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Abstract

Background: Plasma cell-free DNA (cfDNA) methylation has shown promising results in the early detection of
multiple cancers recently. Here, we conducted a study to investigate the performance of cfDNA methylation in the
early detection of esophageal cancer (ESCA).

Methods: Specific methylation markers for ESCA were identified and optimized based on esophageal tumor and
paired adjacent tissues (n = 24). Age-matched participants with ESCA (n = 85), benign esophageal diseases (n = 10),
and healthy controls (n = 125) were randomized into the training and test sets to develop a classifier to
differentiate ESCA from healthy controls and benign esophageal disease. The classifier was further validated in an
independent plasma cohort of ESCA patients (n = 83) and healthy controls (n = 98).

Results: In total, 921 differentially methylated regions (DMRs) between tumor and adjacent tissues were identified.
The early detection classifier based on those DMRs was first developed and tested in plasma samples,
discriminating ESCA patients from benign and healthy controls with a sensitivity of 76.2% (60.5-87.9%) and a
specificity of 94.1% (85.7-98.4%) in the test set. The performance of the classifier was consistent irrespective of sex,
age, and pathological diagnosis (P > 0.05). In the independent plasma validation cohort, similar performance was
observed with a sensitivity of 74.7% (64.0-83.6%) and a specificity of 95.9% (89.9-98.9%). Sensitivity for stage 0-lI
was 58.8% (44.2-72.4%).
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Conclusion: We demonstrated that the cfDNA methylation patterns could distinguish ESCAs from healthy
individuals and benign esophageal diseases with promising sensitivity and specificity. Further prospective
evaluation of the classifier in the early detection of ESCAs in high-risk individuals is warranted.
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Background

Esophageal cancer (ESCA) is one of the most deadly
cancers with poor prognosis and increasing incidence
worldwide [1]. Due to the absence of specific symptoms,
approximately 40% ESCA patients have advanced disease
at diagnosis [2] and the 5-year survival rate for those pa-
tients is less than 5% [2]. Thus, detecting early-stage
ESCA when curable treatments are possible is a pivotal
way to prolong survival. Even though endoscopy has
been recommended to high-risk individuals for the early
detection of ESCA in geographic regions with high
prevalence [3, 4], it is not suitable for large-scale screen-
ing due to its invasive, inconvenient, and time-
consuming process [5]. Therefore, the development of a
noninvasive or minimally invasive method for ESCA
early detection is imperative in the clinic.

Circulating cell-free DNA (cfDNA)-based liquid biopsy
has shown potential to revolutionize the early detection
of cancers by enabling minimally invasive molecular
testing of solid tumors [6]. Genetic aberrations such as
mutations, small insertions and deletions, copy number
variations, and epigenetic alterations shed by tumors can
be detected in cfDNA using next-generation sequencing
(NGS) [7]. Among these, cfDNA methylation stands out
in the early detection of cancers due to its early occur-
rence during tumorigenesis and rich signal abundance
for analysis [6]. There are nearly 30 million methylation
sites across the human genome, making them a ubiqui-
tous and rich signal to detect cancer even with a low
concentration of cfDNA [8].

The cfDNA methylation has been studied in the early
detection of multiple cancers including ESCA [9-12]. A
gene panel with 5 methylation differential markers
(MDMs) sequenced by quantitative methylation-specific
polymerase chain reaction (PCR) could discriminate
ESCA from healthy controls, with a specificity of 91%
and sensitivity of 43%, 64%, 77%, and 92% for stage I-
IV, respectively [12]. Another study has shown that a
ctDNA methylation classifier could separate ESCA pa-
tients from healthy individuals with sensitivity of 0-20%
for patients with stage I and 60-75% for patients with
stage II [11]. However, the performance of cfDNA
methylation in the early detection of ESCA is far from
satisfactory and can be improved with well-designed
clinical trials.

In this study, we aimed to identify ESCA-specific dif-
ferentially methylated regions (DMRs) and evaluate the

potential performance of cfDNA methylation markers
in the early detection of ESCA through four well-
designed stages: panel design, marker selection, model
development, and model validation. We first com-
pared the methylation profiles between ESCA tumor
and paired adjacent tissues from the Cancer Genome
Atlas (TCGA) and in-house data and identified
ESCA-specific DMRs. We then built and tested a
cfDNA methylation classifier using a support vector
machine (SVM)-based machine learning to differenti-
ate ESCA from healthy controls and benign esopha-
geal diseases. At last, the diagnostic performance of
the early detection classifier was validated in an inde-
pendent validation cohort.

