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Abstract
Aims: To explore the association of total bilirubin (TBIL), direct bilirubin (DBIL), and 
indirect bilirubin (IBIL) levels with, as well as the incremental predictive value of dif-
ferent bilirubin subtypes for, poor outcomes in acute ischemic stroke patients after 
thrombolysis.
Methods: We analyzed 588 individuals out of 718 AIS participants, and all patients 
were followed up at 3 months after thrombolysis. The primary outcome was 3- month 
death and major disability (modified Rankin Scale (mRS) score of 3– 6). The secondary 
outcomes were 3- month mortality (mRS score of 6), moderate- severe cerebral edema, 
and symptomatic intracranial hemorrhage (sICH), respectively.
Results: Elevated DBIL pre- thrombolysis was associated with an increased risk of pri-
mary outcome (OR 3.228; 95% CI 1.595– 6.535; p for trend = 0.014) after fully adjust-
ment. Elevated TBIL pre- thrombolysis showed the similar results (OR 2.185; 95% CI 
1.111– 4.298; p for trend = 0.047), while IBIL pre- thrombolysis was not significantly as-
sociated with primary outcome (OR 1.895; 95% CI 0.974– 3.687; p for trend = 0.090). 
Multivariable- adjusted spline regression model showed a positive linear dose- response 
relationship between DBIL pre- thrombolysis and risk of primary outcome (p for lin-
earity = 0.004). Adding DBIL pre- thrombolysis into conventional model had greater 
incremental predictive value for primary outcome, with net reclassification improve-
ment (NRI) 95% CI = 0.275 (0.084– 0.466) and integrated discrimination improvement 
(IDI) 95% CI = 0.011 (0.001– 0.024). Increased DBIL post- thrombolysis had an associa-
tion with primary outcome (OR 2.416; 95%CI 1.184– 4.930; p for trend = 0.039), and 
it also elevated the incremental predictive value for primary outcome, with NRI (95% 
CI) = 0.259 (0.066– 0.453) and IDI (95% CI) = 0.025 (0.008– 0.043).
Conclusion: Increased DBIL pre- thrombolysis had a stronger association with, as 
well as greater incremental predictive value for, poor outcomes than TBIL and IBIL 
did in AIS patients after thrombolysis, which should be understood in the context of 
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1  |  INTRODUCTION

Acute ischemic stroke (AIS) has a high disability and mortality rate, 
which brings a huge economic burden to the society and the fam-
ily.1,2 To date, thrombolytic therapy with recombinant tissue plas-
minogen activator (rt- PA) and endovascular thrombectomy (EVT) 
are still the frontline treatment strategies for acute ischemic stroke 
within the time window.3 However, the overall effectiveness of these 
treatments has been reported to be limited, with only 30%– 50% of 
patients achieving good long- term outcomes.4,5 Many patients re-
ceiving reperfusion therapy are at high risk of suffering from cer-
tain complications such as cerebral hemorrhage transformation and 
cerebral edema, who could not achieve good clinical outcome after 
discharge. To date, usefulness of a biomarker is limited to identify pa-
tients at high risk of getting worse clinical outcomes.6,7 Therefore, al-
ternative markers that have the potential to identify targeted patients 
pre- thrombolysis to escalate preventive therapy are thus needed.

Bilirubin, a potent endogenous antioxidant, is produced in the 
heme catabolic pathway, with liver being the primary organ respon-
sible for metabolism and excretion of bilirubin.8 Clinically, bilirubin 
levels are reported as total bilirubin (TBIL) and direct bilirubin (DBIL), 
and TBIL is the sum of DBIL and indirect bilirubin (IBIL).9 Previous 
studies reported that bilirubin exhibits both neurotoxic and neuro-
protective effects after ischemic stroke, without reaching a consen-
sus for the prognosis of ischemic stroke.10 However, these studies 
almost merely concentrated on one of the subtypes of bilirubin, 
without distinguishing the difference among them. To the best of 
our knowledge, studies on the predictive value of TBIL, DBIL, and 

IBIL for the clinical outcomes in patients diagnosed with AIS receiv-
ing intravenous thrombolysis are still lacking.

In this study, we analyzed the association of three subtypes of 
bilirubin pre- thrombolysis with clinical outcomes as well as com-
pared the performance of them as an indicator of worse outcomes 
among AIS patients receiving intravenous thrombolysis after isch-
emic stroke to elucidate that DBIL pre- thrombolysis level has the 
potential to identify patients who are likely to be at increased risk 
of poor outcomes after intravenous thrombolysis to escalate pre-
ventive therapy.

