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Abstract: Stimulus-responsive drug delivery systems generally aim to release the active
pharmaceutical ingredient (API) in response to specific conditions and have recently been explored
for disease treatments. These approaches can also be extended to molecular imaging to report on
disease diagnosis and management. The stimuli used for activation are based on differences between
the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include
pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli
include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous
stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide
variety of stimulus-responsive systems have been developed—responsive to both a single stimulus
or multiple stimuli—and represent a theranostic tool for disease treatment. In this review, stimuli
commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis
on chemical structure and property relationships is provided, aiming to focus on insights for the
design of stimulus-responsive delivery systems. Several examples of theranostic applications of these
stimulus-responsive nanomedicines are discussed.

Keywords: stimulus-responsive; chemical structures; drug conjugates; drug delivery; molecular
imaging

1. Introduction

One of the challenges of traditional drug delivery systems is the lack of specific targeting capability,
which leads to dose-limiting side effects [1,2]. Some drugs can be rapidly metabolized, and low
bioavailability necessitates large injection doses but unsatisfactory therapeutic effects. For example, it is
generally necessary to increase the dosage of anticancer drugs for the desired therapeutic effect, to an
extent that also causes undesirable side effects [3,4]. In addition, orally administered medicines need
to evade the risk of degradation in the acidic/enzymatic environment in the gastrointestinal tract [5,6].
All of these problems can potentially be addressed with stimulus-responsive nanotechnology. Utilizing
specific microenvironmental conditions at diseased sites or alternatively by using external stimuli,
nanotherapeutics can release active therapeutic ingredients specifically at desired spots in a controlled
and targeted manner. As early as 1978, Tanaka described the phase transition of polyacrylamide
polymers [7], and in the same year Blumenthal reported thermosensitive liposomes [8]. Findings
such as these laid the groundwork for stimulus-responsive drug delivery systems, which have been
developed for more than 40 years. Stimulus-responsive nanomaterials have been designed for a
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wide variety of different delivery or release purposes. The advantages and disadvantages of various
stimulus-responsive systems are summarized in Figure 1.
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Differences between the microenvironment of diseased tissues (e.g., arthritic tissues, tumor
cells, and other diseases) and normal tissues can be used as endogenous stimuli to trigger drug
release. Endogenous stimuli include lower pH values in tumor cells, high concentrations of
glutathione (GSH) and reactive oxygen species (ROS) in inflammatory tissues and cancer tissues,
and specific enzymatic activity at the target sites [9,10]. In addition to these endogenous stimuli
above, exogenous stimuli such as magnet, light, and ultrasound can realize real-time tracking of drug
distribution, disease diagnosis and disease management. Stimulus-responsive systems responsive
to one single stimulus or multiple stimuli have been used to treat or diagnose a variety of diseases,
such as cancers (colon cancer [11,12], breast cancer [13,14], lymphoma [15,16]), inflammatory diseases
(inflammatory bowel disease [17,18], neurodegenerative diseases [19]), diabetes [20,21] and others.
Some nanomedicines that could be considered stimulus-responsive have successfully gone into clinical
trials. ThermoDOX (thermosensitive doxorubicin liposomes) used heat to release the cargo from
liposome [22]; other successful examples include Opaxio [23] (involving on enzyme-degradable
polymer), Nanotherm [24] (based on magnetic iron oxide nanoparticles), and Auroshell [25] (based on
thermosensitive gold nanoshells). Stimulus-responsive systems also have potential for bioimaging.
They can enhance the contrast in specific diseased area in response to internal or external stimuli for
real-time monitoring.
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In this review, we summarize stimulus-responsive nanomedicines, starting with a brief discussion
of each stimulus, then various chemical structures that are sensitive to different stimuli are highlighted.
Application examples of stimulus-responsive nanomedicines are discussed.

2. Stimulus-Responsive Systems

2.1. pH Stimulus

pH has been used for the design of stimulus-responsive systems because the value of pH varies
among different subcellular locations and can differ between normal and diseased tissues. For example,
due to the high glycolysis rate of cancer cells under partial anaerobic conditions, the pH value of
cancerous tissues is lower than normal [26,27]. Tumors exhibit an acidic pH range of 5.7 to 7.8,
while corresponding not-carcinogenic tissues usually have a pH close to 7.4 [28–30]. Similarly, it has
also been shown that the pH value can decrease to 6.5 sixty hours after the onset of an inflammatory
process [31]. In addition, different pH values can also be found in organelles, such as in endosomes
and lysosomes with a pH range of from 4.5 to 5.5. Thus, many stimulus-responsive therapy systems
have been designed that can remain stable in normal tissues, but release cargo in diseased tissues
with structural changes responsive to pH changes [32]. The development of pH-responsive systems is
mainly based on polymers with weak acids (such as carboxylic acid) or bases (such as primary amine
and tertiary amine) groups, which can realize sharp change of ionization states in the desired pH
range. The increase of ionization degree can significantly change the conformation of the chain and the
affinity for the solvent, leading to the cleavage or change of the overall conformation. Additionally,
the pH-responsiveness can be easily adjusted by changing the properties of monomers used in
polymers [33].

The first type of pH-responsive functional groups are basic groups such as amines, pyridines and
imidazoles (Table 1). For example, Liu et al. synthesized nanoscale coordination polymers (NCPs)
based on hafnium (Hf) ions and pH-responsive benzoic acid imine linker. Excellent compatibility
and stability were achieved after further modification by polyethylene glycol (PEG). Hf ions can
also enhance the effect of radiotherapy. In the acidic environment of tumors, the chemotherapeutic
drug chlorine (triphenylphosphine) gold (I) (TPPGC) could be released due to the degradation of
benzoic acid imine linker, which gave rise to the damage of mitochondria of cancer cells and their
apopsis [34]. Other types of functional group include hydrazone bond [35,36], glycerol ester groups [37],
acetal [38,39], cis-acotinyl [40], orthoester [41,42], and silyl ether [43], which are unstable under acidic
conditions. These chemical bonds could be hydrolyzed rapidly under weak acidic conditions, thereby
causing the changes of the chemical structures (Table 1). In addition, acetal is one of the most widely
used functional groups. The pH stimulus-responsive system based on acetal has the advantages of
fast pyrolysis and minimal by-products. Recently, it has been reported that poly (ethylene glycol) and
paclitaxel could be linked using acetal. Additionally, this conjugate can be self-assembled to form
pH stimulus-responsive micellar nanoparticles. With a high drug loading of 60.3%, the nanoparticles
could maintain high stability in normal tissues, but once delivered in tumor, the drug can be effectively
released because of the fast pyrolysis of the acetal group [44].

As shown in Figure 2, Zhang et al. reported a novel magnesium-based micromotor covered by a
pH-responsive polymer coating. Stomach acid was used as the motor, making it consume protons
quickly as it propelled through the stomach, thereby increasing the pH in the stomach to neutral in
less than 20 min, and this change allowed the cargo to be released from the pH-responsive polymer
coating. Compared with the traditional pH passive responsive nanocarriers, this kind of micromotor
could actively change the pH value of the surrounding local environment, so it could be used as a
potential drug delivery carrier for the treatment of various gastric diseases [45].
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Table 1. Chemical structures for pH responsive systems.
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neutralization by magnesium micromotor in vivo and pH measurement by microelectrode pH meter.
(b) The pH values in the stomachs of mice after different doses of Mg micromotor were given. (n = 3)
(c) Twenty minutes after mice were injected with deionized water, Mg micromotors and inert polystyrene
(PS) particles, superimposed fluorescent images of the whole stomach of mice were collected (both
Mg micromotors and PS microparticles were loaded with DiD dye and encapsulated in a pH-sensitive
polymer shell). Reproduced with permission from the publisher of corresponding reference [45].
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Besides the development of drug delivery systems, pH-responsive systems can also be used for
tumor detection and image-guided surgery [46]. By taking advantage of the difference of pH values in
different target tissues in vivo, pH-responsive systems represent an intriguing strategy in drug delivery
system. However, the difference of pH values between target and healthy tissues may not always
differ significantly, so responsive systems that rely only on pH may be limited by low specificity and
sensitivity. Therefore, pH responsive system can be combined with other stimulus conditions such as
light, redox, enzymes and others with the aim of improved selectivity for drug release in diseased
tissues [47,48].

