classification of hand opening 
and grasping. In this study, we proposed a novel approach to classify hand opening and 
grasping in the context of the flexion synergy using a wavelet coherence-based filter.  
We first identified the frequency ranges where the coherence between the SABD muscle 
and wrist/finger flexion muscles is significant in each participant, and then removed the 
synergy-induced electromyogram (EMG) component with a subject-specific and mus-
cle-specific coherence-based filter. The new approach was tested in 21 stroke individuals 
with moderate to severe motor impairments. Employing the filter, 14 participants gained 
improvement in classification accuracy with a range of 0.1 to 14%, while four showed 
0.3 to 1.2% reduction. The remaining three participants were excluded from comparison 
due to the lack of significant coherence, thus no filters were applied. The improvement 
in classification accuracy is significant (p = 0.017) when the SABD loading equals 50% 
of the maximal torque. Our findings suggest that the coherence-based filters can reduce 
the impact of flexion synergy by removing the synergy-induced EMG component and 
have the potential to improve the overall classification accuracy of hand movements in 
individuals with poststroke flexion synergy.

Keywords: stroke, flexion synergy, machine learning, hand movements, classification, neural machine interface, 
coherence

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2017.00039&domain=pdf&date_stamp=2017-06-30
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
https://doi.org/10.3389/fbioe.2017.00039
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:j-dewald@northwestern.edu
https://doi.org/10.3389/fbioe.2017.00039
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00039/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00039/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00039/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00039/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00039/abstract
http://loop.frontiersin.org/people/403159
http://loop.frontiersin.org/people/186827
http://loop.frontiersin.org/people/233548


Table 1 | Participant demographics.

stroke control

Age (years) 59 ± 9 (40–71) 55 ± 12 (42–83)
Gender (M/F) 15/6 5/3
Time since stroke (years) 11 ± 7 (1–28)
Sides of tested UEa (L/R) 17/4 0/8
UE FMA 26 ± 10 (12–39)
CMSAh 3 ± 1 (2–5)

M, male; F, female; L, left; R, right; UE, upper extremity; FMA, Fugl-Meyer assessment; 
CMSAh, Chedoke-McMaster Stroke Assessment (hand).
Values are listed as mean ± SD (range).
aIn this experiment, the stroke subjects were tested at the paretic UE, while the control 
subjects were tested at the dominant UE.

2

Lan et al. Enhanced Classification Using Coherence-Based Filtering

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2017 | Volume 5 | Article 39

inTrODUcTiOn

Functional movements that demand independent joint control 
of the shoulder, elbow, and wrist/fingers (e.g., reach-to-grasp) are 
essential to activities of daily living. Unfortunately, most individu-
als with chronic hemiparetic stroke have lost such ability due to 
the stereotypical muscle coactivation patterns between shoulder 
abductor, elbow flexor, and wrist/finger flexors, commonly 
referred to as the flexion synergy (Dewald et al., 1995; Sukal et al., 
2007; Miller and Dewald, 2012; Lan et al., 2014; Ellis et al., 2016). 
Due to the expression of the flexion synergy, many individuals 
find it harder or even impossible to open the hand and/or grasp 
an object when lifting the paretic arm at the same time (Miller and 
Dewald, 2012; Lan et al., 2014). To overcome this difficulty, past 
studies have implemented statistical models to learn and translate 
the electrical biosignals [e.g., electroencephalogram (EEG) or 
electromyogram (EMG)] into control signals of external devices, 
such as robotic exoskeletons (Collinger et al., 2013; Hortal et al., 
2015) or functional electrical stimulation systems (Moritz et al., 
2008; Pohlmeyer et al., 2009; Ethier et al., 2012). While moder-
ate to high accuracies in learning and translating the poststroke 
EMGs were reported (Sang et al., 2010; Zhang and Zhou, 2012), 
none of them have given consideration of the deleterious effect of 
the flexion synergy.

Due to the flexion synergy, poststroke EMG signals recorded 
at wrist and fingers during functional movements include two 
components (Miller and Dewald, 2012; Lan et  al., 2016). One 
component is the voluntary EMG signals generated due to the 
voluntary contraction of wrist and finger muscles; and the other 
one is the synergy-induced EMG signals generated due to the 
involuntary contraction of wrist and fingers muscles associated 
with the activation of shoulder abductor muscles (Miller and 
Dewald, 2012; Lan et al., 2014). It has been shown that after a stroke 
synergy-induced EMG signals from the impaired hand can reach 
to a significant level with increased shoulder abduction (SABD) 
loading, even when a study participant was instructed to relax the 
hand (Miller and Dewald, 2012). These synergy-induced EMGs 
do not represent the intention of hand movements and thus are 
detrimental to the accurate classification of volitional hand move-
ments (Lan et al., 2011). For example, when the impaired arm was 
fully supported, i.e., no effect of flexion synergy, the classification 
of hand movements can reach an overall accuracy of 96% with 
high-density myoelectric recordings (Zhang and Zhou, 2012), or 
95% with bipolar surface EMG recordings (Lan et al., 2011), but 
when lifting the paretic arm, the overall accuracy drops by 10 to 
16% using EMG signals (Lan et al., 2011) or using EEG signals 
(Yao et al., 2015).

