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Glucagon-like peptide-1 (GLP-1) is a gut hormone mainly produced in the intestinal
epithelial endocrine L cells, involved in maintaining glucose homeostasis. The use of GLP-
1 analogous and dipeptidyl peptidase-IV (DPP-IV) inhibitors is well-established in Type 2
Diabetes. The efficacy of these therapies is related to the activation of GLP-1 receptor
(GLP-1R), which is widely expressed in several tissues. Therefore, GLP-1 is of great
clinical interest not only for its actions at the level of the beta cells, but also for the extra-
pancreatic effects. Activation of GLP-1R results in intracellular signaling that is regulated
by availability of downstream molecules and receptor internalization. It has been shown
that GLP-1R co-localizes with caveolin-1, the main component of caveolae, small
invagination of the plasma membrane, which are involved in controlling receptor activity
by assembling signaling complexes and regulating receptor trafficking. The aim of this
review is to outline the important role of caveolin-1 in mediating biological effects of GLP-1
and its analogous.
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INTRODUCTION

The biological effects of the Glucagon-like peptide-1 (GLP-1) are mediated by binding to its
receptor, GLP-1R, a specific seven-transmembrane receptor guanine nucleotide-binding protein
(G-protein) coupled receptor (GPCR) (1). GLP1 binding to GLP-1R leads to activation of
intracellular signaling pathways that take part to the regulation of glucose homeostasis. The
GLP-1R localizes in caveolae (2), a subset of lipid rafts on the plasma membrane structured as flask-
shaped invagination of about 50 to 100 nm, composed of Caveolins and Cavins (3, 4). Caveolae
regulate several cellular processes, including protein endocytosis, intracellular trafficking,
cholesterol homeostasis, and signal transduction (5–7). In particular, Caveolin 1 (Cav-1) binds
several signaling and structural proteins through the caveolin-binding motifs, a conserved sequence
enriched with aromatic residues [FXFXXXXF, FXXXXFXXF, and FXFXXXXFXXF (F =
aromatic residue, X = any amino acid)], found in a lot of proteins, including the GLP-1 receptor.

The direct interaction between GLP-1R and Cav-1 regulates the proper targeting of the GLP-1R
to the plasma membrane, the receptor trafficking, and the activation of the intracellular signaling
pathway. However, Cav-1 is also a multifunctional platform able to recruit several
signaling molecules.

In this review we highlight the importance of Cav-1 in mediating GLP-1 action. Moreover, we
speculated about the involvement of Cav-1 in regulating GLP-1 signaling at the level of the G
proteins, showing that Cav-1 might modulate signal transduction by influencing not only the
n.org April 2021 | Volume 12 | Article 6680121

https://www.frontiersin.org/articles/10.3389/fendo.2021.668012/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.668012/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:alep100@hotmail.com
https://doi.org/10.3389/fendo.2021.668012
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.668012
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.668012&domain=pdf&date_stamp=2021-04-14


Puddu and Maggi Caveolin-1 Mediates Biological Effects of GLP-1
trafficking of GLP-1R, but also that of the signaling proteins.
Finally, we hypothesize that Cav-1 may regulate GLP-1 action
binding both GLP-1R and b-arrestin-1, and modulating the
activity of Dipeptidyl Peptidase (DPP)-IV.
CAVEOLIN-1

The principal protein of caveolae is Cav-1, a 22- to 24-kDa
integral membrane protein with a hairpin-like conformation
ubiquitously expressed in many different tissues, except striated
muscle in which Caveolin 3 is highly expressed (6, 8). The
hairpin loop is transmembrane, whereas the amino- and
carboxy-terminal domains are oriented towards the cytoplasm.
In particular, the juxtamembrane domain in the N-terminal
region of the protein acts as a scaffolding protein and, besides
driving caveolae formation through heterooligomeric complex
with Caveolin-2 and PTRF-cavin (9), interacts with a variety of
signaling molecules such as G-proteins, H-Ras, Fyn, Erk-2, Src
family tyrosine kinases, and so on (10, 11). Moreover, Cav-1
directly interact with insulin and IGF1 receptor and their
principal substrate IRS-1 supporting a role in metabolic
regulation (12, 13).
GLP-1 AND ITS RECEPTOR