2  | METHODS

This retrospective study (Multicenter Clinical Trial of Revascularization 
Treatment for Acute Ischemic Stroke, TRAIS) was conducted among 
718 AIS patients who received intravenous thrombolysis at 5 com-
prehensive stroke centers between January 2018 and February 2021 
in China, including Wuhan Union Hospital, Wuhan Union Hospital 
West Campus, Central Hospital of Hefeng County, People's Hospital 
of Dongxihu District, and The Frist People's Hospital of Yichang 
City. We enrolled all AIS patients ≥18 years old who received in-
travenous thrombolysis therapy. Patients who had a diagnosis of 
(1) chronic hepatitis; (2) increased liver enzymes whose ALT or AST 
>twofold upper limit of normal range; (3) nephritis; (4) nephrolith; (5) 
cholecystitis; (6) gallstone as well as (7) who were lost to follow- up 
were excluded (n = 130). All available hospitalization data, includ-
ing medical history, clinical examination, laboratory examination, 

retrospective design. The effect of DBIL on targeted populations should be investi-
gated in further researches.
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F IGURE  1 The flowchart of study 
population in this study
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diagnostic examination, imaging examination and discharge diagno-
sis, were used for the diagnosis of the above diseases. A total of 588 
participants were involved in final analysis (Figure 1). The ethics of 
the study conformed to the principles stated in the 1975 Declaration 
of Helsinki. The Ethics Committee of Union Hospital, Tongji Medical 
College, Huazhong University of Science and Technology approved 
all aspects of the study (ChiCTR2000033456). Written consent has 
been obtained from all participants in the study.

All the patients treated with thrombolytic treatment were in 
line with the written institutional guidelines. The time window for 
thrombolysis is extended and limited up to 9 h guided by perfusion 
imaging.11,12 Intravenous rt- PA injection (administered at a standard 
dose of 0.9 mg/kg body weight) was given according to the proce-
dure recommended by the European Stroke Organization (ESO)13: 
10% of the total dose being given as the first dose and the remaining 
dose being given within the next hour. Continuous monitoring and 
evaluation were conducted during thrombolysis procedure. After 
thrombolysis was completed, patients were transferred to the neu-
rology intensive care unit (NICU) for intensive nursing.

Peripheral venous blood samples from patients were collected 
both pre- thrombolysis upon admission and within 1– 3 days post- 
thrombolysis. Samples with hemolysis were discarded. The demo-
graphic characteristics, clinical features, and medical history of all 
enrolled patients were collected. Stroke severity was assessed both 
upon admission pre- thrombolysis and post- thrombolysis by trained 
neurologists using National Institutes of Health Stroke Scale (NIHSS). 
All routine laboratory examination results were obtained at emer-
gency department (pre- thrombolysis) and inpatient department 
(post- thrombolysis). Hypertension is identified as one of the fol-
lowing conditions: blood pressure ≥140/90 mmHg or self- reported 
physician- diagnosed hypertension or current use of antihyperten-
sive medication.14 According to Chinese guidelines on the preven-
tion and treatment of hyperlipidemia, hyperlipidemia is considered as 
the abnormity of lipids in the blood (total cholesterol >6.22 mmol/L 
or triglyceride >2.26 mmol/L or low- density lipoprotein cholesterol 
>4.14 mmol/L) or self- reported history of physician diagnosis of hy-
perlipidemia.15 Patients with fasting glucose level >7.0 mmol/L or self- 
reported physician- diagnosed of diabetes or taking oral hypoglycemic 
drugs or insulin were defined as diabetes mellitus.14

Participants were followed up by modified Rankin Scale (mRS) 
score at 3 months by trained neurologists who were not aware of 
the treatment allocation. The primary outcome was defined as 3- 
month death and major disability (mRS score of 3– 6), and second-
ary outcomes were defined as (1) 3- month mortality (mRS score 
of 6); (2) moderate- severe cerebral edema, defined as those with 
swelling area greater than 1/3 of the hemisphere based on cere-
bral CT or magnetic resonance imaging (MRI) within 1– 3 days post- 
thrombolysis, according to Safe Implementation of Thrombolysis in 
Stroke- Monitoring Study (SITS- MOST) criteria16; (3) symptomatic 
intracranial hemorrhage (sICH), defined as any hemorrhagic trans-
formation temporarily associated with deterioration of neurological 
symptoms using the National Institute of Neurological Disorders and 
Stroke (NINDS) criteria.4