2.2. Redox Stimulus

Redox conditions can be used for another type of stimulus-responsive system. These include
GSH-sensitive systems, which have attracted much recent attention. GSH-sensitive systems can have
stability in normal tissues but undergo release of cargo in diseased tissues in response to higher
concentrations of GSH. For example, the concentration of GSH, as a tumor marker in cancer cells is
4–7 fold higher than in normal cells [49,50]. The intracellular concentration of GSH (1–10 mM) is about
three orders of magnitude higher than that in the blood (2–10 µM) [51,52].

Disulfide bonds and diselenium bonds have been widely used in the design of redox stimulus
responsive systems (Table 2). Disulfide bonds have also been used in chemical sensors. Shi et al.
designed and synthesized a nanodrug carrier based on disulfide bond-doped organosilicon-micelle
hybrid nanoparticles, the surface of which was modified with disulfide-bonded PEG and amide-bonded
polyethylenimine (PEI). This nano-drug carrier exhibited excellent blood circulation ability and
accumulation performance in tumor tissues, and the side effects of anticancer drugs on not-carcinogenic
tissues were also reduced because of such rational design [53].

Table 2. Chemical structures for redox-responsive systems.

Function Group Mechanism Ref
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diselenides could release more drugs using poly (ester carbamate) triblock copolymers (PAUR-Se-Se)
with Se-Se bonds compared with poly (ester carbamate) triblock copolymers (PAUR-S-S) containing S-S
bonds. At similar GSH concentrations (30 mM), 85% of encapsulated DOX was released by PAUR-Se-Se
micelles within 48 h, while 67% of the drug was released by PAUR-S-S micelles. In addition,
the antitumor effect of DOX-loaded PAUR-Se-Se was six fold higher than that of S-S analogues due to
faster cleavage of the diselenium bond and enhanced drug release [55]. In a recent study, a new type of
redox-responsive drug delivery system was developed based on the nano-metal-organic framework.
Its core structure was formed by zirconium ions (Zr4+, metal nodes), 2,5-disulfanylterephthalic acid
(BDC–(SH)2, organic ligand) and benzoic acid (BA, modulator), The sulfhydryl group on the anticancer
drug, 6-mercaptopurine, formed a disulfide bond with BDC-(SH)2. This disulfide-based nanomaterial
exhibited excellent intracellular drug release ability, and its cytotoxicity to cancer cells was shown to be
three times higher than normal cells [67].

ROS-responsive systems are also an effective strategy to control drug release by utilizing
the ROS accumulated in inflammation sites or other diseased tissues [68]. It has been shown
that the concentration of ROS in inflammatory tissue is 10–100 times higher than that in normal
tissue [69]. There are two chemical mechanisms commonly used in ROS-responsive systems. One is
ROS-induced non-breaking hydrophobic-hydrophilic transition and the other is ROS-induced structural
dissociation (Table 2). ROS can oxidize chalcogens (e.g., S, Se, Te) [56,57], causing oxygen atoms
to form covalent bonds with chalcogens, and polarizing groups to form hydrogen bonds with
environmental water molecules. Thus, hydrophobic-hydrophilic transition of the carrier backbone
was induced without damaging the chemical structure of the drug carrier. Among the chalcogen
elements, tellurium-containing compounds have more potential than other chalcogen elements
due to their lower electronegativity and lower toxicity [58]. Additionally, it has been shown that
tellurium-containing compounds have higher oxidation responsiveness than selenium-containing
compounds and sulfur-containing compounds [59,60]. Xu et al. reported a synergistic therapeutic
nanoplatform using near-infrared light-responsive cisplatin for cancer therapy. Cisplatin (CDDP)
and indocyanine green (ICG) were simultaneously loaded in nanocarriers made of amphiphilic
tellurium-containing block copolymer PEG-PUTe-PEG. Tellurium atoms in nanocarriers can be easily
oxidized by ROS (stimulated by near-infrared laser) produced by indocyanine green. Tellurium
oxidation weakens the coordination with cisplatin, thereby releasing cisplatin and achieving better
anti-tumor effect [61].

In addition, ROS can react with chemical structures such as thioketal (TK), phenylboronic acid/ester
(PBA/PBE), oxalate ester [62,63], vinyldithioether [64] and proline oligomers, leading to the cleavage
of these structures. In general, TK groups are easily oxidized to generate acetone and two other
thiol-containing fragments in the presence of ROS. A novel amphiphilic peptide-drug conjugate for
cancer targeted therapy has recently been reported. Hydrophilic cyclic peptides and hydrophobic
cytotoxin epothilone B (Epo B) were linked by ROS responsive TK groups. When nanotherapeutics
entered tumor cells, TK groups could be cleaved due to high levels of intracellular ROS, thereby releasing
Epo B, which effectively inhibited cell proliferation [65]. H2O2 can specifically oxidize PBE/PBA and
subsequently induce the formation of borate ester and hydroxybenzyl alcohol [66]. In addition, amino
acids such as proline, histidine and arginine are also found to be susceptible to ROS-mediated and
metal-catalyzed oxidation [70,71]. For example, Murthy et al. developed thioketal-based nanoparticles
that could degrade selectively in the presence of ROS in inflamed intestinal tissue. In responsive to
abnormally high levels of ROS in the sites of intestinal inflammation, thioketal nanoparticles could
effectively deliver and release siRNA to diseased sites, protecting mice from dextran sodium sulphate
(DSS)-induced colitis [72]. In addition to treating inflammation, ROS-responsive systems can also be
used for cancer treatment. Ge et al. designed ROS-responsive nanoparticles made up by a thioketal
linker (TL), poly (ε-caprolactone) and poly (N,N-dimethylacrylamide) (PCL-TL-PDMA). Amphiphilic
di-block copolymers with PCL-b-poly (2-guanidinoethyl methacrylate) (PCL-PGEMA) were used to
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encapsulate the anticancer drug paclitaxel and a photosensitizer, achieving efficient cell uptake and
enhanced anticancer efficacy [73] (Figure 3).
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Figure 3. (a) Schematic illustration of preparation of ROS stimulus-responsive nanoparticles
(PCL-TL-NPPTX/Ce6) loaded with Ce6 and PTX. (b) PDMA was cleaved upon the stimulation of ROS.
Cell uptake under 660 nm light irradiation was improved. A synergistic effect of photodynamic therapy
(PDT) and chemotherapy was achieved through efficient cell uptake and drug release. Reproduced
with permission from the publisher of corresponding reference [73].

Redox stimulus-responsive systems need high sensitivity and accuracy for fast triggered responses
in diseased tissues, but stability under normal conditions. However, considering the complexity
and diversity of the microenvironment in vivo, delivery systems based on specific redox molecular
mechanism that can release cargo in a controllable manner are preferred but not well established yet.
Further investigations are expected to address these potential issues.