The overall goal of this study is to find out whether it is 
possible to reduce the impact of the flexion synergy on the 
classification accuracy of hand movements by removing the 
synergy-reduced EMG signals from the wrist and fingers mus-
cles. It was noted from earlier findings that voluntary EMGs 
and synergy-induced EMGs may be generated using different 
neural pathways. The synergy-induced EMG signals are likely to 
be delivered via slow-conducting, polysynaptic contralesional 
corticoreticulospinal pathway, resulting in EMG–EMG oscilla-
tion in the alpha band (8–13 Hz) between muscles that share 

the same neural projections (Lan et al., 2016). In contrast, vol-
untary EMGs are conveyed via fast-conducting, monosynaptic 
corticospinal pathway that produces EMG–EMG oscillation 
in the beta band (15–30 Hz) (Farmer et al., 1993; Gross et al., 
2000; Lan et  al., 2016). With coherence analysis of EMGs 
between the shoulder abductor and wrist/finger muscles, it is 
possible to differentiate the synergy-induced EMGs from the 
voluntary EMGs by studying the coherence power during hand 
movements. It is our hypothesis that the overall classification 
accuracy in individuals with stroke should be improved after 
removing the synergy-induced EMGs with a specific filter. Such 
a filter should be coherence-based and subject-specific due to 
the expected between-subject variation in the frequency ranges 
where the coherence of synergy-induced EMGs is significant. 
Classification accuracies before and after the filtering will be 
compared and discussed.

MaTerials anD MeThODs

Participants
A total of 29 individuals (stroke: 21, control: 8) participated in 
this study. Participant demographics are listed in Table 1. Control 
participants were age-matched to the stroke participants and 
reported no history of cerebral vascular accidents. Stroke par-
ticipants were selected from the Clinical Neuroscience Research 
Registry that is housed in the Rehabilitation Institute of Chicago, 
as well as from individuals residing in the Chicago area who 
wished to participate in the study. Qualified stroke participants 
met the following inclusion criteria: (1) sustained a unilateral 
lesion at least 1 year prior to participation in this project; (2) pare-
sis confined to one side; (3) absence of a brainstem and/or cer-
ebellar lesion; (4) absence of severe concurrent medical problems 
(e.g., cardiorespiratory impairment, changes in management of 
hypertension); (5) absence of any acute or chronic painful condi-
tion in the upper extremities or spine; (6) capacity to provide 
informed consent; (7) ability to elevate their limb against gravity 
up to horizontal and to generate some active elbow extension; 
and (8) Fugl-Meyer Assessment (Fugl-Meyer et al., 1975) within 
the range of 10–40 out of a possible 66 and 2–5 out of a possible 7 
in Chedoke-McMaster Stroke Hand Assessment (Gowland et al., 
1993). All subjects gave informed consent for participation in this 
study, which was approved by the Institutional Review Board of 
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Northwestern University in accordance with the ethical standards 
stipulated by the 1964 Declaration of Helsinki for research involving 
human subjects.

equipment and setup
The experiment was carried out using an arm coordination train-
ing 3-D system (ACT3D, Figure 1A), which consists of a modified 
HapticMaster robot (Moog-FCR B. V., the Netherlands), a Biodex 
chair (Biodex Medical Systems, Shirley, NY, USA), and T-base 
support system (Biodex Medical Systems, Shirley, NY, USA). The 
ACT3D allows for free movements in three dimensions and was 
used to modulate SABD torques applied to the tested arm.

For the experimental setup, each participant was seated in the 
Biodex chair with the trunk strapped to the back of the chair to 
prevent unwanted movement of the upper body. The to-be-tested 
forearm was placed in a forearm orthosis and the fingers/palm 
rested on a cylinder. The cylinder was rigidly coupled to the end 
effector of the ACD3D. Surface EMGs were collected using an 
Avatar physiological recorder (Electrical Geodesics, Inc., Eugene, 
OR, USA) from intermediate deltoid (mDEL), flexor carpi radialis 
(FCR), flexor digitorum superficialis (FDS), extensor carpi radia-
lis (ECR), and extensor digitorum communis (EDC). EMGs were 
sampled at 1,000 Hz and preprocessed with a band-pass filter at a 
cutoff band of 5–450 Hz.

Protocol
Prior to the experiment, each participant’s maximum SABD 
torque was measured using a manual dynamometer (Lafayette 
Instrument Company, Lafayette, IN, USA) placed just proximal 
to the axis of rotation of the elbow in a limb configuration of 85° 
SABD, 45° shoulder flexion, and 90° elbow flexion. Participants 
were presented with a home object and a target object on a 
monitor in front of them (Figure 1B). At the beginning of the 
task, participants were instructed to find the home object, trigger 
the trial, and then reach out to the target object. Once the hand 
arrived at the target, the participant was given 2 s to lift the tested 
arm and hold the position. After the 2 s, while keeping the arm 
lifted, the participant was asked to perform one of the following 
three hand tasks for 5 s in a random order: (1) open the hand with 
a maximal effort; (2) grasp the cylinder with a maximal effort; (3) 
no hand movement. All participants performed these three hand 
tasks with two different SABD loadings equaling to 25 or 50% of 
the subject’s maximum SABD torque. Ten to twelve repetitions of 
each hand task were performed.

Data analysis
Coherence
Wavelet coherence was used to examine the linear dependency 
of two sequences of surface EMGs in the time-frequency domain 
(Torrence and Compo, 1998) and is considered efficient and 
reliable in detecting the synchronizing activity between two time 
series (Daubechies, 1990; Jevrejeva et  al., 2003; Grinsted et  al., 
2004). In this study, the Morlet wavelet was applied for transfor-
mation. Monte Carlo simulation methods were used to determine 
the 5% statistical significance level of the coherence (Grinsted 
et al., 2004). It is assumed that the EMG time series has a mean 

power spectrum, which is only considered as significant when 
it is above the white noise of the background spectrum. And 
during the holding phase of grasping/opening, the coherence 
remains relatively steady (Baker et al., 1997; Kilner et al., 1999, 
2000). Wavelet coherences were calculated for each of following 
muscle pairs, i.e., FDS-mDEL, FCR-mDEL, EDC-mDEL, and 
ECR-mDEL, for each participant and for all three hand tasks.