Materials and methods

Study design and participants

This is a multicenter, case-control study including four
stages: (1) panel design, (2) marker selection, (3) model
development, and (4) model validation (Fig. 1).

Panel design

As previously described [13], public data sets including
TCGA and GEO databases (tumor = 4366, normal =
1008; HumanMethylation450K array) and in-house gen-
erated functional methylome (targeted methylation
panel, 5.5 million CpG sites) sequencing data (tumor =
116, normal = 131) were used in the present study. The
methylation data of TCGA datasets (https://portal.gdc.
cancer.gov/) was analyzed by limma (R package) along
with the in-house data to select differentially methylated
CpG sites (Benjamini—Hochberg-corrected FDR < 0.05).
The methylation data of the GEO dataset with 656 nor-
mal WBC samples under the accession code GSE40279
[14] was used to remove hypermethylated CpG sites
in the hematopoietic lineage (> 0.1). CpG sites that were
located on X or Y chromosomes were also excluded. In
addition, CpG sites that were reported to be associated
with common cancers were also included. Altogether,
this yielded a total of 161,984 CpG sites in the panel
design phase, spanning ~2.7Mb of the human genome in
six common cancer types including ovarian, lung, colo-
rectal, pancreatic, liver, and esophageal cancers. The
panel was originally developed for early detection and
tissue-of-origin of multi-type tumors.
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Fig. 1 Flow diagram of the study

_____________________________________

Marker selection for ESCA

Tumor and paired adjacent tissues of ESCA patients
from Guangdong Provincial People’s Hospital were
collected and profiled with the above target methylation
panel. Esophageal tumors and paired adjacent tissues
were sampled in treatment-naive patients through
esophagectomy. All formalin-fixed and paraffin-
embedded (FFPE) tissues went through a second re-
search histopathology review by an independent expert

pathologist before DNA extraction. Tumor tissues that
contained less than 30% cancer cells or failed to meet
the DNA quality control (QC) criterion were excluded
from the subsequent analysis. The CpG sites/loci were
grouped into DMRs based on the co-methylation levels
and genomic distances of adjacent CpG sites (detailed
definition of DMR see the “ELSA-seq” section in the
“Materials and methods” section, Additional file 1:
Figure S1A). ESCA-specific DMRs were selected using a
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modified Wald test with an adjusted P-value < 0.05 and
an absolute mean difference > 0.2.

Model development

Blood samples from patients with pathologically diag-
nosed ESCA and benign esophageal diseases were
obtained from February 2019 to December 2019 in
Guangdong Provincial People’s Hospital.

Inclusion criteria: (1) 40—75 years old and able to pro-
vide written informed consent. (2) The diagnosis of
esophageal cancer (stage I-IV or high-grade dysplasia/
carcinoma in situ [stage O]) or benign esophageal dis-
eases could be confirmed within 90 days prior to blood
collection, based on the assessment of a pathological
specimen. Benign esophageal diseases enrolled in this
study included but not limited to Barrett’s esophagus,
heterotopic gastric mucosa (HGME), and leiomyoma of
the esophagus, or (3) a high suspicion of esophageal can-
cer or esophageal benign disease by clinical and/or
radiological assessment, with planned biopsy or surgical
resection to confirm diagnosis within 4 weeks (28 days)
after study blood draw. (4) Plasma samples could be col-
lected prior to any treatment including local/regional
therapy, surgery, radiation, or systemic chemotherapy.
Pathological stages of all patients were determined by
the researchers based on the 8th edition of the American
Joint Committee on Cancer (AJCC) classifications [15].

Exclusion criteria: (1) Participants who were ever diag-
nosed with any other cancer. (2) Participants who had
received antibiotic therapy within 14 days prior to blood
draw. (3) Participants who had received blood transfu-
sions or blood products within 30 days prior to blood
draw. (5) Participants who were currently taking any
antiplatelet or anticoagulant therapies. (6) Participants
who had received organ transplantation or allogeneic
hematopoietic stem cell transplantation. (7) Participants
who could not tolerate blood draw.