2.3. Enzyme Stimulus

Enzymes have attracted attention in various nanobiotechnology applications owing to their specific
biological targeting and catalytic properties. In the microenvironment of the diseased sites, the levels
of some enzymes can be abnormal; therefore, enzyme-responsive systems represent an appealing
strategy for the development of responsive drug carriers. Enzymes can specifically target the affected
sites, thereby regulating drug release. Hydrolases, including proteases, lipases and glycosidases, have
been widely explored in enzyme-responsive systems. Oxidoreductases, such as NAD(P)H, quinone
oxidoreductase isoenzyme I (NQO1) and glucose oxidase (GOx) have also been studied [74].
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Proteases play important role in biological processes, such as differentiation, angiogenesis,
hormone synthesis, digestion, wound repair, hemostasis, inflammation, coagulation, immune response,
necrosis and apoptosis [75]. Some proteases are usually overexpressed in diseased tissues, and their
activation can be used to release drugs for the development of protease-targeted therapies. For example,
a new type of polymer poly (ethylene glycol) diacrylate (PEGDA) have been designed that could form
spherical polymeric nanoparticles when mixed with peptide. The nanoparticles can be hydrolyzed by
the overexpressed matrix metalloproteinase in lung lesions and then release the drugs [76]. In addition,
it has been shown that the use of protease triggered drug release can enhance the therapeutic effect
of drugs, and also reduce the toxicity and other side effects of drugs [77]. Cathepsin-B is normally
expressed in the lysosomes of human cells, but is also overexpressed in many invasive and metastatic
cancers. Therefore, cathepsin-B has been used as one of the targets of the enzyme-responsive systems.
The amino acid sequence of Gly-Phe-Leu-Gly (GFLG) can be degraded in the presence of cathepsin-B,
so it can be applied for the development of nanodrug carriers. For example, PEG, anticancer drug
cisplatin and GFLG peptide were used to be assembled for cisplatin prodrug units. ICG was used to
co-assemble with cathepsin-responsive cisplatin multidrug nanoplatforms. After cell uptake, the GFLG
peptide structure was degraded by cathepsin B in lysosomes, which in turn released ICG and cisplatin
prodrugs for cancer treatment [78].

Among many kinds of matrix metalloproteinases, MMP2 has been one of the most widely
explored for stimulus-responsive systems because it is overexpressed in cancer tissues. MMP2-acting
substrates have been used for drug delivery and molecular imaging. For example, Torchilin et al.
synthesized an octapeptide (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln) as a MMP2-sensitive linker for the
conjugation of long-chain PEG to liposomes and encapsulation of the cell-penetrating peptide TATp.
When octapeptide (GPLGIAGQ) was cleaved by MMP2, TATp was exposed, giving rise to the
increased uptake of liposome particles by tumor cells [79]. In 2016, similar structures were also
used in drug-loaded liposomes for pancreatic cancer treatment [80]. To improve permeability,
antitumor efficacy and biodegradability, a size-shrinkable drug delivery system has been designed
based on polysaccharide-modified dendrimers, which contained poly (amidoamine), hyaluronic
acid and MMP2-sensitive peptide linker (PLGLAG). The system retained good stability in blood
circulation, and underwent degradation upon the action of MMP2, leading to enhanced uptake in tumor
cells [81]. In addition, polypeptide GPLGVRG [82,83], polypeptide GPLGVRGDG [84] and triglyceride
monostearate (TGMS) [85] have also been synthesized for MMP2 sensitive drug delivery systems.

Phospholipase is another therapeutic target that can be overexpressed in infectious diseases,
inflammatory diseases and tumors. In several inflammatory diseases or cancer cell types, the expression
of phospholipase A2 (sPLA2) has been shown to be higher [86–89]. PLA2 is often used as a trigger
condition in liposomal drug delivery systems, which specifically hydrolyzes sn-2 ester bonds in
phospholipids, resulting in direct release of active drugs or hydrolysis of liposomes [90]. For example,
colchicine-containing phosphatidylcholinase-responsive liposomes have been developed that are stable
in human blood circulation. At the same time, liposomes could release colchicine-containing fatty
acids upon the action of high levels of phospholipase A2. The latter further hydrolyzed and released
colchicine analogues by non-specific enzymes [91]. Besides, in a recent report, an enzyme reactive
liposome containing 1,2-dipalmitoyl-sn-glycerin-3-phosphocholine (DPPC) and 1-o-stearyl-2-retinoic
acid receptor (RAR)-C6-sn-glycerin-3-phosphoglycerol with c6-RAR as a prodrug was designed. In the
absence of sPLA2, the IC50 of c6-RAR prodrug in MT-3 breast cancer cell line was 110 µM, while the
IC50 of c6-RAR prodrug decreased to 10 µm after adding sPLA2, indicating that the prodrug was
hydrolyzed into c6-RAR and Lyso-O-SPG by sPLA2, in response to phospholipase [92].

Oxidoreductase has also been used as a potential target of stimulus-responsive systems due to
its important role in intracellular oxidative environment. GOx is a kind of oxidoreductase tested
for stimulus-response systems. It catalyzes the oxidation of β-d-glucose to d-glucose-δ- lactone and
hydrogen peroxide with oxygen as electron acceptor [93,94]. Glucose responsive systems have been
assessed for the treatment of diabetes [95,96]. For example, Willner et al. recently used zeolite
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imidazolium frameworks (ZIF-8 NMOFs) as a glucose-responsive carrier to release insulin and vascular
endothelial growth factor (VEGF) aptamers, which inhibited angiogenesis by binding to VEGF proteins.
ZIF-8 was stable under neutral physiological conditions but degraded under acidic conditions. Insulin
or VEGF aptamers and GOx were integrated into ZIF-8 NMOFs as biocatalysts. GOx catalyzed
the aerobic oxidation of glucose to produce gluconic acid. Local acidification of NMOFs degraded
ZIF-8, thereby releasing insulin and VEGF aptamers [97]. Besides, NQO1 has been widely used in
stimulus-responsive therapy systems due to its overexpression in tumors and other diseases [98,99].
In a recent report, a NQO1-responsive multifunctional polymeric vesicle covalently bound to a
photosensitizer (coumarin and Nile blue) was prepared. Without being triggered by NQO1, both
fluorescence emission and photodynamic therapy (PDT) capability were turned off due to the “double
quenching” effect. Upon cellular uptake, highly expressed NQO1 triggered the self-immolative cleavage
of the quinone trimethyl lock, which then led to the release of photosensitizers, near infrared (NIR)
emission and PDT activation, thereby realizing real-time monitoring and treatment of cancers [100].

Glucosidase is an enzyme that can hydrolyze glycosidic bonds. Its concentration in diseased
tissues can be higher than that in normal tissues. Therefore, glucosidase can be used to design
enzyme-responsive system. It was reported that the concentration of α-amylase could increase by
85-fold in the tumor environment [101], so it is an effective anticancer therapeutic approach to design
glycosylated drug carriers to release anticancer drugs upon catalysis of glycosidase. For example,
Scanlan et al. used glycosylated 1,8- naphthalimide as a fluorescent probe for tumor treatment and
diagnosis. The glycosylated 4-amino-1,8-naphthalimide derivatives with chemical structures including
the glycosidic bond can be selectively hydrolyzed by glycosidase to release naphthalimide. It was
shown that naphthalimide was uptaken by cells only after the glycan unit was hydrolyzed, indicating
high targeting capability of the delivery system [102] (Figure 4).
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In spite of extensive development of enzyme-responsive systems, there are many drawbacks
for them. The level of enzyme expression might be different in different patients, so whether they
are sufficiently expressed in a target population is questionable. In addition, the specificity might
be another issue. For example, various types of MMPs have cross-reactivity. Another consideration
is whether the cleavage of the enzyme-responsive substrates and polymers is feasible in complex
biological environment. The therapeutic effect of one single enzyme stimulus-responsive system might
not be specific enough.
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2.4. Light Stimulus