Algorithm
Without Coherence-Based Filter
All EMG signals were manually segmented and concatenated to 
exclude the idling EMGs collected between hand tasks. A 250-ms 
long window was implemented to slide from the beginning to the 
end of the concatenated EMGs with a 50% increment and a 50% 
overlap between adjacent moving windows. Within each moving 
window, features were extracted based on the method proposed 
by Hudgins (Hudgins et  al., 1993). This method proposes four 
features in the time domain: mean absolute value, zero crossings, 
slope sign changes, and waveform length (see Table  2 for the 
definition of each of these four features).

Linear discriminant analysis (LDA) was used to classify the 
EMG signals in this study. LDA has been proved to be effective 
in EMG classification as well as with low computational cost 
(Scheme and Englehart, 2011). For each of the hand tasks, LDA 
maximizes the posterior probability of Bayesian equation and 
assigns the class labels (i.e., hand open, grasp, or relax) with the 
largest possibility,
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where xij and n represent the features and the number of features 
in the training set, i indicated the ith feature, j indicated the jth 
category, y is classification category.

With Coherence-Based Filter
Frequency ranges where coherence was significant were first 
identified during the three hand tasks. For each participant, 
significant ranges found in the three hand tasks were merged to 
determine the cutoff frequency for the band-stop filters (fourth 
order Butterworth). Separate filters were built specific to each of 
the two SABD loading levels in this study. Concatenated EMG 
signals were then preprocessed with these coherence-based filters 
followed by feature extraction and LDA classification described 
above.

Dataset and Model Evaluation
For each participant, the dataset was split into a training set 
(75%) and a testing set (25%). The training set was used to train 
the model to learn and differentiate the EMG patterns of dif-
ferent hand tasks. The model was trained and tested based on 
a 250-ms long window. Each subject will generate 10–12 trials 
of 5  s hand movements for three hand tasks (open/grasping/
relax). The total number of the dataset is 1,200–1,440 samples. 
Tenfold cross-validation was implemented to determine the best 
model that reported the highest detection accuracy in training 
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FigUre 1 | Experiment setup. (a) ACT3D system with a monitor display; (b) visual feedback during the task, step 1: to find the home position; step 2: found the 
home position and triggered the trial; step 3: to find the target position.
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Table 2 | Electromyogram features extracted in the time domain.

Features Description

Zero crossing xk xk+1 < 0 and |xk − xk+1| ≥ ∈

Slope sign changes {xk > xk−1 and xk > xk+1} or {xk < xk−1 and xk < xk+1}  
and |xk − xk+1| ≥ ∈ or |xk − xk−1|  ≤ ∈

Absolute amplitude x
L

x i Li
k

L

k= ∑1
12

1=

= …for , , ,

Waveform length l x
k

L

k0
1

=
=
∑ ∆

k, the kth sample; x, the feature; ∈, pre-defined threshold; L, window length; |Δxk|, 
waveform length between two adjacent samples.
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set. The testing set was then used to assess the strength of the 
model and the extent to which the fitted model could generalize 
to the future data. The testing set was put aside until the model 
was complete with training.

Model was evaluated by calculating the classification accuracy 
within each of hand movement categories, as shown below,

 
accuracy

total number of c
number of correct classification

=
llassification

%.
 

The overall classification accuracy is the mean classification 
accuracy of the three hand tasks.

Statistics
A mixed three-way ANOVA with repeated measures was con-
ducted to determine whether loading (SABD25, SABD50), filter 
(before filtering, after filtering), hand task (relax, open, grasp), 
and/or their interaction explain the changes in classification 
accuracies. Post hoc comparisons with the Bonferroni adjustment 
were used to compare within-group differences. Unless specified 
otherwise, results are presented as mean ± SE. Statistical signifi-
cance was set at p < 0.05. The statistical analysis was performed 
using the IBM SPSS version 22 software.

resUlTs

Shoulder abduction loading showed a negative impact on the 
overall accuracy in the stroke group (Figure 2, see p values in 
Table 3). Both groups showed high overall accuracy when the 
tested arm was fully supported, but the accuracy in the stroke 
group started to drop significantly during conditions where 
the participants lifted the paretic arm thus generating SABD 
loads. The control group was not significantly affected by SABD 
loading.

The result of coherence analysis of EMGs is shown for one 
stroke participant and one able-bodied individual during grasp-
ing while generating a 50% of max SABD load (see Figure 3). 
Significant coherence between wrist/finger flexors and mDEL in 
the alpha band (8–13  Hz) was found in the stroke participant 
during the hand grasp task while such activities were mostly 
absent in the able-bodied individual (Figure  3). The increased 
alpha-band coherence during hand grasping while lifting the 
arm in the stroke individual suggested a greater level of shared 
neural drive to both muscles. The global coherence depicted the 

coherence power aggregated over time as a function of frequency, 
highlighting the frequency range where coherence power was the 
most prominent. It is evident from the global coherence figures 
that this stroke individual had a greater level of EMG–EMG 
synchronization that centered at around 8 Hz.