Healthy controls were recruited from Chonggqing
University Cancer Hospital from September 2019 to
December 2019, defining as participants who were free
from history of malignancy, as well as critical illness
including hepatitis, liver cirrhosis, chronic obstructive
pulmonary disease, and colorectal disease. All healthy
volunteers would receive routine healthy checkups
including routine blood test, urinalysis, blood biochem-
ical tests, electrocardiograms, thoracic low-dose com-
puter tomography (CT), and abdominal ultrasound.
Participants with normal test results would be included
in the study. All participants were aged 40-75 years.
After being matched by age, ESCA, benign esophageal
disease and healthy controls were randomized by 1:1
into the training and test cohort. Blood samples that
failed DNA QC criterion were excluded from the down-
stream analysis.
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Model validation

Blood samples from patients with ESCA in the First
Affiliated Hospital of Zhengzhou University were ob-
tained from February 2020 to May 2020 to further valid-
ate the performance of the early detection classifier
independently. Healthy controls were also recruited from
Chongqing University Cancer Hospital from February
2020 to May 2020. The inclusion and exclusion criteria
were the same as the above. The methylation classifier
developed from the training and test cohort was locked
before the independent validation cohort was recruited.
For the independent validation set, the clinical informa-
tion (e.g., cancer or healthy status) was blinded to the re-
searchers who performed sequencing, quality control,
and classification analyses.

This study was approved by the Ethics Committees of
Guangdong Provincial People’s Hospital, Chonggqing
University Cancer Hospital, and First Affiliated Hospital
of Zhengzhou University (GDREC2019687H; 2019-KY-
394). All participants provided informed consents.

ELSA-Seq

All sequencing experiments were implemented in a
College of American Pathologists (CAP)- and Clinical
Laboratory Improvement Amendments (CLIA)-certified
laboratory (Burning Rock Biotech, Guangzhou, China).
Deep targeted bisulfite sequencing (ELSA-seq) was per-
formed on tissue samples with an average sequencing
depth of 500x and plasma samples with an average
sequencing depth of 1000x [16].

The procedures for DNA extraction were as previously
described [17]. In brief, for tissue samples, DNA was
extracted with a QIAamp DNA formalin-fixed and
paraffin-embedded (FFPE) tissue kit according to the
manufacturer’s instructions. DNA concentration was
measured by the Qubit double-stranded DNA assay (Life
Technologies, Carlsbad, CA). For blood samples, 8—10
ml of whole blood samples for each participant were col-
lected by Streck Cell-Free DNA BCT® (Streck, USA) and
centrifuged at 1600 g for 20 min at room temperatures
to obtain the plasma. All plasma was stored at —80 °C.
The QIAamp Circulating Nucleic Acid Kit (551114,
Qiagen, Valencia, CA, USA) was used to extract cfDNA
from plasma.

As for methylation sequencing, a capture-based
method was used to detect CpG sites. The bisulfite se-
quencing library was generated via the brELSATM
method [18] (Burning Rock Biotech, Guangzhou, China).
The target libraries were quantified by real-time PCR
and sequenced on NovaSeq 6000 with 1000x target
depth on average. With the raw sequencing data, several
bioinformatics tools including Trimmomatic, BWA-
meth, and samblaster were applied to the alignment and
caller of reads as the downstream analysis. About 60—
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80% of reads uniquely aligned on the bait regions (target
ratio) and more than 90% of bait regions covered by over
300 reads (uniformity) with 10-30 ng input cfDNA. For
each CpG site, the median effective coverage depth was
329x. Since differentially methylated region consisting of
multiple CpG sites played more important roles than a
single CpG site in cancer detection as reported [19], we
defined CpG sites with close genomic distance and
highly correlation in methylation level as DMRs
(Additional file 1: Figure S1A). In total, 7558 DMRs were
generated based on the 161,984 CpG sites.

The score for each DMR was calculated according to
both depth of coverage and the distance between the
adjacent CpG sites as follows [13]:

et Lo (2l
Methylation Region Score = p X Zi:l 7

In brief, for a given methylation region, # is the total
number of reads that cover several CpG sites, and L; is
the number of CpG sites covered on ith read. /; is de-
noted as the length of successive methylated CpG sites
(>1), and m is the total counts on ith read. The number
of reads in each region was used to normalize the depth
difference, bounding the metric between 0 and 1.

Machine learning algorithm for model development
Supporting vector machine (SVM) algorithm [20] was
implemented to build the early detection classifier to
distinguish cancers from benign/healthy samples by
Scikit-learn (version 0.20.4) [21]. Fivefold cross-
validation was used to test the performance of the SVM
classifier as well as to find the optimal regularization
parameter C of the classifier. Specifically, within five
equally sized folds, each fold of the training samples was
used as the test group once, while the rest four folds of
samples containing both case and control samples were
used to build the model and to further predict the
“label” of each test group sample. In each cross-
validation fold, the sample size ratio between case and
control was set comparable. Overall, all samples in the
cross-validation group obtained an independent predic-
tion result, and sensitivity and specificity were
calculated.