2.1  |  Statistical analysis

To analyze the association of three subtypes of bilirubin with clinical 
outcomes, the participants were divided into 4 groups according to 
quartiles of TBIL, IBIL and DBIL, respectively. Kolmogorov– Smirnov 
(K– S) test of normality was used to assess data distribution. 
Continuous variables with normal distributions were represented as 
mean ± standard difference (SD), while other variables were repre-
sented as median (interquartile range). Categorical variables were 
represented as numbers (percentages). The quartile differences of the 
baseline characteristics of each bilirubin subtype were tested with 
chi- square tests for categorical characteristics and analysis of vari-
ance (ANOVA) for continuous characteristics. Binary logistic regres-
sion models were used to estimate the relationship of three subtypes 
of bilirubin with primary and secondary outcomes. Odds ratios (ORs) 
and 95% confidence intervals (CIs) of primary and secondary clinical 
outcomes for higher quartiles compared with the lowest quartile and 
for each SD increase of log- transformed of three subtypes bilirubin 
were calculated. We constructed two models with progressive ad-
justment: model 1 was adjusted for age, sex, onset- time to treatment 
(OTT), admission glucose level, admission ALT, admission AST, ciga-
rette smoking, alcohol drinking, history of stroke, cerebral hemor-
rhage, hypertension, diabetes mellitus and hyperlipidemia; model 2 
was additionally adjusted for admission NIHSS score. We tested the 
linear trends across the quartiles of three subtypes of bilirubin by in-
cluding the quartiles in the models as continuous variable. Restricted 
cubic spline (RCS) model with knots at the 5th, 35th, 65th, and 95th 
percentiles17 was used to characterize the shape of the association of 
bilirubin level with primary outcome. Receiver operating characteris-
tic (ROC) curve which is equivalent to the C- statistic was constructed 
to estimate the discriminative power of three subtypes bilirubin for 
primary and secondary outcomes as well as compare the discrimi-
native power of DBIL both pre-  and post- thrombolysis for primary 
outcome. The predictive power of each bilirubin pre- thrombolysis 
when added to conventional model (CM) was assessed by net re-
classification improvement (NRI) and integrative discriminative im-
provement (IDI).18 Additionally, subgroup analysis was performed to 
assess the potential modified effect of 12 interesting factors on the 
association between DBIL pre- thrombolysis and primary outcome. A 
two- sided p value <0.05 was considered to be statistically significant. 
Statistical analyses were carried out using R software (version 4.0.3) 
and MedCalc 15.2.0 (MedCalc Software, Mariakerke, Belgium).

3  |  RESULTS

3.1  |  Characteristics of study population

Overall, the mean age of participants at baseline was 64.7 years, and 
66.4% of them were men. The median (interquartile range) overall 
were 3.6 (2.7– 5.1) μmol/L for DBIL, 10.4 (7.8– 14.2) μmol/L for TBIL, 
6.8 (4.8– 9.5) μmol/L for IBIL, respectively. Baseline characteristics of 
participants by DBIL level quartiles are shown in Table 1. Participants 
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with higher DBIL were more likely to be older; to have higher admis-
sion NIHSS score; to have longer OTT; to have higher liver enzyme 
level of AST; and to have higher prevalence of 3- month mRS score 
of 3– 6, 3- month mRS score of 6, moderate- severe cerebral edema 
as well as sICH; In contrast, the prevalence of hyperlipidemia de-
creased as DBIL level increased. And the similar characteristics of 
the study population by TBIL and IBIL levels are shown in Tables S1 
and S2.

3.2  |  Association of different bilirubin subtypes pre- 
thrombolysis with primary outcome

As shown in Table 2, compared with first quartile of DBIL, the fully 
adjusted OR from the second to the fourth quartile in model 2 were 
2.225 (1.072– 4.617), 2.197 (1.068– 4.520), and 3.228 (1.595– 6.535), 
respectively (p for trend = 0.014). The fully adjusted OR from the 
second to the fourth quartile of TBIL in model 2 were 0.973 (0.481– 
1.972), 1.244 (0.624– 2.478), and 2.185 (1.111– 4.298), respectively 
(p for trend = 0.047), compared with the first quartile. As for IBIL, 

it was not significantly associated with the primary outcome, show-
ing the fully adjusted OR from the second to the fourth quartile in 
model 2 were 1.238 (0.631– 2.430), 0.875 (0.433– 1.771), and 1.895 
(0.974– 3.687), respectively (p for trend = 0.090), compared with 
the first quartile. It was worth noting that each SD increase of log- 
transformed DBIL had higher OR associated with primary outcome 
in model 2 (OR 1.457, 95% CI 1.163– 1.824), compared with TBIL (OR 
1.344, 95% CI 1.083– 1.666), indicating that DBIL had a stronger as-
sociation with primary outcome after fully adjustment than TBIL or 
IBIL. Simultaneously, the dose– response relationship between DBIL 
and primary outcome was further demonstrated with RCS (p for lin-
earity = 0.004; Figure 2).

3.3  |  Association of different bilirubin subtypes pre- 
thrombolysis with secondary outcomes

As shown in Table 3, compared with first quartile of DBIL, the 
fully adjusted OR of 3- month mortality from the second to the 
fourth quartile in model 2 were 3.002 (0.748– 11.502), 4.499 

TA B L E  1  Baseline characteristics of participants across quartiles of serum direct bilirubin levels

Characteristics Total

Serum direct bilirubin, μmol/L
p Value 
for TrendQ1 (<2.7) Q2 (2.7– 3.6) Q3 (3.6– 5.1) Q4 (≥5.1)

Patients, n 585 142 139 157 147

Age (year) 64.9 ± 12.2 62.0 ± 11.1 64.9 ± 11.8 66.3 ± 12.5 65.9 ± 12.9 0.004**

male, n (%) 389 (66.5) 95 (66.9) 96 (69.1) 108 (68.8) 90 (61.2) 0.722

History of ischemic stroke 82 (14.0) 25 (17.6) 20 (14.4) 19 (12.1) 18 (12.2) 0.524