Solid tumors have a variety of physiological barriers (such as high interstitial pressure and
dense extracellular matrix) which affect the uptake of nanoparticles [103]. Photothermal therapy is a
minimally-invasive treatment for cancer, which relies on the thermal stress caused by light irradiation
at a specific wavelength [104,105]. PDT is another commonly used light-triggered strategy for disease
treatments. Some examples of photosensitizers include Photofrin, Visudyne, chlorin e6 and oligo
(p-phenylene vinylene) derivative (OPV). They can be activated by light to produce ROS, which can
not only directly kill cancer cells, but also induce vascular damage, cause membrane oxidation and
affect the permeability of cell membrane, which facilitates the penetration of anticancer drugs [32]. In a
recent report, researchers designed a nano drug carrier that combines photosensitizer protoporphyrin,
chemical drug doxorubicin (DOX) and apatite (APA). With light stimulation, DOX and APA were
released and ROS was generated owing to porphyrins. APA competed with P-glycoprotein (P-gp)
transporter to reduce its enzyme catalytic activity and DOX was used to treat tumor tissues; thus,
the synergistic treatment of chemotherapy and phototherapy was achieved [106] (Figure 5).
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Figure 5. Schematic diagram of a light/ROS-responsive drug delivery platform. (a) Formation
and cleavage of acetylated-chondroitin sulfate-protoporphyrin (ACP)-Dox + Apa micelles. (b) The
mechanism of smart ACP-Dox + Apa micelles against multidrug resistance (MDR), for promoting
the synergistic antitumor efficacy. Reproduced with permission from the publisher of corresponding
reference [106].
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In addition to photothermal therapy and PDT, light-responsive strategies have also been applied
in the design of prodrug systems and drug delivery carriers. Light-responsive structure is generally
a robust strategy because it is easy to control with good accuracy and minimal invasiveness.
Light-responsive systems for drug release are often based on the cleavage of prodrugs with
light-sensitive structures or the changes of photosensitive molecules upon light stimulation, so as
to release the conjugated or encapsulated drugs [107,108]. Lovell et al. developed near-infrared
light-responsive liposomes doped with hexyloxyethy-pyropheophorbide (HPPH) entrapped into the
bilayers. The anticancer drug doxorubicin (DOX) was encapsulated inside the light-sensitive liposomes.
When NIR light was irradiated at the target site, HPPH-liposomes opened the bilayer structure and
then released DOX, but when NIR light was off, the stable bilayer structure of HPPH-liposomes was
reformed [109]. Common photolytic functional groups include O-nitrobenzyl derivatives (ONB),
anthracene [110], coumarin esters [111], arylmethyl [112] and pyrenylmethyl ester [113] (Table 3).
Among these, O-nitrobenzyl derivatives have been widely used because of their fast photolysis rate and
simple synthesis process. For example, Willner et al. designed a light-responsive and pH-responsive
DNA microcapsule. Light-responsive capsules are assembled by O-nitrobenzyl phosphate groups with
DNA layers used to stabilize the microcapsule shell (Table 3). When stimulated by light, O-nitrobenzyl
groups were cleaved, causing the degradation of microcapsules and the release of the cargo [114].
Another report showed that the O-nitrobenzyl linker containing carbamate bond had a better photolysis
rate and a slower hydrolysis rate than other O-nitrobenzyl derivatives (containing an ester bond
or amide bond), so that it could maintain higher stability in vivo and can degrade faster after light
stimulation [115]. Besides, Baker et al. chose ONB group as the core of photosensitive protective
group and conjugated with poly (amidoamine) (PAMAM) dendrimer to develop a drug delivery
platform for methotrexate (MTX) loading. It was demonstrated that this photochemical approach
can be used for in vivo delivery of anticancer drugs [116]. Ultraviolet-Visible (UV-Vis) light could
be used for the trigger of O-nitrobenzyl derivatives and aryl methyl photolysis functional groups;
however, it is difficult to achieve tissue penetration for better therapeutic performance. Compared
with UV and visible light, near-infrared light with wavelengths in the 700–1000 nm range can penetrate
into deeper tissues. NIR could be used to cleave, isomerize or rearrange molecules through the
two-photon absorption (TPA) process and NIR-UV upconversion (UC) process. The theoretical analysis
on the principle of TPA process was first proposed in 1930s [117]. However, the generation of TPA
requires high excitation energy, and there are still some problems in practical applications. In the UC
process, the luminescence center can absorb the energy of two or more photons, and then generate
one emitted photon whose energy is higher than that of a single excited photon. Additionally, unlike
the TPA process, each process of photon absorption is like a second-order element reaction due to
the existence of a real intermediate state in the UC process, which has a higher probability than the
simultaneous absorption of two molecules [117,118]. Upconversion nanoparticles (UCNPs) based
on rare earth ions provide a new method for the NIR light-responsive system. For example, Zou
and his colleagues designed a near-infrared light-triggered nanocomposite PEG-NMAB-PLA-UCNPs
(PNP-UC) to achieve photo-controllable release of DOX for cancer treatment. Under the irradiation of
980 nm NIR light, 2-nitrobenzyl group was triggered for its cleavage to release DOX. Compared with
other UCNPs-based NIR responsive systems, this new nanocomposite has many advantages, such as
high drug encapsulation efficiency, fast light responsiveness at low power density and less heating
effect, showing potential in pharmaceutical and biomedical applications [119].

Common photoisomerization materials include azobenzene-based materials, spiropyran
(SP)-based materials, and diarylethene-based materials (Table 3). Azobenzene is an azo group
containing an aryl group, with cis and trans isomers. It shows a significant π-π transition in the
UV region and a faint π-π transition in the visible region. Therefore, upon irradiation of UV light,
the trans structure of azobenzene changes into cis structure. Additionally with heat or visible light,
azobenzene can change from cis structure to trans structure [120]. Liu and colleagues assembled
azobenzene-functionalized DNA strands using UCNP to construct nano-pumps and load DOX into
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nano-pumps. With 980 nm NIR irradiation, the continuous rotational inversion motion of azo molecules
caused DNA hybridization and de-hybridization, thereby leading to the release of DOX. This novel
light-responsive drug delivery system has shown good biocompatibility and excellent performance in
both in vitro and in vivo therapies [121]. SPs are an important photoisomeric compounds. Under the
UV light, the spiro-C-O bond in the spiropyran structure breaks open, leading to an increase in the
degree of pi-electron conjugation of the whole molecular system, forming a long conjugate chain and the
colored ring-opened merocyanine (MC). MC can be reversibly transformed into a colorless ring-closed
SP under specific wavelength or heating conditions. Taking the advantage of this special property of SP,
a novel N,N-bis(acryloyl) cystamine crosslinked poly (acrylic acid-co-spiropyran methacrylate) nanogel
containing disulfide bonds was recently reported as a multi-stimulus responsive nanocarrier [122].
Upon the stimulation of low pH value or UV light, the hydrophobic SP isomerizes into hydrophilic
MC, making the nanogel swollen. With the addition of reductant agent, the structure of nanogel was
destroyed after disulfide bond was oxidized and cleaved, which caused the release of the loaded drug.
Cytotoxicity experiments showed that DOX-loaded nanogels could effectively kill cancer cells, while
their cytotoxicity could be enhanced by UV light irradiation. In addition, isomerized MCs in nanogels
could emit strong green light after illumination, so they could also be used for fluorescent cell imaging.

Table 3. Chemical structures for light-responsive systems.

Function Groups Mechanisms Ref
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Diarylethenes (DAEs) are also popular photoisomeric molecules with many useful properties,
such as easy modification, fatigue resistance, high thermal stability and significant changes in optical and
electronic properties after photoisomerization [123] (Table 3). The performance and application of diaryl
ethylene mainly depend on the modification of its parental structure, that is, the design and selection
process of alkene bridges and aryl units. One common way is the modification of aryl units such as
substituting the benzene ring of diaryl ethylene with thiophene ring [124] (which could improve the
stability of the closed loop) and modifying the alkene bridge using five-membered rings such as alkene
bridges (such as cyclopentene [125], thiazole [126], imidazole [127], furan [128]) or using six-membered
rings (such as benzoquinone [129], coumarin fluorophores [130], benzothiazole [131]). In addition, some
light-sensitive molecules—vitamin B12 derivatives [132,133], ruthenium complexes [134], etc.—have
also been applied to light-sensitive systems.