Statistical analysis

For the training and test sets respectively, assuming the
AUC of 0.93, it was estimated that a minimum of 44
cases and 44 controls respectively would provide 90%
power to distinguish an estimated two-sided test of sig-
nificance set at the 5% level with a null value of 0.8. The
independent validation set was designed to have a power
of 80% to test the pre-specified hypothesis that the clas-
sifier would have a sensitivity of 55% or more for the
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detection of ESCA at one-sided type I error of 5%. It
required at least 70 patients with ESCA.

Continuous variables were described with mean + SD
and were compared by a 2-sided ¢ test or the Mann-
Whitney U test. Categorical variables were described
with number (percentages) and compared by chi-square
test or Fisher’s exact test. Gene Ontology (GO) enrich-
ment analysis of the genes containing ESCA-specific
DMRs was performed using DAVID (Database for
Annotation, Visualization and Integrated Discovery)
[22]. Fivefold cross-validation was applied in the training
dataset, and a supporting vector machine was used to
build a two-category classifier to distinguish cases and
controls. The area under the curve (AUC) and 95% con-
fidence interval (CI) were generated to evaluate the
model performance. The cutoff value for the early detec-
tion model was determined by Youden’s index. The 95%
CIs for sensitivity and specificity were generated using
the Clopper-Pearson method [23, 24]. Comparisons
between AUCs were performed using the DeLong
method [25, 26]. A two-sided P value of 0.05 was set as
the level of significance. The statistical analyses were
performed using R 3.4.2 and MedCalc v19.3.1.

Results
Methylation marker refinement
We previously designed a targeted methylation panel for
the early detection and tissue-of-origin of multiple can-
cers including lung, colorectal, ovarian, pancreatic, and
esophageal cancers [27]. To improve the performance of
this targeted methylation panel in the early detection of
ESCA, we first optimize the pre-designed panel by per-
forming methylation targeted sequencing in 24
treatment-naive ESCA tumor and matched adjacent tis-
sue samples. The baseline characteristics for the 24
ESCA patients are shown in Table 1. In detail, the ma-
jority of them were male (75%), non-smokers (75%), and
non-drinkers (100%). Most (96%) patients were more
than 55 years old and most (92%) were esophageal squa-
mous cell cancer (ESCC). The numbers of stages I-IV
were 4 (17%), 13 (54%), 4 (17%), and 2 (8%), respectively.
By comparing the methylation signatures between
tumor and paired adjacent tissues, we identified 921
ESCA-specific DMRs with the highest statistical signifi-
cance and absolute mean difference > 0.2 between ESCA
tumor and adjacent tissues (Fig. 2A). The median region
size of those DMRs was approximately 228 bp and there
were around 19 CpG sites per region on average. Of
these 921 DMRs, 679 (73.7%) showed a higher methyla-
tion level in the tumor tissues, while the rest (26.3%)
showed a lower methylation level in the tumor tissues
(Fig. 2A). Genes that contained those DMRs were gener-
ated by the annotatePeaks function (software Homer).
There were 340 genes involved in the hypermethylated
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Table 1 The characteristics of participants
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Parameters Marker selection  Training set Test set Independent validation set
Cancer Cancer Control  Pvalue Cancer Control  Pvalue Cancer Control
(n=24) (n=43) (n=67) (n=42) (n=68) (n=83) (n=98)
Age, n (%) 029 0.22
255 23 (96%) 33 (77%) 44 (66%) 31 (74%) 41 (60%) 77 (92.8%) 57 (58.2%)
40-55 1 (4%) 10 (23%) 23 (34%) 11 (26%) 27 (40%) 6 (7.2%) 41 (41.8%)
Sex, n (%) 0.002 1.00
Female 6 (25%) 7 (16%) 31 (46%) 14 (33%) 23 (34%) 32 (38.6%) 52 (53.1%)
Male 18 (75%) 36 (84%) 36 (54%) 28 (67%) 45 (66%) 51 (61.4%) 46 (46.9%)
Smoking history, n (%) 0.02 044
Smokers 6 (25%) 12 (28%) 7 (10%) 9 (21%) 10 (15%) 24 (28.9%) 39 (39.8%)
Non-smokers 18 (75%) 31 (72%) 60 (90%) 33 (79%) 58 (85%) 52 (62.7%) 59 (60.2%)
Unknown 7 (8.4%)
Alcohol history, n (%) 1.00 0.10
Drinkers 0 4 (9%) 7 (10%) 3 (7%) 13 (19%) 14 (16.9%) 48 (49.0%)
Non-drinkers 24 (100%) 39 (91%) 60 (90%) 39 (93%) 55 (81%) 59 (71.1%) 50 (51.0%)
Unknown 10 (12.0%)
Pathological type
ESCC, n (%) 22 (92%) 39 (91%) 38 (90%) 72 (86.7%)
EAC, n (%) 2 (8%) 4 (9%) 4 (10%) 8 (9.6%)
Others, n (%) 3 (3.6%)
Stage, n (%)
Stage 0 4 (17%) 3 (7%) 2 (5%) 10 (12.0%)
Stage | 13 (54%) 9 (21%) 8 (19%) 14 (16.9%)
Stage Il 4 (17%) 11 (26%) 13 (31%) 27 (32.5%)
Stage Il 2 (8%) 12 (28%) 7 (17%) 14 (16.9%)
Stage IV 1 (4%) 8 (19%) 6 (14%) 18 (21.7%)
Unknown
Healthy control, n (%) 62 (93%) 63 (93%) 98 (100%)
Benign disease, n (%) 5 (7%) 5 (7%)