History of intracerebral hemorrhage 13 (2.2) 6 (4.2) 5 (3.6) 0 2 (1.4) 0.238

History of hypertension 378 (64.6) 92 (64.8) 80 (57.6) 109 (69.4) 97 (65.9) 0.922

History of hyperlipidemia 123 (21.0) 34 (23.9) 27 (19.4) 25 (15.9) 21 (14.3) 0.012*

History of diabetes mellitus 164 (28.0) 35 (24.6) 36 (25.9) 53 (33.8) 40 (27.2) 0.625

Current cigarette smoking 202 (34.5) 44 (31.0) 44 (31.7) 64 (40.8) 50 (34) 0.376

Current alcohol drinking 118 (20.2) 24 (16.9) 25 (18.0) 34 (21.7) 35 (23.8) 0.16

Admission NIHSS score 4.0 (2.0– 8.0) 4.0 (2.0– 7.0) 3.0 (1.0– 6.0) 4.0 (2.0– 7.5) 4.0 (2.0– 11.0) 0.04*

OTT, min 189.0 
(136.5– 250)

169.5 (117.5– 
215.0)

189.0 (140.0– 
240.0)

216.8 (140.1– 
259.5)

210.0 (149.0– 
260.0)

<0.001***

Admission glucose, mmol/L 6.9 (5.4– 8.8) 6.8 (5.5– 8.8) 6.5 (5.3– 8.2) 7.0 (5.5– 9.10) 7.1 (5.4– 9.3) 0.942

Admission ALT, μmol/L 17.0 
(12.0– 24.0)

17.5 
(13.0– 23.0)

16.0 
(12.0– 22.0)

16.0 
(12.0– 24.0)

18.0 
(12.0– 27.0)

0.537

Admission AST, μmol/L 20.0 
(16.0– 25.0)

20.0 
(16.0– 24.0)

19.0 
(16.0– 22.0)

19.0 
(16.0– 25.0)

21.0 (16.75– 
28.0)

0.044*

3- month death and major disability, 
n (%)

150 (25.6) 24 (16.9) 34 (24.5) 38 (24.2) 54 (36.7) <0.001***

3- month mortality, n (%) 47 (8.0) 4 (2.8) 10 (7.2) 14 (8.9) 19 (12.9) 0.008**

Moderate- severe cerebral edema, 
n (%)

64 (10.9) 12 (8.5) 14 (10.1) 11 (7.0) 27 (18.4) 0.001**

sICH, n (%) 35 (5.9) 6 (4.2) 7 (5.0) 5 (3.2) 17 (11.6) 0.009**

Abbreviations: ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; NIHSS, National Institutes of Health Stroke Scale; OTT, onset- to- 
treatment time; sICH, symptomatic intracranial hemorrhage.
*p < 0.05.; **p < 0.01.; ***p < 0.001.
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(1.231– 16.443), and 5.872 (1.671– 20.640), respectively (p for 
trend = 0.041). The fully adjusted OR of 3- month mortality from 
the second to the fourth quartiles of TBIL in model 2 were 0.523 
(0.175– 1.563), 0.736 (0.258– 2.102), and 1.927 (0.758– 4.899), re-
spectively (p for trend = 0.043), compared with the first quar-
tile. As for IBIL, it was not significantly associated with the 
3- month mortality, showing the fully adjusted OR from the sec-
ond to the fourth quartile in model 2 were 0.450 (0.152– 1.329), 
0.902 (0.338– 2.408) and 1.524 (0.617– 3.763), respectively (p for 
trend = 0.139), compared with the first quartile. It was also worth 
noting that each SD increase of log- transformed DBIL had higher 
OR associated with 3- month mortality in model 2 (OR 1.557, 95% 
CI 1.090– 2.224), compared with TBIL (OR 1.246, 95% CI 0.919– 
1.689), indicating that DBIL had a stronger association with 3- 
month mortality than TBIL or IBIL. Similar results were observed 
for association of DBIL, TBIL and IBIL with moderate- severe cer-
ebral edema, respectively (shown in Table S3). In addition, none 
of DBIL, TBIL, and IBIL was in association with sICH (shown in 
Table S4).