Still, further development of light-stimulated systems is hindered by some factors. For example,
for the treatment of solid tumors, penetration depth, effective area, power intensity and irradiation
time are some important factors to be considered for the light-responsive therapy. In addition, many
photosensitizers and photothermal agents have inherent toxicity or photo-toxicity. Ongoing research is
still making efforts for the application of light stimulation systems for clinical advances.

2.5. Temperature Stimulus

Temperature is a frequently studied stimuli for responsive delivery systems. Inflammatory
pathological sites and the hyperthermic nature of tumors can be used as internal stimuli [135,136].
Another strategy is to increase the temperature by applying an external heat source. Ideally, the thermal
response nanocarrier should maintain its stability at body temperature and release the drug rapidly
when the diseased site is heated. Thermal stimulus-responsive polymers usually have lower critical
solubility temperature (LCST) or upper critical solubility temperature (UCST), and the former is more
widely used. For example, poly (N-isopropylacrylamide) (PNIPAM) and its derivatives have been
used in the design of thermal stimulation response systems because their corresponding LCST is about
32 ◦C, which is close to the physiological temperature of human body [137–139].

A core-shell drug delivery system was designed to improve the solubility of drug by encapsulating
hydrophobic drugs in nanoparticles with thermo-responsive materials as the shell. Luo et al. developed
a core-shell micelle that used hydrophilic thermo-responsive material PNIPAM as a shell for the
encapsulation of the drug of paclitaxel (PTX). Both drug and shell were conjugated by diselenide bond
(PNIPAM-SeSe-PTX). The nanoparticles exhibited dual characteristics of temperature-responsiveness
and redox-responsiveness, with high loading capacity (54.1%) and encapsulation efficiency (72.3%) [140].

Compared with PNIPAM that cannot be degraded in vivo, temperature-sensitive oligomers
containing oligo (ethylene glycol) (OEG) potentially has better biocompatibility. Jayakannan et al.
developed a dual stimulus-responsive amphiphilic copolymer formed by copolymerization
of hydrophobic polymerizable monomers with methacrylamide based on hydrophobic
3-pentadecylphenol (PDP) and oligopolyethylene glycol (PEG) methacrylate, which thus was
temperature sensitive and enzyme sensitive. The nanoparticles formed from the amphiphilic copolymer,
which remained stable in normal tissues in vivo with less than 20% drug release, while above LCST,
the nanoparticles had an up to 90% drug release rate in two hours due to the thermal response property
of acrylamide copolymers. In the presence of esterase, the drug release rate could exceed 95% within
12 h. Such type of DOX-polymer showed better anticancer efficacy [141].

In addition to thermosensitive hydrogels and thermosensitive polymers, temperature-sensitive
liposomes have also been investigated. Since Yatvin first proposed the concept of temperature-sensitive
liposomes (TSL) in the late 1970s [8], TSL has been attracting much attention from molecular design
to clinical applications. ThermoDox is an example of temperature-sensitive liposomes, which was
tested in phase III clinical trials for hepatocellular carcinoma and phase II clinical trials for breast
cancer. Its drug release rate is 5–50 fold higher than other liposomal drugs at elevated temperatures.
Porter et al. developed a novel polymer-modified temperature-sensitive liposome (pTSL) for the



Int. J. Mol. Sci. 2020, 21, 6380 14 of 43

delivery of DOX for the treatment of cancers. By reversible addition-break chain transfer (RAFT)
polymerization of N-isopropylacrylamide (NIPAAm) and pH-responsive propylacrylic acid (PAA)
copolymers with temperature responsiveness, copolymers with dual pH/temperature phase transition
properties were obtained. When attached to liposomes, these copolymers can cause membrane
destruction with a pH/temperature-dependent manner. Compared with traditional thermosensitive
formulations, pTSL exhibited enhanced release profiles, significantly reduced thermal dose thresholds
and better stability in serum with minimal drug leakage over time. Therefore, these liposomes have
the potential of significantly reducing damage to healthy tissue commonly associated with liposomal
cancer therapies [142] (Figure 6).
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For temperature-sensitive systems, thermo-specificity is one of the biggest issues because
it is usually hard for chemistry to be exquisitely specific. For the future research directions,
temperature-responsive drug carriers with higher sensitivity to the minimum temperature change,
better stability and enhanced safety profile in normal tissues are greatly desired.

2.6. Magnetic and Ultrasound Stimulus

Compared with other stimuli such as light radiation and ultrasonic, magnetic force is an intriguing
condition for external stimuli-responsiveness because it has almost no physical interaction with the
human body. Additionally, owing to spatial focusing, magnetic stimulus-responsive systems can
overcome some limitations of traditional delivery systems, such as difficulty of passing through
physiological barrier in vivo and lack of specificity to diseased tissues. Magnetic fields was first
proposed as external triggers for drug release in 1960 [143]. Magnetic hyperthermia caused by the
rotation of magnetic nanoparticles when exposed to alternating magnetic field, and the heat generated
by magnetic loss will dissipate to the surrounding tissues. It is generally believed that the heat
generated by magnetic nanoparticles is based on mechanisms of internal rotation axis and external
movement, namely, thermal rotation and diffusion relaxation of magnetic moment. In terms of
local drug release, the thermodynamic phase and conformation transition of polymeric nanoparticles
depends on their LCST/UCST and then expands/contracts, possibly leading to the drug release [144,145].
Zink et al. developed a magnetic nanoparticle with superparamagnetic particles as the core and
thermo-responsive peptide Phe-Phe-glycine-glycine (n-porcine linolenic acid a) as the nano-valve.
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This novel class of Mesoporous silica nanoparticles (MSNs) could maintain stability and safety under
normal environment in human body. Once the magnetic core is triggered by magnetic field, the heat
generated can lead to the change of its structure, giving rise to the release of drugs [146] (Figure 7).
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Magnetic transfection or magnetically-aided transfection is a method to control gene delivery and
improve transfection efficiency for gene therapy. The magnetic transfection method is based on the
principle of magnetic targeted drug delivery proposed by Widder et al. in 1978 [147]. In 2002, Mah et al.
first linked the magnetic microspheres to recombinant adeno-associated virus 2 (AAV2) gene vector
through heparin for C12S cells and mice in vivo [148]. In the same year, Plank et al. associated gene
carriers with superparamagnetic iron oxide nanoparticles coated with polycation polyethyleneimine.
It was shown that the magnetic-assisted transfection method improved the transfection efficiency of
vectors by at least three orders of magnitude by either viral or non-viral vectors [149].

Ultrasound is also commonly used in stimulus responsive system. Compared with other external
stimuli, ultrasound is non-invasive and can improve drug release profile and drug permeability.
The mechanism is based on acoustic cavitation, which means the formation and activity of gas-filled
bubbles in the medium under the action of ultrasound [150]. These gas-filled bubbles can be produced
either naturally or manually (microbubbles, MBs). With microbubbles, ultrasound cavitation affects the
permeability of the plasma membrane, enhances cell uptake of drugs, or allows internalization of other
cell-impermeable substances. Even in the absence of microbubbles, high-intensity ultrasound can still
induce drug uptake by cells. These characteristics enable ultrasound-mediated drug delivery systems
to improve the absorption efficiency of weak or non-permeable drugs by cells [151]. Porous lipid
polymer hybrid microbubbles (lipid/PLGA MBs) have also been developed using water/oil/water
(W/O/W) double emulsification process, which addressed the limitation of low drug encapsulation
efficiency of lipid-based MBs and poor ultrasound imaging ability of polymer-based MBs. Compared
with pure PLGA MBs, lipid/PLGA MBs had hollow microcapsule structure, which reduced the
cavitation threshold intensity and enhanced the ultrasonic imaging ability of MBs. In addition,
the increased surface area and porous structure of lipid/PLGA MBs make them have good drug
encapsulation properties. Using this method, controllable drug release and real-time monitoring of
drug release could be achieved [152]. Another example is that Zheng et al. developed ultrasound
stimulus-responsive microbubbles for ultrasound imaging, which can be converted into porphyrin
nanomaterials with fluorescent and photoacoustic activity upon low-frequency ultrasound pulses.
Larger microcarriers could reach the tumor vasculature (independent of EPR effect), and its principle
is that the energy of ultrasound could rupture microbubbles, pushing nanomaterials into the tumor
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interstitium. These nanomaterials (porphyrins) could further utilize photoacoustic imaging (PAI) and
fluorescence for multistep multimodal imaging in tumor-bearing mice [153].