Our data also show a significant global coherence between 
wrist/finger muscles and mDEL for the hand grasping task with 
SABD loading at 50% of the max torque based on the Monte 
Carlo simulation approach in each of the participants (see Figure 
S1 in Supplementary Material). For each participant, the signifi-
cant frequency range is represented by solid lines whose lengths 
denote the range and a solid filled circle whose location denotes 
the peak value. The figure shows that the stroke group has more 
significant coherence bands in the alpha band than the control 
group, especially for the more severely impaired individuals. 
Coherence in the beta band is not evident for the stroke group. 
Additionally, there is also great variation between subjects and 
between muscles in the alpha band coherence in the stroke group. 
For example, the significant coherence in the extensors are either 
very short (ECR for the severe cases) or very rare (EDC for the 
severe cases), while coherence in the flexors is generally longer. 
Across all individuals, no one stroke individual shared the same 
significant frequency band as the other.

Based on the significant coherence bands found in all three 
hand tasks, the cutoff frequency for the band-stop filter was deter-
mined by the frequency ranges where coherence was significant 
for each muscle in each participant. This subject-specific, muscle-
specific coherence-based filter (referred as “coherence filter” 
below) was applied to the EMGs in each participant to remove 
the synergy-induced components from the original EMGs. For 
individuals (n = 3) who showed the peak value as the only signifi-
cant coherence or no significant bands, no coherence filter was 
applied. Results from these three individuals were not included in 
the statistic analysis either. Figure 4 showed the improvement in 
classification accuracy after applying the coherence filters to the 
stroke group at SABD50. Overall, 14 subjects showed improve-
ment in the classification accuracy, four subjects showed reduced 
accuracy after removing the synergy-induced EMGs. A mixed 
three-way ANOVA found significance in an interaction effect of 
loading × filters (p < 0.05). Post hoc analysis found no significant 
difference in the classification accuracy with the coherence filters 
applied at SABD25, but significantly greater improvement with the 
coherence filters at SABD50 (Table 4). One subject showed 14% 
improvement with the filter. It is expected that some individuals 
may respond very favorably to the filter. Nevertheless, even when 
eliminating this individual from the analysis, the conclusion still 
holds as the sample mean at SABD50 without this subject remains 
significant compared to the one without the filter (p = 0.038).

DiscUssiOn

novelty and Main Finding
Decoding EMG signals for neural machine interface is a great 
challenge in the individuals with chronic hemiparetic stroke due 
to prevalent motor deficits, such as flexion synergy (Lan et al., 
2011; Yao et al., 2015). Many studies made great efforts acquiring 
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Table 3 | Mixed two-way ANOVA for overall accuracy rate.

Main effect and interaction

Factor Overall accuracy rate

Group p = 0.009
Loading p = 0.000
Loading × group p = 0.048

Post hoc analysis

loading group (control vs stroke) 

TABLE p = 0.093
SABD25 p = 0.015
SABD50 p = 0.011

group loading (Table, sabD25, sabD50)

Stroke Ptb-25 = 0.000
P25–50 = 1.000
Ptb-50 = 0.000

Control Ptb-25 = 1.000
P25–50 = 0.245
Ptb-50 = 1.000

FigUre 2 | Increased shoulder abduction (SABD) loading resulted in a significantly decreased accuracy rate in the stroke group. Mean and SE of classification error 
rate in the stroke group (N = 21) and in the able-bodied group (N = 8). Table, participant’s tested arm was fully supported on a rigid flat surface; SABD25 and 
SABD50, participant lifted the tested arm with a weight that equaled to 25 and 50% of his/her maximal SABD torque, respectively.
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better quality of EMGs or features to improve the overall clas-
sification accuracy. For example, Zhang and Zhou (2012) have 
reported that using high-density EMG signals can achieve high 
classification accuracies in the stroke individuals. Englehart 
and Hudgins (2003) suggested optimal parameters for feature 
extraction, such as window length, overlap, increment length to 

produce models with low bias, and variances that can generalize 
well to the test data (Scheme and Englehart, 2011). Features in 
the time domain (Hudgins et al., 1993; Zhou et al., 2007), the 
frequency domain (Merletti, 1997; Li et  al., 2014), and the 
time-frequency domain (Englehart et  al., 1999; Zhou et  al., 
2007; Nurhazimah et al., 2016) have also been broadly inves-
tigated. While improvement of the overall accuracy has been 
reported, the limitation is that very few studies have given full 
consideration of the effect of the flexion synergy common in up 
to 60% of the stroke population nor proposed approaches that 
can reduce EMG contamination associated with activation of 
proximal arm muscles (Fougner et al., 2011; Lan et al., 2011).

This study proposed a novel approach to reduce the impact 
of the flexion synergy on classification of the hand movements 
in individuals with chronic hemiparetic stroke for future use 
in neural machine interfaces. A subject-specific and muscle-
specific coherence-based filter was developed to remove the 
synergy-induced component in EMG signals collected from 
the forearm. The subject-specific filter is believed to be more 
effective in removing individualized synergy-induced EMG 
component than a filter with a universal cutoff frequency as 
the expression of flexion synergy on the frequency ranges of 
significant coherence varies across individuals with different 
motor impairment severities (see Figure S1 in Supplementary 
Material). It was found that such filters can significantly 
improve the classification accuracy during a greater level 
SABD loading. To our knowledge, this is the first study in the 
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FigUre 3 | Greater alpha-band coherence between mDEL and wrist/finger 
flexors in the stroke individual. Top: poststroke electromyogram (EMG) signals 
from flexor digitorum superficialis (FDS) and mDEL were presented during the 
hand grasp task while the stroke participant was lifting the paretic arm at the 
same time (SABD50); Middle: wavelet coherence was calculated with the 
aligned EMG signals for the stroke participant, and the global coherence was 
plotted on the left side to show the coherence power aggregating over time; 
Bottom: wavelet coherence and global coherence for a control individual 
(EMG signals for this control individual are not shown).
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field that took the effect of the upper-limb flexion synergy dur-
ing functional reaching, hand opening, and grasping tasks into 
consideration.