GLP-1 is an incretin hormone derived from the proglucagon
gene and secreted by the intestinal L cell in response to food
ingestion to maintain glucose homeostasis (14). The secretion of
GLP-1 is reduced in Type 2 Diabetes Patients (15–17). Therefore,
therapies with GLP-1 receptor agonists and DPP-4 inhibitors are
largely employed to restore incretin action in T2D. The
improvement of pancreatic beta cell dysfunction and the
protective role of GLP-1 against oxidative stress has been
described both in vitro and in vivo (17–21). These biological
effects of GLP-1 are selectively mediated by activation of GLP-
1R, that leads to various intracellular signaling pathways mainly
described in pancreatic beta-cells (22). Briefly, GLP-1 binding to
its receptor triggers G-protein activation which leads to cAMP
production, calcium mobilization and phosphorylation of
extracellular signal-regulated kinases (ERK). In addition, GLP-
1R is expressed also in peripheral tissues, including the central
and peripheral nervous systems, heart, kidney, lung,
gastrointestinal tract and retinal pigment epithelium (23, 24).
Therefore, the great clinical interest on GLP-1 for the
management of type 2 diabetes is due not only to its actions at
the level of the beta cells, as well in the peripheral tissues.
INTERACTION BETWEEN GLP-1R AND
CAVEOLIN-1

The GLP-1R sequence contains a classical caveolin-1 binding
mot i f wi th in the second intrace l lu lar loop (247-
EGVYLYTLLAFSVF-260) (Uniprot) (1, 25). The first evidence
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that GLP-1R directly interacts with Cav-1 has been reported
by Syme et al. in 2006 (2). They showed that Cav-1
immunoprecipitated with GLP-1R, and that, on the contrary,
mutation of the two tyrosine residues Y250 and Y252 to alanine
in the GLP-1R amino acidic sequence abrogated the interaction
of GLP-1R with Cav-1.

Direct interaction with Cav-1 is required for internalization of
receptors in caveolae and also for trafficking of GLP-1R (26–28).
For instance, GLP-1R containing Y250/252A mutations is
trapped in intracellular compartments, and not localized on
the cell surface (2). On the other contrary, GLP-1R is not
internalized after agonist stimulation in cells expressing P132L-
Cav-1, a mutated form of Cav-1 that results in misfolded
oligomers which accumulate within the Golgi complex (29),
and in cells treated with caveolae inhibitors (2).
CAVEOLIN-1 AND GLP-1 SIGNALING

The subcellular localization of a receptor is an important
mechanism that regulates signaling specificity. Consequently,
in case of receptors containing GLP-1 Y250/252A mutations,
which prevent the local izat ion of GLP-1R on the
plasmamembrane and the binding of GLP-1, the intracellular
signaling is lost (2). On the contrary, defective internalization
may lead to sustained activation of GLP-1R–mediated signaling
(30). Therefore, the interaction between GLP-1R and Cav-1 is
necessary not only for receptor trafficking to the cell membrane,
but also for activation of the intracellular signaling pathway.

The fate of a receptor after activation is another important
mechanism to control its signaling capacity: GLP-1R undergoes
agonist-mediated endocytosis, which may lead either to recycle
the receptor back to the plasma membrane or to degradative
pathway (31–33). Considering that Cav-1 is required for
internalization of GLP-1R after agonist stimulation (34), it is
conceivable that Cav-1 may affect also the fate of GLP-1R
determining its recycling or degradation.

GLP-1R internalization is also important for the
spatiotemporal control of signaling. GLP-1R agonists exerted
different effects on regulatory mechanisms that control the
duration of receptor activation, such as desensitization and
internalization (32). In particular, GLP-1 and exendin-4 are
10-fold more potent to cause GLP-1R internalization than
liraglutide, but GLP-1 causes the receptor to recycle two to
three times faster than when stimulated with exendin-4 or
liraglutide (32). The rate at which GLP-1 and its analogs
induce GLP-1R internalization may be affected by Cav-1.
Indeed, Cav-1 selectively recruits and organizes proteins and
lipids in membranes, therefore the different effects of GLP-1
agonists on GLP-1R activation may be due to the various
compartmentalization of signaling molecules in caveolae. For
instance, caveolae regulate many GPCR signaling pathways
through a selective compartmentalization of G proteins, and
their downstream targets in membrane microdomains (35, 36).
In pancreatic beta cells GLP-1 can activate both Gas and Gaq
subunits. The Gas pathway activates adenylyl cyclase leading to
increase formation of cAMP; whereas the Gaq pathway leads to
April 2021 | Volume 12 | Article 668012
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increase cytoplasmic concentration of Ca2+ (37). It is well
documented that Gas and adenylyl cyclase are localized in
caveolae (38, 39), and that Gas is quickly internalized after
activation (40). Gas internalization attenuates Gas/adenylyl
cyclase signaling and depends on Cav-1 (41, 42). Depletion of
Cav-1 prevented agonist-induced internalization of Gas in C6
glioma cells, with consequent increment of the Gas/adenylyl
cyclase signaling (42). On the other hand, depletion of Cav-1
inhibits Gaq-mediated signaling in C6 cells (43). It has been
reported that Gaq is associated with Cav-1 at both plasma
membrane and cytosolic level (44), and that Cav-1 binds
preferentially to Gaq in its activated state, thus prolonging its
activation (45). Interestingly, the activation of the Gaq pathway
is required for agonist-induced GLP-1R internalization (34).
Taken together these evidence suggest that Cav-1 may regulate
GLP-1 action by controlling the duration of G-protein signals.