Liu et al. recently designed an ultrasound responsive photoacoustic (PA) probe based on
microbubbles containing gold nanoparticles. In this design, gold nanoparticles were encapsulated
in the lipid shell of MBs and filled with sulfur hexafluoride gas, thereby forming MBs with strong
cavitation characteristics and low toxicity. Au@lip MBs exhibited lower NIR PA signal. When triggered
by ultrasound, MBs was ruptured and Au@lip aggregates were formed, showing enhanced NIR
PA signals. Background-free PA imaging was achieved by subtracting the PA image before US
stimulation from the PA image after US stimulation [154] (Figure 8). Although ultrasound-responsive
nanotechnology shows some advantages, its side effects (such as skin irritations, transient pain and
nerve injury) should be also considered [155,156]. The intensity, frequency and duty cycle should be
carefully selected for the optimized therapeutic effects and reduced side effects.
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2.7. Self-Immolative Structures

The mechanism of self-immolation is that two chemical bonds in the inactive precursor are
associated by the self-immolation spacer. The precursor usually contains a protective group (PG),
self-immolation spacer (SIS) and a target compound (TC). After appropriate stimulus, the protective
group is removed, and then a step-by-step decomposition reaction similar to “domino” is produced,
resulting in the release of target compounds (Figure 9). Philip et al. Proposed the concept of
self-immolative structures in 1981 that a pristine drug can be released without chemical modification
after the bond between the carrier component and the drug component is cleaved [157]. Self-immolative
linkers have subsequently been widely used in prodrug design [158,159], sensors [160,161], drug
delivery [162,163] and other applications.
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The self-immolation mechanism can be categorized into electron rearrangement and intramolecular
cyclization. Electron rearrangement is mainly based on the structure of quinone or its derivatives (such as
thioquinone methide or azaquinone methide). The mechanism of electron rearrangement includes
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1,4-elimination, 1,6-elimination, 1,8-elimination and β-elimination. The electron rearrangement
reaction usually contain aromatic ring structure with hydroxyl [164,165], amino [166,167] or mercaptan
groups [168,169]. When they are masked by protective groups, the electron rearrangement process of
these functional groups is inhibited. When the external stimulus triggers the cleavage of the protective
groups, these functional groups undergo irreversible self-immolation process driven by positive
entropy or the generation of stable products. Common protection groups that can be triggered by
various stimuli are summarized in Table 4. Self-immolative spacers based on electron rearrangement
are mostly based on 1,4-elimination or 1,6-elimination [170,171]. Additionally, 1,8-cleavage may occur
in para amino (or hydroxy) cinnamyl alcohol or coumarin alcohol. In contrast, self-immolative spacer
groups based on continuous combinations (such as 1,8-elimination of naphthalene or 1,10-elimination
of biphenyls) usually do not result in the release of drug groups because the high energy barrier destroys
the aromaticity, and the repulsion of the hydrogen atom in adjacent biphenyl prevents the formation
of the planar structure needed for electron rearrangement [172]. The cyclization reaction is based on
alkyl chain or aromatic spacer groups [173–175]. Once the cleavage is triggered, the nucleophilic attack
of carbonyl or electrophilic aliphatic carbon atoms could result in the cyclization of spacer groups.
As of the electron rearrangement, the self-immolation cyclization is driven by the formation of positive
reaction entropy and thermodynamic stable products (such as 5-membered and 6-membered rings).
Additionally, the triggers of self-immolation include chemical reagents, enzymes, light and others.

Self-immolative linkers that can be triggered by chemical reagents; Boc(Tert-butoxycarbonyl),
Fmoc(9-fluorenylmethyl) and 3-oxobutyl carbamate are typically pH-responsive for organic
synthesis [176]. Boc and Fmoc are protecting groups for protecting amino groups, and the Fmoc is the
only widely used amino acid protecting group of carbamates which can be dissociated in weak base
condition. These functional groups undergo self-immolation under some specific triggering conditions
(trifluoroacetic acid, piperidine), which in turn releases the attached cargo [177,178]. Redox-triggered
self-immolative linkers could be broadly divided into three categories by triggers: transition metal
(e.g., Zn, Pd) based reagents [179–181], reducing reagents (DTT, GSH or TCEP) [182], and oxidant
(e.g., H2O2) [183–186]. Disulfide bonds are the most widely used reductant-responsive linkers. Wu et al.
employed α, α-dimethyl groups with disulfide bonds, so that p-dithiobenzyl (DTB) intermediates
could maintain faster self-immolation rate and improve the stability. This novel self-immolative
linker is expected to promote the design of targeted drug delivery systems and achieve traceless
drug release [187]. Similarly, self-immolative linkers with H2O2 as trigger condition have also been
widely used in stimulus-responsive systems in various fields. Recently, Clausen et al. reported the
synthesis of arylboronic acid-based hydrogen peroxide-responsive methotrexate and aminopterin
prodrugs. This new prodrug can deliver drugs to the lesion of chronic rheumatoid arthritis, so
that the side effects of the drug on normal cells were significantly reduced [186]. Enzyme sensitive
self-immolative linkers are also commonly used in enzyme responsive systems. Plasmin can induce
the hydrolysis of tripeptides, which in turn causes the cleavage of self-immolative linkers and release
of drugs [172,188]. Penicillin G amidase (PGA) and bovine serum albumin (BSA) can be used to
trigger the cleavage of phenylacetamide or carbamate bonds to release the linked cargo [189,190].
β-galactoside and β-glucuronide are functional groups that can be cleaved by β-galactosidase and
β-glucuronidase, respectively, and these two functional groups can also be combined with other
self-immolative linkers [191–194]. In addition, dibenzyl phosphate derivatives are also used for
enzymatic (alkaline phosphatase) self-immolative design for the delivery and release of fluorescent
probes and prodrugs [195,196]. Enzymatically activated self-immolation is usually slow and requires
synergy with other self-immolative linkers. Light-activated self-immolation does not require an
additional step for synergy. A variety of similar structures based on nitrobenzyl groups can undergo
self-immolation under UV light [197,198]. Examples of self-immolative structure triggered by NIR
light are polymers with o-nitrobenzyl group as the capping group [199,200] and polymers based on
coumarin derivatives [201,202].
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Table 4. Protection groups and stimuli of self-immolative linkers.

Structure Responsive to Stimulus Stimulus Triggers Ref
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3. Applications of Stimulus-Responsive Systems

3.1. Therapeutic Applications

Conventional drug delivery systems lack controlled drug release schemes whereas
stimulus-responsive drug delivery systems or drug conjugates with rational design can release
loaded drugs at specific sites triggered by various endogenous or exogenous stimuli. The human
body is a complex collection of various microenvironments, so occasionally it may not suffice if only
one stimulation condition is used for the design of stimulus-responsive systems. In this section,
we mainly describe the combination of dual or multiple stimuli-responsive conditions for the design of
nanoplatforms to improve the specificity and accuracy of nanotherapeutic systems.