impact of Flexion synergy  
on classification accuracy
It was previously reported that SABD loading had a negative 
impact on the overall classification accuracy of hand opening 
using either EMGs (Lan et al., 2011) or EEGs (Yao et al., 2015). 
Even in the able-bodied individuals, variations in the limb posi-
tion can have a substantial impact on the robustness of EMG 
recognition (Fougner et  al., 2011). The results in this study 
confirm these previous findings. It is now understood that the 
activation of shoulder abductors can result in the involuntary 
coactivation of the wrist and fingers (Miller and Dewald, 2012), 
and such involuntary expression of flexion synergy at the hand 
can be further enhanced by increased SABD loading on the 
paretic limb. The EMG signals in the flexors increased with 
SABD loading even when no voluntary hand movement was 
initiated (Miller and Dewald, 2012). Prior studies suggested that 
the synergy-induced EMG component might be delivered via the 

contralesional corticoreticulospinal pathway during increasing 
levels of SABD (Dewald et al., 1995; Miller and Dewald, 2012; Lan 
et al., 2016) and should not represent the volitional aspect of hand 
movement, thus resulting in a decrease in classification accuracy. 
It is worth noting that while the paretic limb was fully supported, 
the overall classification of the stroke group has an average of 
93.4% accuracy, suggesting that the current feature extraction 
and classifier choice is sufficient to decode myoelectric patterns 
in the absence of flexion synergy. However, the same feature 
extraction and classifier choice is less effective in the presence 
of synergy-induced EMG, such as when lifting the weight of the 
arm. It also seems that the reduction in classification accuracy, 
due to increased SABD loading, is not strictly linear since the 
accuracy at SABD50 only decreased by 1.1% compared with 
SABD25. However, more and greater SABD loading conditions 
are needed to confirm the relationship between SABD loading 
and reduction in classification accuracy.

Variation in significant coherence 
Frequency range
For both hand grasp and hand open tasks, there was great 
between-subject and between-muscle variation in the frequency 
ranges where the coherence between wrist/finger muscles and 
mDEL is significant. One explanation is the broad range of stroke 
severity included in this study. The severity of stroke participants 
in this study ranges from moderate to severe impairment, as dem-
onstrated by Fugl-Meyer Assessment and Chedoke-McMaster 
Stroke Hand Assessment (see methods). It is possible that more 
severe individuals show greater coherence in the alpha band due 
to the increased reliance on the contralesional corticoreticulo-
spinal pathway, resulting in a greater portion of synergy-induced 
EMGs at the wrist/fingers during SABD. The between-muscle 
variation is also evident across individuals. For example, the 
significant coherence frequency range in the flexors is generally 
more common than the extensors (Figure S1 in Supplementary 
Material). It was noted from previous studies that hand muscles 
receiving projections from the contralesional reticulospinal tract 
are flexor-facilitated on the impaired side (Davidson and Buford, 
2006; Riddle et al., 2009), meaning activation of the flexors using 
this pathway is much stronger than the extensors. From evidence 
provided in monkeys which had recovered from a unilateral lesion 
of the pyramidal tract, it was shown that reticulospinal-induced 
amplitude and incidence of synaptic inputs to forearm flexors 
were significantly increased, while inputs to extensors remained 
unchanged (Baker et al., 2015). For the control group, the signifi-
cant coherence frequency range is no more than sporadic across 
all muscles and subjects, indicating the reduced extent of shared 
neural drive to the shoulder and the hand compared to stroke 
participants.

Variation in classification improvement
Electromyogram classification from some individuals (e.g., 
stroke participant 9, see Figure S1 in Supplementary Material) 
responded more favorably to the filtering process than others 
(e.g., stroke participant 1). Such difference may be related to 
the remained volume of ipsilesional corticospinal tract that is 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


FigUre 4 | The overall classification accuracy improvement after applying the filters at SABD50 in the stroke group. Positive and negative values indicate 
improvement and reduction in the accuracy after filtering, respectively.

8

Lan et al. Enhanced Classification Using Coherence-Based Filtering

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2017 | Volume 5 | Article 39

responsible for voluntary hand movements. It is possible that 
individuals with a more intact ipsilesional corticospinal tract may 
have smaller room of improvement in classification accuracy. 
Conversely, individuals with great reliance on the contralesional 
corticoreticulospinal tract may benefit more from the coherence 
filter after the synergy-induced EMGs was removed. It is also 
important to point out that three stroke individuals showed zero 
improvement. This is because none of them showed significant 
coherence frequency ranges and, therefore, no filters were 
applied. Interestingly, four individuals showed reduced classifi-
cation accuracy after applying the filters. This could be due to 
the artifact introduced by the filters that may have caused EMG 
signal attenuation, and EMGs from these four individuals may be 
particularly sensitive to such an artifact. It could also be due to 

the fact that these four individuals already had limited voluntary 
EMGs in the first place thus removing the synergy-induced com-
ponent brought little change in the overall classification accuracy.

scientific implications and Future Work
A common approach to preparing surface EMGs is to apply a 
band-pass filter with a cutoff frequency range of 20–450  Hz. 
This is very much rooted in the previous work by De Luca 
and colleagues demonstrating that most of the energy related 
to motion artifacts is in the frequency range from 0 to 20 Hz 
(De Luca, 2002; De Luca et  al., 2010). However, more recent 
evidence has shown that after stroke the central nervous system 
might have adopted an alternative motor control strategy that 
generates neural oscillation in the alpha range (Lan et al., 2014; 
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Table 4 | Mixed three-way ANOVA for improvement in the overall accuracy rate.