DMRSs, enriching in the pathways involved in the regula-
tion of transcription (transcription from RNA polymer-
ase II promoter), cellular fate (positive regulation of cell
proliferation; cell differentiation), organism development
(anterior/posterior pattern specification; multicellular or-
ganism development), and tumorigenesis (BMP signaling
pathway; canonical Wnt signaling pathway) via GO en-
richment analysis, while there were 219 genes involved
in the hypomethylated DMRs, enriching in the pathways
related to intracellular signal transduction, acute-phase
response, multicellular organism development, and
hemopoiesis (Fig. 2B). Several signaling pathways are
related with oncogenesis and regulation of oncogenes or
tumor suppressor genes, indicating the biological ration-
ality for the methylation marker selection. As shown in
the Sankey plot (Additional file 1: Figure S1B), the
ESCA-specific DMRs exhibited a higher proportion of

hypermethylation in CpG islands and a higher propor-
tion of hypomethylation in CpG shores, CpG shelves,
and open sea regions, and most of them were related
with protein-coding function.

The methylation levels for the 921 methylation regions
are depicted in Fig. 2C, showing the different methyla-
tion patterns between tumors and paired adjacent tis-
sues. The regions of the methylation level of ESCA
tumor and adjacent tissues were significantly enriched in
both sides of the diagonal line (Fig. 2D). Moreover, the
robust differentiation was further validated by unsuper-
vised clustering based on the tumor and paired adjacent
tissues, showing the similar methylation patterns within
tumors instead of adjacent tissues (Additional file 1:
Figure S1C). The methylation levels for each CpG site
involved in the 921 DMRs are also depicted in
Additional file 1: Figure S1D, showing the different



Qiao et al. BMC Medicine (2021) 19:243

Page 7 of 13

I A=
. - - I — Stage
k] ==
£ ==
] ==
E =
£ =

_ methylation stage
[ R B Adjacent
1

I ]

Hypermethylation
(1 EH ORI TTR S LT

esophageal cancer

25+ Hypermethylation -ogy(P)  Ratio

— . . Regulation of transcription, DNA-templated - 2.79
g -' s Transcription from RNA polymerase |l promoter - 5.24 L 4

- egen

= 20 - '. Anterior/posterior pattern specification | 7.78 9.10
© _ - _ 25
> ° Embryonic forelimb morphogenesis | 7.67 m 20
o Multicellular organism development = 4.20 2.58 15
g 154 Positive regulation of cell proliferation ~ 2.02 2.04 10

"‘;,' BMP signaling pathway ~ 1.94 4.42 5
E‘ Canonical Wnt signaling pathway ~ 1.79 4.05
10
2 Angiogenesis  1.33 2.26
~ Cell differentiation ~ 1.42 2.82
o
o 5] Hypomethylation
g e Hypomethylation (n = 242) Intracellular signal transduction ~ 2.28 = 3.35
. Signal transduction ~ 1.68 1.94
e Hypermethylation (n = 679
0 . P Y ( ) Acute-phase response  1.56
I I I I I I ) ]
Multicellular organism development ~ 1.24 2.30
06 04 02 00 02 04 06 Homopoiess 124 S

Difference of methylation levels (tumor vs adjacent)