3.1.1. Cancers

Although single stimulus-responsive systems can solve the problems of specificity and side
effects to some extent, the microenvironment within tumor tissues is complex. By contrast, dual
or multiple stimuli-responsive nanocarriers can better detect subtle changes in diseased tissues.
The traditional combination of pH and temperature has certain defects, such as possible premature
drug release in blood or normal tissue species [203,204], and the pH responsive system might
be affected by various factors. To solve the problem of premature leakage, Cui et al. made
N-isopropylacrylamide-methacrylic acid-octadecyl acrylate (NIPAM-MAA-ODA) copolymer liposomes
as nanodrug carriers that can be responsive to dual stimulates of pH and temperature [205]. In recent
years, the combination of light and pH has also become a popular choice for dual response systems.
For example, researchers have conjugated pH-sensitive I-motif DNA (converted from single-stranded
structure to C-quadruplex structure in acidic pH environment) to gold nanostars (GNS) with AS1411

used as a targeting structure. It has been discovered that A-GNS/DNA/DOX nanocomposites
have strong photothermal conversion ability, and the combination of pH and NIR irradiation can
effectively trigger drug release. This nanocomposite showed good stability in not-carcinogenic tissues,
and therapeutic effect and biocompatibility were achieved using the construct for combined chemo-
and photo-therapy [206] (Figure 10). In addition to the combination with photothermal therapy,
pH responsive systems can also be combined with the UV light-responsive systems. Host-guest
interaction of β-cyclodextrin with azobenzene has also been studied, but most supramolecular polymer
drug carriers are single stimulus-responsive with low delivery accuracy [207–209]. Chen et al. recently
constructed supramolecular polymers harnessing host-guest interaction between β-cyclodextrin and
azobenzene. β-cyclodextrin was combined with pH-sensitive hydrophilic poly(2-(dimethylamino)
ethyl methacrylate, and azobenzene was modified with hydrophobic poly(ε-caprolactone), enabling
nanodrug micelles to be responsive to both pH and UV light. Additionally, higher anticancer
activity and stronger cancer cell inhibition than free DOX could be achieved using this method [210].
Dual stimuli-responsive system using pH and redox is also a common combination. With low
pH and high GSH levels in tumor cells, a strong controlled release effect can be achieved.
Recently, pH/redox-responsive mixed polymeric micelles formed by self-assembly of two amphiphilic
diblock copolymers (poly(ethylene glycol) methyl ether-b-poly(β-amino ester)) (mPEG-b-PAE) and
poly(ethylene glycol) methyl ether-grafted disulfide bond-poly(β-amino ester) (PAE-ss-mPEG) have
been developed, which released drugs at low pH and high GSH concentration in tumor cells [211].
In addition, there are also many combinations, such as pH/ROS responsive system [212,213], pH/enzyme
responsive system [214,215] and others. As a significant characteristic stimulus condition in vivo,
the combination of pH with other stimulus has shown promise for cancer treatments.



Int. J. Mol. Sci. 2020, 21, 6380 20 of 43
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 20 of 44 

 

 
Figure 10. (a) Schematic illustration of NIR/pH dual stimuli-responsive nanodrug carrier (A-
GNS/DNA/DOX) for chemical/PTT combination therapy for cancer. (b) Cumulative DOX release 
from A-GNS/DNA/DOX in the presence or absence of NIR and at different pH values. Reproduced 
with permission from the publisher of corresponding reference [206]. 
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biocompatibility, good permeability, improved safety and high anti-tumor efficiency. This prodrug 
strategy is expected to provide a feasible method for advanced chemotherapy [217]. In addition, 
redox/light responsive system is also an effective strategy for cancer treatments due to the scheme of 
dual triggers [218,219]. In a recent report, a thioacetal-based ROS-sensitive amphiphilic copolymer 
(PTK) was developed to load NIR cyanine dye IR 780 and DOX to obtain stable nanoparticles 
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led to the cleavage of thioacetal linker in PTK and the release of DOX, enabling chemotherapy and 
phototherapy [222]. Pu et al. synthesized an organic semiconducting pro-nanoenzyme (OSPE) 
recently, which could be activated by NIR light irradiation. OSPE is made by binding semiconductor 
polymer nanoparticles (SPN) to proenzyme (based on cytotoxic ribonuclease A) via singlet oxygen 
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Figure 10. (a) Schematic illustration of NIR/pH dual stimuli-responsive nanodrug carrier
(A-GNS/DNA/DOX) for chemical/PTT combination therapy for cancer. (b) Cumulative DOX release
from A-GNS/DNA/DOX in the presence or absence of NIR and at different pH values. Reproduced
with permission from the publisher of corresponding reference [206].

Redox and ROS responsive systems are often used in combination with exogenous stimuli
to achieve better stability and controlled release schemes. These two stimuli conditions can be
combined to form a dual stimuli-responsive systems [216]. For example, Xu et al. copolymerized
two camptothecin (CPT) prodrug monomers with disulfide bond and oxalate bond on β-cyclodextrin
and hydrophilic poly (ethylene glycol) methyl ether methacrylate (OEGMA) to prepare a novel dual
redox stimulus-responsive prodrug. This prodrug has small particle size, high stability, excellent
biocompatibility, good permeability, improved safety and high anti-tumor efficiency. This prodrug
strategy is expected to provide a feasible method for advanced chemotherapy [217]. In addition,
redox/light responsive system is also an effective strategy for cancer treatments due to the scheme of
dual triggers [218,219]. In a recent report, a thioacetal-based ROS-sensitive amphiphilic copolymer
(PTK) was developed to load NIR cyanine dye IR 780 and DOX to obtain stable nanoparticles
(IR780/DOX@PTK). IR 780 was used as photosensitizer, photothermal agent and imaging contrast
agent simultaneously [220,221]. Upon the irradiation of 808 nm NIR light, IR 780 could not only
initiate PDT and PTT, but also used for photothermal imaging. The generated singlet oxygen (1O2)
led to the cleavage of thioacetal linker in PTK and the release of DOX, enabling chemotherapy
and phototherapy [222]. Pu et al. synthesized an organic semiconducting pro-nanoenzyme (OSPE)
recently, which could be activated by NIR light irradiation. OSPE is made by binding semiconductor
polymer nanoparticles (SPN) to proenzyme (based on cytotoxic ribonuclease A) via singlet oxygen
(1O2)-sensitive linkers. When SPN released singlet oxygen, it could not only carry out photodynamic
therapy, but also released proenzyme to degrade cancer-specific RNA, the synergistic treatment by
chemo/phototherapy for cancers [223] (Figure 11). Other dual/multiple stimuli-responsive systems for
cancer treatments include pH/magnetic responsive systems [224,225] and other pH-based multiple
stimuli-responsive systems [226–228].



Int. J. Mol. Sci. 2020, 21, 6380 21 of 43
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 21 of 44 
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nanoenzyme (OSPE). (b) Under NIR irradiation, 1O2 was generated by SPNC (control nanoparticles 
without enzyme modification) or OSPE. (c) The correlation of the amount of enzyme released from 
OSPE with the time of NIR irradiation. (d) In the absence and presence of H2O2, the relative enzyme 
activity of OSPE after NIR light irradiation for different times. (e) Confocal fluorescence images and 
(f) flow cytometry analysis of 4T1 cancer cells treated with SPNC or OSPE ([SPN] = 40 µg/mL) with 
or without 808 nm laser irradiation (0.3 W/cm2) for 10 min. (g) The agarose gel electrophoresis of RNA 
extracted from 4T1 cancer cells, treated with SPNC or OSPE ([SPN] = 40 µg/mL), and treated with or 
without 808 nm laser irradiation (0.3 W/cm2) for 10 min. Reproduced with permission from the 
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Inflammation is an immune response to infection and tissue damage so that the body can be 
protected from injury. However, it can also cause many diseases such as asthma, cardiovascular 
diseases, neurodegenerative diseases and autoimmune diseases (including rheumatoid arthritis, 
systemic lupus erythematosus and other diseases) [229,230]. These inflammatory chronic diseases 
can seriously affect health, and there are many obstacles to the treatment of the inflammatory chronic 
diseases. 
  