Activation of Gas and Gaq pathways results in the
translocation and exocytosis of insulin-containing secretory
granules in pancreatic beta cells by increasing cytoplasmic
concentration of Ca2+ through 2 mechanisms: closure of ATP-
sensitive potassium channel (KATP) which leads to calcium
influx via voltage-gated Ca2+ channels; and release of Ca2+

from intracellular Ca2+ stores (37). It has been reported that
the KATP channel activity depends on the spatial organization of
signaling pathways, requiring co-localization with adenylyl
cyclase, and that the integrity of caveolae is important for
Frontiers in Endocrinology | www.frontiersin.org 3
adenylyl cyclase-mediated channel modulation (46). We
previously demonstrated that the Kir6.2 subunit of the KATP
channels is associated to Cav-1 in the pancreatic beta cell line
bTC-6, and that depletion of Cav-1 reduced glucose induced
insulin secretion (47). These evidence support the hypothesis
that Cav-1 is also essential in GLP-1–induced insulin secretion
by maintaining the correct regulation of KATP channels.

GLP-1 action is also mediated by b-arrestin-1 (48), a
scaffolding protein that mediates receptor desensitization,
receptor internalization, and links GPCRs to downstream
pathways (49). Indeed, b-arrestin-1 knockdown attenuated
GLP-1 signaling and impaired both glucose- and GLP-1–
induced insulin secretion in INS-1 pancreatic beta cells (48).
Interestingly, b-arrestin-1 directly interacts with both GLP-1R
and Cav-1 (48, 50), therefore Cav-1, GLP-1R and b-arrestin-1
may form a microdomain implicated in regulating GLP-1 action.
Depletion of b-arrestin-1 did not affect GLP-1R agonist-induced
GLP-1 R internalization (48), suggesting that b-arrestin-1 acts
downstream to Cav-1.

GLP-1 exerts also proliferative and antiapoptotic, effects
activating ERK and AKT signaling pathways (17, 51).
Interestingly, Cav-1 depletion protects pancreatic b cells
against palmitate-induced dysfunction and apoptosis
enhancing activities of Akt and ERK1/2. Considering that Cav-
1 is required for internalization of GLP-1R, and that inhibition of
GLP-1R internalization prolongs ERK activity (30), these
FIGURE 1 | Main mechanisms through which Cav-1 regulates GLP-1 action.
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findings suggest that Cav-1 depletion may affect ERK activity by
regulating cellular trafficking of GLP-1R. On the other hand, b-
arrestin-1 depletion decreased ERK phosphorylation (48),
confirming that b-arrestin-1 acts downstream to Cav-1.

CAVEOLIN–1 and DPP-IV
It is well known that GLP-1 has a short plasma half-life (1–7
min) due to quickly degradation by Dipeptidyl Peptidase (DPP)-
IV/CD26, which is an integral membrane protein widely
expressed on cell surfaces and, after cleavage, present in the
circulation as “soluble” DPP-IV” (52). Interestingly, Cav-1
directly interacts with DPP-IV by binding to its serine catalytic
site (53, 54). Furthermore, gene knockdown of Cav-1 suppressed
the anti-inflammatory effects of the DPP-4 inhibitor teneligliptin
in human monocyte/macrophage U937, showing that
teneligliptin needs to bind Cav-1 to exert its effects (54). These
evidence suggest that Cav-1 may affect lifespan of GLP-1 by
regulating the activity of DPP-IV and of its inhibitors.
Frontiers in Endocrinology | www.frontiersin.org 4
CONCLUSIONS

Although it is well recognized that Cav-1 is involved in all the
steps that regulate GLP-1 function, these aspects are not fully
elucidated. Considering the knowledge in the literature, we can
conclude that: 1) the interaction between GLP-1R and Cav-1 is
necessary not only for receptor trafficking to the cell membrane,
but also for activation of the intracellular signaling pathway; 2)
Cav-1 may affect the fate of GLP-1R; 3) Cav-1 may regulate GLP-
1 action by controlling the duration of G-proteins signals; 4)
Cav-1 may be a physical link between GLP-1R and b-arrestin-1;
5) Cav-1 may affect lifespan of GLP-1 (Figure 1).
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