Main effect and interaction

Factor improvement

Filter p = 0.05
Task × filter p = 0.106
Loading × filter p = 0.048
Task × loading × filter p = 0.160

Post hoc analysis

loading group (control vs stroke)

SABD25 Pwith_filter − no_filter = 0.443
SABD50 Pwith_filter − no_filter = 0.017
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Baker et al., 2015). This control strategy may emphasize using 
neural pathways that produce frequency contents under 20 Hz 
and hence it was suggested as the potential target for poststroke 
rehabilitation (Baker et  al., 2015). That could imply that the 
EMG below 20  Hz might contain useful motor information. 
Thus selectively removing the frequency content below 20  Hz 
might be a more effective approach for pattern recognition 
of poststroke EMGs and should be studied in more detail. To 
achieve this goal, future work should first focus on quantifying 
real-time classification in the stroke group. The present work 
is an off-line application of the algorithm, and we reported the 
overall improvement in most stroke individuals. To make this 
approach more clinically applicable, it is recommended to imple-
ment the algorithm online, meaning classification is made while 
EMGs are generated. We have used a 250ms-long time window 
for processing the data. This allows for an online classification 
of the hand movement without creating a sense of delay. Second, 
the classification platform should be realized with a close-loop 
connection to an external device (e.g., a robot device or func-
tional electrical stimulator), which receives the classification 
signal and generates movements or activates relevant muscles 
in the wrist and fingers. Eventually, such a platform requires a 
training period which acquires subject-specific data to train the 
classifier and a real-time testing period.

Future work should also extend the current experimental 
protocol to multiple abduction levels to better understand 
the benefits of applying filters to functional hand movements. 
Furthermore, integrating neuroimaging approaches into the cur-
rent line of research can further help us to gain scientific insight 
into the possible use of ipsilesional corticospinal and contral-
esional corticoreticulospinal tracts after stroke. This is likely to 
bring new perspectives to a more effective subject-specific future 
application of neural machine interfaces within the context of 
flexion synergy.

eThics sTaTeMenT

This study was carried out in accordance with the recom-
mendations of the Institutional Review Board of Northwestern 
University with written informed consent from all subjects. All 
subjects gave written informed consent in accordance with the 
Declaration of Helsinki. The protocol was approved by the “the 
Institutional Review Board of Northwestern University.”

aUThOr cOnTribUTiOns

YL designed the study, developed the methodology, performed 
the analysis, and wrote the manuscript under the guidance of JY 
and JD. Both JY and JD contributed extensively to revising and 
finalizing this manuscript as well as to the development of the 
original research idea.

FUnDing

The study was supported by the National Institutes of Health 
grant: NIH R01HD039343.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fbioe.2017.00039/
full#supplementary-material.

reFerences

Baker, S. N., Olivier, E., and Lemon, R. N. (1997). Coherent oscillations in mon-
key motor cortex and hand muscle EMG show task-dependent modulation. 
J. Physiol. 501, 225–241. doi:10.1111/j.1469-7793.1997.225bo.x 

Baker, S. N., Zaaimi, B., Fisher, K. M., Edgley, S. A., and Soteropoulos, D. S. 
(2015). Pathways mediating functional recovery. Prog. Brain Res. 218, 389–412. 
doi:10.1016/bs.pbr.2014.12.010 

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, 
D. J., et al. (2013). High-performance neuroprosthetic control by an individual 
with tetraplegia. Lancet 381, 557–564. doi:10.1016/S0140-6736(12)61816-9 

Daubechies, I. (1990). The wavelet transform, time-frequency localization and 
signal analysis. IEEE Trans. Inf. Theory 36, 961–1005. doi:10.1109/18.57199 

Davidson, A. G., and Buford, J. A. (2006). Bilateral actions of the reticulospinal 
tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. 
Exp. Brain Res. 173, 25–39. doi:10.1007/s00221-006-0374-1 

De Luca, C. J. (2002). Surface Electromyography: Detection and Recording. DelSys 
Incorporated.

De Luca, C. J., Gilmore, L. D., Kuznetsov, M., and Roy, S. H. (2010). Filtering the 
surface EMG signal: movement artifact and baseline noise contamination. 
J. Biomech. 43, 1573–1579. doi:10.1016/j.jbiomech.2010.01.027 

Dewald, J. P., Pope, P. S., Given, J. D., Buchanan, T. S., and Rymer, W. Z. (1995). 
Abnormal muscle coactivation patterns during isometric torque generation 
at the elbow and shoulder in hemiparetic subjects. Brain 118(Pt 2), 495–510. 
doi:10.1093/brain/118.2.495 

Ellis, M. D., Lan, Y., Yao, J., and Dewald, J. P. (2016). Robotic quantification of upper 
extremity loss of independent joint control or flexion synergy in individuals with 
hemiparetic stroke: a review of paradigms addressing the effects of shoulder 
abduction loading. J. Neuroeng. Rehabil. 13, 95. doi:10.1186/s12984-016-0203-0 

Englehart, K., and Hudgins, B. (2003). A robust, real-time control scheme for 
multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854. 
doi:10.1109/TBME.2003.813539 

Englehart, K., Hudgins, B., Parker, P. A., and Stevenson, M. (1999). Classification 
of the myoelectric signal using time-frequency based representations. Med. Eng. 
Phys. 21, 431–438. 