3.4  |  Performance of different bilirubin subtypes 
pre- thrombolysis as a biomarker for different 
clinical outcome

In the ROC analysis shown in Figure 3 and Table S5, DBIL, TBIL 
and IBIL evaluated separately showed poor- moderate discrimina-
tive powers for primary (C- statistic 0.622, 95% CI 0.569– 0.675 for 
DBIL, C- statistic 0.585, 95% CI 0.530– 0.639 for TBIL and C- statistic 
0.548, 95% CI 0.493– 0.603 for IBIL) and secondary outcomes in-
cluding 3- month mortality (C- statistic 0.648, 95% CI 0.567– 0.729 
for DBIL, C- statistic 0.591, 95% CI 0.501– 0.681 for TBIL and C- 
statistic 0.522, 95% CI 0.462– 0.642 for IBIL) and moderate- severe 
cerebral edema (C- statistic 0.640, 95% CI 0.562– 0.718 for DBIL, C- 
statistic 0.593, 95% CI 0.512– 0.674 for TBIL and C- statistic 0.549, 
95% CI 0.467– 0.631 for IBIL), with DBIL possessing the highest dis-
criminative power over TBIL or IBIL (p < 0.05).

To further explore the incremental predictive value of different bili-
rubin subtypes for primary and secondary outcomes, we evaluated the 
effect of adding them to multiparameter CM which is the same as the 

Bilirubin types

No. of 
cases, n 
(%)

Odds ratios (95% CI)

Model 1 Model 2

Total bilirubin 151 (25.7) — — 

Quartile 1 28 (19.6) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 34 (22.7) 1.150 (0.645– 2.049) 0.973 (0.481– 1.972)

Quartile 3 37 (25.2) 1.351 (0.764– 2.390) 1.244 (0.624– 2.478)

Quartile 4 52 (35.1) 2.198 (1.263– 3.824) 2.185 (1.111– 4.298)

p for trend — 0.023* 0.047*

Each SD increase of log- total 
bilirubin

— 1.334 (1.109– 1.606) 1.344 (1.083– 1.666)

Indirect bilirubin 151 (25.7) — — 

Quartile 1 32 (21.8) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 41 (27.9) 1.352 (0.779– 2.344) 1.238 (0.631– 2.430)

Quartile 3 28 (19.2) 0.874 (0.489– 1.561) 0.875 (0.433– 1.771)

Quartile 4 50 (33.8) 1.688 (0.986– 2.890) 1.895 (0.974– 3.687)

p for trend — 0.072 0.090

Each SD increase of log- 
indirect bilirubin

— 1.223 (1.020– 1.468) 1.263 (1.022– 1.560)

Direct bilirubin 150 (25.6) — — 

Quartile 1 23 (16.2) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 33 (23.7) 1.702 (0.927– 3.127) 2.225 (1.072– 4.617)

Quartile 3 40 (25.5) 1.934 (1.062– 3.523) 2.197 (1.068– 4.520)

Quartile 4 54 (36.7) 3.363 (1.869– 6.050) 3.228 (1.595– 6.535)

p for trend — 0.001** 0.014*

Each SD increase of log- 
direct bilirubin

— 1.501 (1.245– 1.810) 1.457 (1.163– 1.824)

Note: Model 1: Adjusted for age, sex, onset- time to treatment, admission glucose, admission 
ALT, admission AST, current smoking, alcohol drinking, history of stroke, cerebral hemorrhage, 
hypertension, diabetes mellitus, and hyperlipidemia.
Model 2: Model 1+ admission NIHSS score.
*p < 0.05.; **p <.01

TA B L E  2  Odds ratios and 95% CI of 
primary outcome for quartiles of each 
serum bilirubin pre- thrombolysis
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risk factors in fully adjusted model 2, respectively. As shown in Table 4, 
compared with both TBIL and IBIL, the addition of DBIL to the CM 
allowed a significant incremental prediction of risk for 3- month death 
and major disability with NRI (95% CI) = 0.275 (0.084– 0.466) and IDI 
(95% CI) = 0.011 (0.001– 0.024), which was superior to that of TBIL 
with NRI (95% CI) = 0.188 (−0.002– 0.377) and IDI (95% CI) = 0.007 
(−0.003– 0.016), and IBIL with NRI (95% CI) = 0.087 (−0.102– 0.276) 
and IDI (95% CI) = 0.004 (−0.004– 0.012). The C- statistic for model 
including DBIL tended to be higher than for the CM alone, with C- 
statistic (95% CI) for the CM = 0.825 (0.789– 0.857), C- statistic (95% 
CI) including DBIL = 0.835 (0.800– 0.867), which was superior to that 
of TBIL with C- statistic (95% CI) = 0.832 (0.797– 0.864) and IBIL with 
C- statistic (95% CI) = 0.830 (0.794– 0.862). Similar results could be ob-
served by adding three different bilirubin subtypes to CM for 3- month 
mortality and moderate- severe cerebral edema (Tables S6 and S7).

3.5  |  Subgroup analysis for association between 
DBIL and primary outcome

We performed stratified analysis for the dose– response association of 
DBIL pre- thrombolysis with primary clinical outcome according to pre-
specified factors. The significant interaction was only found between 
DBIL and admission NIHSS score ≤10 (p for interaction <0.001, Figure 4).

3.6  |  Association and Performance of DBIL Post- 
thrombolysis for Primary Outcome

Firstly, we compared the concentration of DBIL pre-  and post- 
thrombolysis, showing that concentration of DBIL post- thrombolysis 
was higher than that of pre- thrombolysis (p < 0.001, Figure S1). 