Fig. 2 Methylation marker selection. A Significant difference of methylation levels between ESCA tissues and paired adjacent tissues. B Gene
ontology enrichment analyses of the genes containing significantly hypomethylated or hypermethylated MDRs. C Heatmap illustrating the
hypomethylated and the hypermethylated DMRs between ESCA tissues and adjacent tissues. D Scatter diagram exhibiting the distribution of
methylation region value between the ESCA tissues and paired adjacent tissues. Abbreviations: DMR, differentially methylated region; ESCA,

D

1.00

level
10.0
75
5.0
25

Cancer

0.50
Adjacent

methylation levels between tumor and adjacent tissues.
The principal component analysis further demonstrated
the distinct component between tumor and adjacent tis-
sues (Additional file 1: Figure 1E). All together, these re-
sults indicated the robust discrimination between cancer
and adjacent tissue based on the selected methylation
biomarkers.

Early detection model development

We further explored whether the 921 DMRs identi-
fied in ESCA tissues would differentiate patients with
ESCA from healthy controls and benign esophageal
disease through cfDNA sequencing. Participants with
ESCA and benign esophageal disease and healthy con-
trols were matched by age and randomized into the
training and test sets. After samples that failed quality
control were excluded, 110 participants (43 cancer, 62
healthy control, and 5 benign esophageal disease)

were included in the training set and 110 participants
(42 cancer, 63 healthy control, and 5 benign esopha-
geal disease) were in the test set. The detailed charac-
teristics of cases and controls in training and test sets
are also demonstrated in Table 1. The age was rela-
tively balanced between cases and controls in the
training (P = 0.29) and test sets (P = 0.22). The
tumor stages were similar between training and test
sets. However, there were more smokers and males in
the ESCA group than in the control group in the
training set (P < 0.05).

The cfDNA methylation levels for the selected 921
ESCA-specific DMRs in the training and test sets are
depicted in Fig. 3A and B, showing the different
cfDNA methylation patterns between ESCA and con-
trols. Based on the DMRs identified from the tissue
samples, a supervised machine learning model was
implemented and cross-validation was used in the
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Fig. 3 Early detection model development. A, B Heatmap illustrating the cfDNA methylation levels for the selected DMRs between participants
with ESCA, benign esophageal diseases, or healthy controls in the training (A) and test (B) sets. C, D Predicted probabilities of healthy control,
benign esophageal diseases, and ESCA with different clinical stages in the training (C) and test (D) sets. E, F Receiver operating characteristic
curve delineating the association between predictive probability and cancer in the training (E) and test (F) sets. G, H Sensitivity for ESCA with
early and late stages in the training (G) and test (H) sets. Abbreviations: DMR, differentially methylated region; ESCA, esophageal cancer

training set to classify the DNA methylation profile of
blood samples as tumor and non-tumor. Fivefold
cross-validation yielded high accuracy with a mean
area under the curve of 0.96 (Additional file 1: Figure
S2). The predicted probabilities were increased with
tumor stage and were significantly higher in cancers
than those in healthy controls and benign esophageal
diseases in both the training and test sets (P < 0.05,
Fig. 3C, D). Using the best cutoff value, as deter-
mined via Youden’s index, the methylation markers
demonstrated sensitivity and specificity of 86.0% (95%
CIL, 72.2-94.8%) and 94.0% (95% CI, 85.5-98.3%), re-
spectively, for discriminating ESCA from healthy con-
trols and benign esophageal disease in the training
dataset, and 76.2% (95% CI, 60.5—-87.9%) and 94.1% (95%
CI, 85.7-98.4%) in the test dataset (Table 2), yielding
AUCs of 0.963 (95% CI, 0.933-0.994) and 0.932 (95% CI,
0.887-0.977) in the training and test datasets, respectively
(Fig. 2E, F). Sensitivity increased with tumor stages as
demonstrated in Additional file 1: Table S1 with sensitivity
of 82.6% (95% CI, 61.2-95.0%) and 90.0% (95% CI, 68.3
-98.8%) for early-stage (stage 0—II) and late-stage (stage
[II-IV) patients in the training set and 65.4% (95% CI,
44.3-82.8%) and 93.8% (95% CI, 69.8-99.8%) for early-
stage and late-stage patients in the test set, respectively
(Fig. 2G, H, Table 2).

In the total population including training and test sets,
specificity was 95.2% for healthy individuals and 80% for
benign esophageal diseases, and sensitivity was 60%,
77.8%, 86.4%, and 100.0% for patients with stage 0-IV,
respectively (Additional file 1: Figure S3A). In total,
these results suggested that the cfDNA methylation clas-
sifier might effectively differentiate ESCA from healthy
control and benign esophageal disease.