Ethier, C., Oby, E. R., Bauman, M. J., and Miller, L. E. (2012). Restoration of grasp 
following paralysis through brain-controlled stimulation of muscles. Nature 
485, 368–371. doi:10.1038/nature10987 

Farmer, S. F., Bremner, F. D., Halliday, D. M., Rosenberg, J. R., and Stephens, J. A. 
(1993). The frequency content of common synaptic inputs to motoneurones 
studied during voluntary isometric contraction in man. J. Physiol. 470, 127–155. 
doi:10.1113/jphysiol.1993.sp019851 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://journal.frontiersin.org/article/10.3389/fbioe.2017.00039/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fbioe.2017.00039/full#supplementary-material
https://doi.org/10.1111/j.1469-7793.1997.225bo.x
https://doi.org/10.1016/bs.pbr.2014.12.010
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1109/18.57199
https://doi.org/10.1007/s00221-006-0374-1
https://doi.org/10.1016/j.jbiomech.2010.01.027
https://doi.org/10.1093/brain/118.2.495
https://doi.org/10.1186/s12984-016-0203-0
https://doi.org/10.1109/TBME.2003.813539
https://doi.org/10.1038/nature10987
https://doi.org/10.1113/jphysiol.1993.sp019851


10

Lan et al. Enhanced Classification Using Coherence-Based Filtering

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2017 | Volume 5 | Article 39

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., and Stavdahl, O. (2011). 
Resolving the limb position effect in myoelectric pattern recognition. IEEE 
Trans. Neural Syst. Rehabil. Eng. 19, 644–651. doi:10.1109/TNSRE.2011.2163529 

Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., and Steglind, S. (1975). The post-
stroke hemiplegic patient. 1. A method for evaluation of physical performance. 
Scand. J. Rehabil. Med. 7, 13–31. 

Gowland, C., Stratford, P., Ward, M., Moreland, J., Torresin, W., Van Hullenaar, 
S., et  al. (1993). Measuring physical impairment and disability with the 
Chedoke-McMaster Stroke Assessment. Stroke 24, 58–63. doi:10.1161/01.
STR.24.1.58 

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet 
transform and wavelet coherence to geophysical time series. Nonlin. Process. 
Geophys. 11, 561–566. doi:10.5194/npg-11-561-2004 

Gross, J., Tass, P. A., Salenius, S., Hari, R., Freund, H. J., and Schnitzler, A. (2000). 
Cortico-muscular synchronization during isometric muscle contraction in 
humans as revealed by magnetoencephalography. J. Physiol. 527(Pt 3), 623–631. 
doi:10.1111/j.1469-7793.2000.00623.x 

Hortal, E., Planelles, D., Resquin, F., Climent, J. M., Azorín, J. M., and Pons, J. L. 
(2015). Using a brain-machine interface to control a hybrid upper limb exoskel-
eton during rehabilitation of patients with neurological conditions. J. Neuroeng. 
Rehabil. 12, 92. doi:10.1186/s12984-015-0082-9 

Hudgins, B., Parker, P. A., and Scott, R. N. (1993). A new strategy for mul-
tifunction myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94. 
doi:10.1109/10.204774 

Jevrejeva, S., Moore, J. C., and Grinsted, A. (2003). Influence of the arctic 
oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in 
the Baltic Sea: the wavelet approach. J. Geophys. Res. 108, 4677. doi:10.1029/ 
2003JD003417

Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., and Lemon, R. (2000). Human 
cortical muscle coherence is directly related to specific motor parameters. 
J. Neurosci. 20, 8838–8845. 

Kilner, J. M., Baker, S. N., Salenius, S., Jousmaki, V., Hari, R., and Lemon, R. N. 
(1999). Task-dependent modulation of 15-30Hz coherence between rectified 
EMGs from human hand and forearm muscles. J. Physiol. 516, 559–570. 
doi:10.1111/j.1469-7793.1999.0559v.x 

Lan, Y., Yao, J., and Dewald, J. P. (2011). The impact of shoulder abduction 
loading on EMG-based intention detection of hand opening and closing after 
stroke. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 4136–4139. doi:10.1109/
IEMBS.2011.6091027 

Lan, Y., Yao, J., and Dewald, J. P. (2014). Increased shoulder abduction loads 
decreases volitional finger extension in individuals with chronic stroke: 
preliminary findings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 5808–5811. 
doi:10.1109/EMBC.2014.6944948 

Lan, Y., Yao, J., and Dewald, J. P. (2016). “Impaired hand function is related to 
increased alpha band coherence between intermediate deltoid and wrist/finger 
flexors after stroke: preliminary findings,” in ISEK Congress, Chicago.

Li, X., Shin, H., Zhou, P., Niu, X., Liu, J., and Rymer, W. Z. (2014). Power spectral 
analysis of surface electromyography (EMG) at matched contraction levels of 
the first dorsal interosseous muscle in stroke survivors. Clin. Neurophysiol. 125, 
988–994. doi:10.1016/j.clinph.2013.09.044 

Merletti, L. C. (1997). Surface EMG signal processing during isometric contractions. 
J. Electromyogr. Kinesiol. 7, 241–250. doi:10.1016/S1050-6411(97)00010-2 

Miller, L. C., and Dewald, J. P. (2012). Involuntary paretic wrist/finger flexion forces 
and EMG increase with shoulder abduction load in individuals with chronic 
stroke. Clin. Neurophysiol. 123, 1216–1225. doi:10.1016/j.clinph.2012.01.009 