Next, we investigated the association of DBIL post- thrombolysis 
with primary outcome. Compared with first quartile of DBIL, the 
fully adjusted OR from the second to the fourth quartile in model 
2 were 1.935 (0.921– 4.066), 1.547 (0.744– 3.217) and 2.416 (1.184– 
4.930), respectively (p for trend = 0.039). And each SD increase of 
log- transformed DBIL was associated with 56.2% increased risk of 
primary outcome in model 2 (Table S8). Furthermore, we explored 
the incremental predictive value of DBIL for primary outcome 
as well. As shown in Table S9, the addition of DBIL to the CM al-
lowed a significant incremental prediction of risk with NRI (95% 
CI) = 0.259 (0.066– 0.453) and IDI (95% CI) = 0.025 (0.008– 0.043). 
However, the overall discriminative power comparison of DBIL pre-  
and post- thrombolysis for primary outcome applied by ROC curves 
showed that the discriminative power difference was not significant 
(p = 0.908, Figure S2).

4  | DISCUSSION

Previously, little is known about the effect of individual bilirubin 
subtype on clinical outcomes of ischemic stroke patients who re-
ceived thrombolysis therapy. In the present study, we observed 
a stronger association with and superior predictive value of DBIL 
pre- thrombolysis for 3- month death and major disability, 3- month 
mortality as well as moderate- severe cerebral edema but not sICH 
compared with TBIL or IBIL. To the best of our knowledge, this is 
the first retrospective study to investigate the relationship between 
different subtypes of bilirubin and poor clinical outcomes in the tar-
geted patients.

The association of TBIL and outcomes in stroke patients with-
out reperfusion treatment has been reported in the past, while 
the results were inconsistent. For instance, Oda et al. showed that 
lower quartiles of TBIL were associated with greater prevalence of 
stroke,19 whereas Kurzepa et al. suggested that higher TBIL to be 
a poor clinical outcome factor for ischemic stroke.20 As for IBIL, to 
our knowledge, only one result pointed out that higher IBIL was in 
association with mortality in AIS patients without reperfusion treat-
ment.21 To date, DBIL has been investigated as a biomarker in many 
epidemiological studies, reported that higher DBIL was in a positive 
association with coronary heart disease,14 stroke severity,22 type 2 
diabetes mellitus,23 and diabetic microvascular complications24 com-
pared with TBIL and IBIL. All the above studies indicated that higher 
DBIL tended to be a risk factor rather than a potential antioxidant in 
oxidative stress- mediated disease. In our study, we validated DBIL 
to be more suitable and superior than TBIL and IBIL for prediction 
of poor outcomes after thrombolysis. In contrast, a recent study 
reported that TBIL and IBIL but not DBIL were both independent 
risk factors for sICH in AIS patients receiving EVT therapy,25 and 
the contrast result may be attributed to adjustment of different co-
variates, variations in study sampling as well as different diagnosis 
criteria for sICH. Particularly, in our subgroup analysis, no signifi-
cant interaction between DBIL pre- thrombolysis and these sub-
group characteristics except for admission NIHSS score was found, 

F IGURE  2 Fully adjusted odds ratios (ORs) of primary outcome 
according to DBIL pre- thrombolysis. OR and 95% CI derived 
from restricted cubic spline regression. OR adjusted for the same 
variables as model 2 in Table 2
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Bilirubin types

No. of 
cases, n 
(%)

Odds ratios (95% CI)

Model 1 Model 2

Total bilirubin 47 (7.9) — — 

Quartile 1 10 (7.0) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 8 (5.3) 0.645 (0.240– 1.735) 0.523 (0.175– 1.563)

Quartile 3 9 (6.1) 0.782 (0.301– 2.036) 0.736 (0.258– 2.102)

Quartile 4 20 (13.5) 1.877 (0.820– 4.296) 1.927 (0.758– 4.899)

p for trend — 0.057 0.043*

Each SD increase of log- total 
bilirubin

— 1.211 (0.918– 1.597) 1.246 (0.919– 1.689)

Indirect bilirubin 47 (7.9) — — 

Quartile 1 12 (8.2) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 7 (4.8) 0.536 (0.201– 1.430) 0.450 (0.152– 1.329)

Quartile 3 10 (6.8) 0.763 (0.311– 1870) 0.902 (0.338– 2.408)

Quartile 4 18 (12.2) 1.331 (0.597– 2.968) 1.524 (0.617– 3.763)

p for trend — 0.237 0.139

Each SD increase of log- 
indirect bilirubin

— 1.161 (0.883– 1.526) 1.217 (0.906– 1.635)

Direct bilirubin 47 (8.0) — — 

Quartile 1 4 (2.8) 1.00 (Ref.) 1.00 (Ref.)