To further examine whether the performance of the
classifier was influenced by clinical characteristics, we
performed subgroup analysis by stratifying the total
participants by age, sex, and pathological diagnosis.
No significant difference of the performance of
methylation classifier was observed (Additional file 1:
Table S2), and the predicted probabilities of ESCA
patients stratified by those clinical covariates were still
higher than those in healthy controls (P < 0.05, Add-
itional file 1: Figure S3B), indicating that the perform-
ance of our cfDNA methylation classifier was stable
and not influenced by those clinical characteristics.

Independent validation of the early detection classifier
To further validate the performance of the established
methylation classifier, we prospectively enrolled an in-
dependent plasma validation cohort including partici-
pants with ESCA and healthy controls. The detailed
characteristics of cases and controls are also provided
in Table 1. In brief, most of the patients included
were 55 years or older (98.2%) and had a high pro-
portion of ESCC (86.7%), which was consistent with
the training set and test set. Moreover, 61.4% patients
were stage 0-IL

The predicted probabilities were also increased with
tumor stage and were significantly higher in patients
with ESCA than healthy controls (P < 0.05, Fig. 4A). In
addition, the cfDNA methylation classifier with the
above cutoff value had sensitivity and specificity of
74.7% (64.0-83.6%) and 95.9% (89.9-98.9%), respect-
ively, to discriminate ESCA from normal controls, yield-
ing AUCs of 0.943 (95% CI, 0.912-0.974, Fig. 4B).
Similarly, sensitivity also increased with tumor stages as
demonstrated with sensitivity of 58.8% (95% CI, 44.1
-72.4%) and 100.0% (95% CI, 89.1-100.0%) for early-
stage and late-stage patients (Fig. 4C, Additional file 1:
Table S3), suggesting the promising utility of the cfDNA
methylation in the detection of early-stage ESCA.

We also performed subgroup analysis in the test set.
Similarly, the predicted probabilities of ESCA patients
stratified by the clinical variables, such as age, smoking
status, and drinking history, were still higher than those
in healthy controls (P < 0.05, Additional file 1: Figure
S4A). Altogether, our results further confirmed the
robust performance of the cfDNA classifier to differenti-
ate ESCA from healthy controls.

Discussion

Currently, no standard screening approach is recom-
mended for ESCA in the general population. Endoscopy
is the gold standard for the diagnosis of ESCA; however,
its invasiveness and inconvenience limit the clinical util-
ity in ESCA screening. Hence, the development of
cfDNA-based early detection technology would be trans-
formative. In the present study, we first identified 921
ESCA-specific DMRs by comparing ESCA tumor and
paired adjacent tissues. An early detection cfDNA classi-
fier was first built and tested based on the selected
ESCA-specific DMRs and further validated in another



Qiao et al. BMC Medicine (2021) 19:243

Table 2 Sensitivity and specificity in the training set and test set
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Patient group  Training set Test set
Tested Positive  Sensitivity (%) Specificity (%) Tested Positive  Sensitivity (%) Specificity (%)

Early stage 23 19 82.6% (61.2-95.0%) 26 17 65.4% (44.3-82.83%)

Late stage 20 18 90.0% (68.3-98.8%) 16 15 93.8% (69.8-99.8%)

All cancer 43 37 86.0% (72.2-94.8%) 42 32 76.2% (60.5-87.9%)

Benign 5 1 20.0% (0.5-71.4%) 80.0% (284-99.5%) 5 1 20.0% (0.5-71.4%) 80.0% (28.4-99.5%)
Healthy control 62 3 95.2% (86.5-99.0%) 63 3 95.2% (86.7-99.0%)
All non-cancer 67 4 94.0% (85.5-98.3%) 68 4 94.1% (85.7-98.4%)

independent prospective plasma validation cohort with a
sensitivity of 74.7% and a specificity of 95.9%.
Altogether, our results demonstrated that cfDNA-based
methylation was a promising approach in the early de-
tection of ESCA.