Moritz, C. T., Perlmutter, S. I., and Fetz, E. E. (2008). Direct control of paralysed 
muscles by cortical neurons. Nature 456, 639–642. doi:10.1038/nature07418 

Nurhazimah, N., Mohd, A. A. R., Shin-Ichiroh, Y., Siti, A. A., Hairi, Z., and Saiful, A. M. 
(2016). A review of classification techniques of EMG signals during isotonic 
and isometric contractions. Sensors (Basel) 16, 1304. doi:10.3390/s16081304 

Pohlmeyer, E. A., Oby, E. R., Perreault, E. J., Solla, S. A., Kilgore, K. L., Kirsch, R. 
F., et  al. (2009). Toward the restoration of hand use to a paralyzed monkey: 
brain-controlled functional electrical stimulation of forearm muscles. PLoS 
ONE 4:e5924. doi:10.1371/journal.pone.0005924 

Riddle, C. N., Edgley, S. A., and Baker, S. N. (2009). Direct and indirect connections 
with upper limb motoneurons from the primate reticulospinal tract. J. Neurosci. 
29, 4993–4999. doi:10.1523/JNEUROSCI.3720-08.2009 

Sang, W. L., Wilson, K., Lock, B. A., and Kamper, D. G. (2010). Subject-specific 
myoelectric pattern classification of functional hand movements for stroke 
survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 558–566. doi:10.1109/
TNSRE.2010.2079334 

Scheme, E., and Englehart, K. (2011). Electromyogram pattern recognition for 
control of powered upper-limb prostheses: state of the art and challenges for 
clinical use. J. Rehabil. Res. Dev. 48, 643–659. doi:10.1682/JRRD.2010.09.0177 

Sukal, T. M., Ellis, M. D., and Dewald, J. P. (2007). Shoulder abduction-induced 
reductions in reaching work area following hemiparetic stroke: neuroscientific 
implications. Exp. Brain Res. 183, 215–223. doi:10.1007/s00221-007-1029-6 

Torrence, C. G., and Compo, G. P. (1998). A practical guide to wavelet analysis. 
Bull. Am. Meteorol. Soc. 79, 61–78. doi:10.1175/1520-0477(1998)079<006
1:APGTWA>2.0.CO;2 

Yao, J., Sheaff, C., Carmona, C., and Dewald, J. P. (2015). Impact of shoulder 
abduction loading on brain-machine interface in predicting hand opening 
and closing in individuals with chronic stroke. Neurorehabil. Neural Repair  
30, 363–372. doi:10.1177/1545968315597069 

Zhang, X., and Zhou, P. (2012). High-density myoelectric pattern recognition 
toward improved stroke rehabilitation. IEEE Trans. Biomed. Eng. 59, 1649–1657. 
doi:10.1109/TBME.2012.2191551 

Zhou, P., Lowery, M. M., Englehart, K. B., Huang, H., Li, G., Hargrove, L., et al. 
(2007). Decoding a new neural machine interface for control of artificial limbs. 
J. Neurophysiol. 98, 2974–2982. doi:10.1152/jn.00178.2007 

Conflict of Interest Statement: The authors declared no potential conflicts of 
interest with respect to the research, authorship, and/or publication of this article.

Copyright © 2017 Lan, Yao and Dewald. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
https://doi.org/10.1109/TNSRE.2011.2163529
https://doi.org/10.1161/01.STR.24.1.58
https://doi.org/10.1161/01.STR.24.1.58
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1111/j.1469-7793.2000.00623.x
https://doi.org/10.1186/s12984-015-0082-9
https://doi.org/10.1109/10.204774
https://doi.org/10.1029/2003JD003417
https://doi.org/10.1029/2003JD003417
https://doi.org/10.1111/j.1469-7793.1999.0559v.x
https://doi.org/10.1109/IEMBS.2011.6091027
https://doi.org/10.1109/IEMBS.2011.6091027
https://doi.org/10.1109/EMBC.2014.6944948
https://doi.org/10.1016/j.clinph.2013.09.044
https://doi.org/10.1016/S1050-6411(97)00010-2
https://doi.org/10.1016/j.clinph.2012.01.009
https://doi.org/10.1038/nature07418
https://doi.org/10.3390/s16081304
https://doi.org/10.1371/journal.pone.0005924
https://doi.org/10.1523/JNEUROSCI.3720-08.2009
https://doi.org/10.1109/TNSRE.2010.2079334
https://doi.org/10.1109/TNSRE.2010.2079334
https://doi.org/10.1682/JRRD.2010.09.0177
https://doi.org/10.1007/s00221-007-1029-6
https://doi.org/10.1175/1520-0477(1998)079 < 0061:APGTWA > 2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079 < 0061:APGTWA > 2.0.CO;2
https://doi.org/10.1177/1545968315597069
https://doi.org/10.1109/TBME.2012.2191551
https://doi.org/10.1152/jn.00178.2007
http://creativecommons.org/licenses/by/4.0/

	Reducing the Impact of Shoulder Abduction Loading on the Classification of Hand Opening and Grasping in Individuals with Poststroke Flexion Synergy
	Introduction
	Materials and Methods
	Participants
	Equipment and Setup
	Protocol
	Data Analysis
	Coherence
	Algorithm
	Without Coherence-Based Filter
	With Coherence-Based Filter

	Dataset and Model Evaluation
	Statistics


	Results
	Discussion
	Novelty and Main Finding
	Impact of Flexion Synergy 
on Classification Accuracy
	Variation in Significant Coherence Frequency Range
	Variation in Classification Improvement
	Scientific Implications and Future Work

	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