Quartile 2 9 (6.5) 2.403 (0.707– 8.168) 3.002 
(0.784– 11.502)

Quartile 3 15 (9.6) 4.126 (1.277– 13.330) 4.499 
(1.231– 16.443)

Quartile 4 19 (12.9) 5.651 (1.797– 17.769) 5.872 
(1.671– 20.640)

p for trend — 0.017* 0.041*

Each SD increase of log- direct 
bilirubin

— 1.638 (1.187– 2.261) 1.557 (1.090– 2.224)

Note: Model 1: Adjusted for age, sex, onset- time to treatment, admission glucose, admission 
ALT, admission AST, current smoking, alcohol drinking, history of stroke, cerebral hemorrhage, 
hypertension, diabetes mellitus, and hyperlipidemia.
Model 2: Model 1+ admission NIHSS score.
*p < 0.05.

TA B L E  3  Odds ratios and 95% CI of 
3- month mortality for quartiles of each 
serum bilirubin pre- thrombolysis

F IGURE  3 ROC analysis of three subtypes bilirubin for 3- month death and disability (A), 3- month mortality (B), and moderate- severe 
cerebral edema (C)
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showing a stronger association in individuals with admission NIHSS 
score ≤10 (mild- moderate stroke), while the underlying mechanism 
for this observation was unclear which needs further exploration. 
What's more, DBIL post- thrombolysis was in association with, as 
well as provided excellent predictive value for, 3- month death and 
major disability. While the difference of discriminative accuracy 
for DBIL between pre-  and post- thrombolysis was not significant, 
which meant that both DBIL pre-  and post- thrombolysis levels were 
equivalent in predicting the primary outcome. Importantly, DBIL 
measured pre- thrombolysis would be much more clinically relevant, 
which may aid in predicting the risk of 3- month death and major dis-
ability. And DBIL post- thrombolysis may help clinicians decide which 
patients should be monitored more closely after thrombolysis.

As a systemic disease, ischemic stroke causes damage to other 
remote organs in the body, altering their signaling and metabolisms, 
including the liver.26 A large accumulation of data has demonstrated 
that leukocytes infiltration could also occur inside liver after brain 
ischemia reperfusion, accelerating the body to discharge more in-
flammatory factors, producing more reactive oxygens species (ROS) 
thus exacerbating the redox imbalance, intensifying endoplasmic 
reticulum (ER) stress and increasing the expression of heme oxy-
genase- 1 (HO- 1) in liver, which ultimately results in more bilirubin 
entering into bloodstream.27- 30 HO- 1, a key rate- limiting enzyme 
of bilirubin production abundantly expressed in the spleen and 
liver,29 catalyzes the degradation of heme into three end- products, 
namely carbon monoxide (CO), ferrous ion and biliverdin, among 
which biliverdin is rapidly reduced to bilirubin by biliverdin reduc-
tase (Figure S3), maintaining the bilirubin content in a dynamic bal-
ance in body under normal condition.31,32 About 96% of bilirubin in 
normal plasma flows in an unconjugated form (i.e. indirect bilirubin) 
and is bound tightly to albumin to be transferred to the liver for the 
production of the conjugated form (i.e. direct bilirubin).9 Although 
the exact mechanism of bilirubin uptake into hepatocyte is not that 
clear, it appears that circulating bilirubin dissociates from albumin 
before entering hepatocytes by organic anion transporters (OATP) 
family, particularly OATP1B1 and OATP1B3, which are present in 
the lipid bilayer of liver cell membranes.33 Once in the hepatocytes 
of the liver, glucuronic acid is added to the unconjugated bilirubin 
by UDP- glucuronosyltransferase (UGT1A1), forming the conjugated 

bilirubin.8 On the one hand, the newly conjugated bilirubin, secreted 
by the multidrug- resistant protein MRP2 (ABCC2), enters into the 
bile through canalicular membrane. On the other hand, MRP3 
(ABCC3) deposited the conjugated bilirubin back into the blood.34 
The uptake of bilirubin into brain at the blood– brain barrier (BBB) 
may occur via one of organic anion transporters OATP1, and the 
efflux of bilirubin from the brain may be mediated by ATP- binding 
cassette subfamily B member 1 (ABCB1; also referred to as MDR1 P- 
glycoprotein),35 and the expression of OATP1 and MDR1 at the BBB 
was reported to be upregulated after brain ischemia (Figure S4).35- 37