The development of the early detection classifier has
gone through thorough refinement and validation. The
panel was originally developed for the early detection of
multiple cancers. To optimize the analytic performance in
ESCAs, we first refined the methylation markers and iden-
tified the ESCA-specific DMRs. Previous c¢fDNA methyla-
tion studies mainly focused on the DMRs derived from
cancer and non-cancer in the western population [12].
However, the eastern population presented significant
geographic and ethnic variations [28] and the difference
between ethnicities should not be overlooked. The specific
DMRs based on the Chinese population for ESCA early
detection are imperative. The methylation markers were
further selected based on 24 paired tissues between
ESCAs and adjacent samples, and most of these markers
were involved in the regulation of transcription, cell prolif-
eration and differentiation, intracellular signaling trans-
duction, and regulation of tumor, demonstrating the
biology feasibility for a noninvasive plasma assay for detec-
tion of esophageal cancer. We then trained, tested, and in-
dependently validated the classifier to demonstrate the
robust performance of the classifier to differentiate pa-
tients with ESCA in plasma samples. To be mentioned,
the independent validation cohort was enrolled after the
model was locked, and clinical information was blinded to
the analysts who performed sequencing, and classification
analyses to reduce potential bias.

The performance of cfDNA methylation in the
early detection of ESCA has been studied in a few
studies. In the Circulating Cell-free Genome Atlas
(CCGA) study, cfDNA methylation performed well
in multi-cancer detection with a sensitivity of 43.9%
in stage I-III at a specificity of 99.3%. However, the
sensitivity was 0-20% for stage I in ESCA. Another
recent study demonstrated a diagnostic performance
for stage I ESCA with a sensitivity of 43% at a speci-
ficity of 91% [12]. The performance of cfDNA

methylation was far from satisfactory in the detec-
tion of ESCA, especially in the early stage of ESCA.
In the present study, 15 patients with stage 0 ESCA
and 31 patients with stage I ESCA were included,
yielding sensitivity of 50% and 62.5% in the test co-
hort and 40% and 35.7% in the independent valid-
ation cohort, respectively. Since patients with early
stage or carcinoma in situ would have better prog-
nosis than those with late stage, the identification of
more patients with early stage or carcinoma in situ
would provide more clinical significance.

Several benign esophageal diseases were also in-
cluded in the present study, though with a relatively
small sample size. The current methylation model
yielded a specificity of 80% for benign esophageal
disease in both training and test sets (n = 10). We
reviewed the pathological diagnosis for these pa-
tients, and one patient with esophagitis and another
one with HGME were identified as positive, which
needed to be further examined by esophagoscopy.
However, the diagnostic performance for benign
esophageal diseases needs to be further validated in
a larger population.

It is also worth noting that our study is limited by in-
cluding relatively small sizes of patients with esophageal
adenocarcinoma (EAC) due to the geographic character-
istics. Despite that ESCC and EAC are biologically dis-
tinct cancers, the DMRs identified in this study shared
significant overlap signatures in EAC and ESCC. These
similar methylation signatures suggested these candidate
DMRs were representative for both pathological sub-
types. In addition, to test whether the model perform-
ance was confounded by pathological type and other
clinical covariates, we further compared the AUCs strati-
fied by these clinical covariates, such as sex, age, and
histology subtypes, and no significant differences were
observed, indicating the robust discrimination for our
methylation classifier is not influenced by clinical con-
founding factors.

However, limitations should not be overlooked in
the present study. Firstly, the nature of the present
study was a case-control study, even though three



Qiao et al. BMC Medicine (2021) 19:243

Page 11 of 13

A Independent validation cohort
1.0' : . —'T.—
9 I3 g
% sse H
© e
Qo 2as o2
o o]
S R R [TEERy
e e |
2 .
<
o
0.0 T T T
Healthy control Early stage Late stage
Cc 100 I
—~ 804
2
2 60+
2
x
0 40
c
>
20
Independent validation cohort
0 T T T
@ @ &t
’@Q g'@q <~
9 P
S 3° S
Q/’b v A
validation cohort
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sets were used. The performance of the classifier in
asymptomatic high-risk individuals needs to be
further studied. Secondly, the ESCA patients in-
cluded in the present study were individuals with
known cancers, most of whom were diagnosed be-
cause of symptoms, which may overestimate the
performance of the classifier in real-world where
there are more early-stage patients in asymptomatic
and screened individuals. Thirdly, the number of
participants with EAC and benign esophageal disease
was relatively low. The ability to detect EAC or dif-
ferentiate benign esophageal disease needs to be im-
proved by including more participants in the future.
However, by comparing the AUCs in the subgroup
analysis, we did not observe a significant difference
in the performance of the classifier between ESCC
and EAC.

Conclusion
This study demonstrates that the cfDNA methylation
classifier is promising for the early detection of ESCAs.
We anticipate that noninvasive ¢fDNA methylation will
have an increasingly important role in cancer screening
in the future.
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