Previously, most studies have investigated the mechanisms 
linking elevated bilirubin and neurotoxicity although without fully 
understood. It has been shown that higher levels of bilirubin could 
directly interact with neuronal cell membrane phospholipids, inter-
fere with DNA and protein synthesis as well as alter the intracellular 
pH.38- 41 Additionally, bilirubin could induce synaptic dysfunction 
resulting in reduced synaptic activation,42 stimulate the release 
of pro- inflammatory cytokines such as interleukin- 1β (IL- 1β), IL- 6, 
and tumor necrosis factor- α (TNF- α) via activating the member of 
mitogen- activated protein kinase (MAPK) family like p38 and c- Jun 
N- terminal kinase 1/2 (JNK1/2),43,44 and inhibit brain derived neu-
rotrophic factor- induced activation of pro- survival signaling, such 
as Akt- protein kinase B system.45 Furthermore, not only caspase- 3 
but also caspase- 8 and caspase- 9 could be activated by bilirubin, 
leading to neuronal apoptosis and necrosis,46,47 and N- methyl- D- 
aspartate (NMDA)- induced glutamate release and excitotoxic cell 
death were observed to be increased at higher concentration of 
bilirubin.48,49 Bilirubin can also directly induce glial death,50- 53 and 
it seems that neurons are more susceptible to bilirubin toxicity 
than astrocytes.54 Actually, the integrity of BBB is broken after 
stroke, resulting in the increased entry of bilirubin from peripheral 
circulation into brain to exert neurotoxic effect. Additionally, as 
all types of cell could maintain certain concentration of bilirubin 
both at physiological and pathological condition,55 it is therefore 
reasonable to speculate that brain cells could release intracellular 
bilirubin into bloodstream after brain ischemia reperfusion be-
cause of cell damage, together with peripheral- derived bilirubin, 
resulting in hyperbilirubinemia. In a word, hyperbilirubinemia after 
brain ischemia reperfusion probably acts as a cell injury marker 

TA B L E  4  Incremental predictive value of different bilirubin subtypes for primary outcome

Discrimination Reclassification

C- statistic (95% CI) p value NRI (95% CI) p value IDI (95% CI) p value

Conventional model 
(CM)

0.825 (0.789– 0.857) — 1.00 (Ref.) — 1.00 (Ref.) — 

CM + TBIL 0.832 (0.797– 0.864) 0.241 0.188 
(−0.002– 0.377)

0.052 0.007 (−0.003– 0.016) 0.178

CM + IBIL 0.830 (0.794– 0.862) 0.377 0.087 (−0.102– 0.276) 0.367 0.004 (−0.004– 0.012) 0.303

CM + DBIL 0.835 (0.800– 0.867) 0.141 0.275 (0.084– 0.466) 0.005** 0.011 (0.001– 0.024) 0.037*

Note: CM: age, sex, onset- time to treatment, admission NIHSS score, admission glucose, admission ALT, admission AST, current smoking, alcohol 
drinking, history of stroke, cerebral hemorrhage, hypertension, diabetes mellitus, and hyperlipidemia.
*p < 0.05.; **p < 0.01.
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in blood and may produce neurotoxicity that exacerbates brain 
edema and reperfusion injuries, leading to poor prognosis in tar-
geted patients, which requires further research.

However, the exact mechanisms linking DBIL and poor clinical 
outcomes of thrombolysis are still unclear, and some possible ex-
planations could be proposed. DBIL is more soluble in serum than 
lipophilic IBIL after conjugation and bound weakly to albumin, thus 
making DBIL an active form of bilirubin more readily available than 

IBIL.56,57 Meanwhile, as a systemic disease, elevated level of DBIL 
may indicate the injury of hepatocytes, whereas TBIL is within the 
normal range after stroke58; therefore, the positive association of 
DBIL levels with poor clinical outcomes might reflect the relation-
ship between hepatic dysfunction and poor clinical outcomes. 
Future studies are thus required to elucidate the specific differences 
of different bilirubin subtypes with respect to their molecular mech-
anisms of action.

F IGURE  4 Subgroup analyses of 
the association between DBIL pre- 
thrombolysis and primary outcome. 
Interactions between DBIL and interesting 
factors on the primary outcome were 
tested by the likelihood ratio test with 
adjustment for the same variables in 
model 2. Odds ratio and 95% CIs were 
shown by forest plot
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There were several limitations in our study. Firstly, the current 
study is a retrospective study with selection bias conducted in 
middle- aged and elderly Chinese population, and further research 
on populations of different ethnic and age is needed to confirm our 
findings. Secondly, our sample size is not large enough which may 
have an influence on the results. Extensive large sample studies are 
needed to explore the underlying mechanisms of bilirubin and poor 
clinical outcomes in future. Thirdly, HO- 1 plays an important role in 
the effects of bilirubin generation, but we did not measure the levels 
of HO- 1 as well as markers of inflammation and oxidative stress in 
the population. Last but not the least, three subtypes of bilirubin 
were only assessed at two time points and the follow- up period of 
this study was relatively short.

5  |  CONCLUSIONS

We found that increased DBIL pre- thrombolysis had a stronger as-
sociation with, as well as significantly improved the risk prediction 
of, poor clinical outcomes of 3- month death and major disability, 
3- month mortality, and moderate- severe cerebral edema than TBIL 
and IBIL in AIS patients receiving thrombolysis therapy, where the 
results of this study should be understood in the context of retro-
spective design. The effect of DBIL on poor outcomes should be 
noted, and the association between different bilirubin subtypes 
and clinical outcomes are warranted to be investigated in additional 
follow- up studies.
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