Figure 11. (a) Anticancer mechanism of NIR/1O2 dual stimuli-responsive organic semiconductor
pro-nanoenzyme (OSPE). (b) Under NIR irradiation, 1O2 was generated by SPNC (control nanoparticles
without enzyme modification) or OSPE. (c) The correlation of the amount of enzyme released from
OSPE with the time of NIR irradiation. (d) In the absence and presence of H2O2, the relative enzyme
activity of OSPE after NIR light irradiation for different times. (e) Confocal fluorescence images and
(f) flow cytometry analysis of 4T1 cancer cells treated with SPNC or OSPE ([SPN] = 40 µg/mL) with or
without 808 nm laser irradiation (0.3 W/cm2) for 10 min. (g) The agarose gel electrophoresis of RNA
extracted from 4T1 cancer cells, treated with SPNC or OSPE ([SPN] = 40 µg/mL), and treated with
or without 808 nm laser irradiation (0.3 W/cm2) for 10 min. Reproduced with permission from the
publisher of corresponding reference [223].

3.1.2. Inflammation

Inflammation is an immune response to infection and tissue damage so that the body can be
protected from injury. However, it can also cause many diseases such as asthma, cardiovascular diseases,
neurodegenerative diseases and autoimmune diseases (including rheumatoid arthritis, systemic lupus
erythematosus and other diseases) [229,230]. These inflammatory chronic diseases can seriously affect
health, and there are many obstacles to the treatment of the inflammatory chronic diseases.
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The characteristic conditions within the microenvironment of inflammatory tissues include lower
pH value and higher ROS concentration [231,232]. Therefore, pH/ROS dual stimulus-responsive
system is the most widely used treatment strategy for inflammation therapy [233,234]. For example,
Almutairi et al. designed a ROS-reactive dextran-drug conjugate (Nap-Dex) and blended Nap-Dex
with an acid-sensitive acetal-dextran polymer (Ac-DEX) to obtain pH/ROS dual stimulus-responsive
nanoparticles. The ROS-responsive PBA-modified anti-inflammatory drug naproxen was used.
When the nanodrug was stimulated by H2O2 and acidic environment, the Ac-DEX and PBA structure of
the nanodrug micelle was cleaved, thereby releasing naproxen (Nap) for the treatment of inflammatory
tissues. Dual stimuli-responsive nanodrug micelles are more effective in scavenging ROS. Compared
with free naproxen, dual stimuli-responsive nanoparticles reduced the levels of proinflammatory
cytokines IL-6 and TNFα by 120 times and 6 times respectively [235]. In addition to lower pH and
higher ROS concentrations, inflammation of tissues tends to have slightly increased local temperature
(1–2 ◦C above ambient temperature) [236]. Therefore, the temperature/pH dual stimulus-responsive
system has also been applied in the treatment of inflammation [237,238]. A microbead system was
designed with a porous poly (D, L-lactic-co-glycolic acid) (PLGA) shell coupled with a gelatin plug
(thermal-responsive switch). Additionally, N-palmitoyl chitosan (NPCS) (pH-responsive switch) was
employed as a core. Vancomycin was loaded in the nanoparticles as the inflammatory therapeutic
drug. This dual stimuli-responsive drug MBs could release the drug only in the presence of both
stimuli (temperature and pH), preventing unexpected drug release due to accidental stimulus [239].

Inflammatory bowel disease (IBD) is a chronic condition of idiopathic inflammation. IBD can affect
the entire gastrointestinal tract (GI) and increases the risk of colorectal cancer [240]. The incidence of
IBD worldwide has increased and effective treatment approaches are needed. Therefore, drug delivery
systems utilizing IBD microenvironment characteristic conditions (low pH, colonic enzymes, and high
ROS concentration) as responsive factors have attracted extensive attention [241,242]. Li et al. reported
a nano-platform of oxidatively sensitive dextran (OxiDEX) with its exterior modified by chitosan
(CS) and then further encapsulated by pH-sensitive hydroxypropyl methylcellulose acetate succinate
(HPMCAS). The intestinal-specific antibiotic rifampicin was used as a model drug to form pH/ROS
dual stimulus-responsive nanodrug composites. This novel nanodrug composite remained stable in the
upper gastrointestinal tract, but HPMCAS were cleaved in the intestine, thereby releasing nanodrug
particles. Triggered by higher ROS levels, rifampicin is released into inflamed tissues. Compared with
traditional enteric drug formulations, this nanodrug composite effectively reduced the permeability of
drugs at the intestinal epithelium, preventing non-specific absorption and side effects [243] (Figure 12).
In addition, some oral drug formulations responsive to pH have been used for clinical treatments.
Examples include 5-aminosalicylic acid encapsulated in capsules made from copolymers of acrylic
acid derivatives and methyl methacrylate (Eudragit®), such as Salofalk®, Calitoflak®, Claversal®,
Pentasa® and other brands [244–246].

Other inflammation examples include neuroinflammation, which represents an abnormal condition
of central nervous system in many neurodegenerative diseases [247]. Some serious neurodegenerative
diseases include Alzheimer’s disease, epilepsy, Huntington’s disease and Parkinson’s disease [248–250].
Strategies for the treatment of these diseases are desired and some ongoing efforts have been made
on stimulus-responsive systems that can target excessive ROS concentrations in neuroinflammatory
tissues [251,252].
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of nanocomposites. (b) OxiDEX NPs released Rifaximin (RIF) in PBS buffer solutions with different 
concentrations of H2O2. (c) The SEM images of RIF NPs@MF that were dissolved in simulated gastric 
fluid (SGF) (pH 1.2) for 2 h, and in PBS solution (pH 6.8) for 5 min and 2 h. (d) Profiles of drug release 
from nanocomposites (RIF NPs@MF and CS-RIF NPs@MF) and from RIF@MF formulations. Samples 
were first incubated in SGF (pH 1.2) for 2 h and then in PBS solution (pH 6.8) with or without H2O2 
for 6 h. Reproduced with permission from the publisher of corresponding reference [243]. 

3.1.3. Oral Medications 

Oral medication is the preferred route of administration because of better patient compliance. 
However, many drugs themselves (protein drugs/polypeptide drugs) are sensitive to the acidic and 
proteolytic environment of the gastrointestinal tract, so oral administration remains a challenge. 
Factors for oral administration that should be considered include (1) the activity of biopharmaceutical 
macromolecules in the gastrointestinal (GIT) environment, (2) the permeability in the intestine, and 
(3) drug molecules can be absorbed into the systemic circulation through the intestine [30,253]. 

Diabetes mellitus is an endocrine disease characterized by hyperglycemia, which is difficult to 
cure and can lead to various serious complications. The conventional way to treat diabetes is to inject 
insulin using subcutaneous administration, but the development of an effective orally administered 
insulin formulation would be preferred. The first attempt to treat diabetes with oral insulin can date 
back to 1922 but the failure made researchers realize that the main obstacle to oral delivery of 
biomacromolecules was mainly from the human body itself [254]. Chitosan/insulin/heparin sodium 
(CS/Ins/HS) nanoparticles were synthesized by ionic gel method, in which heparin sodium with three 
acidic functional groups can enhance the stability of the nanoparticle system in the stomach. Mucosal 
affinity for CS/Ins/HS in the small intestine were also improved due to the interaction of ins/HS with 
the positive charge on chitosan. In addition, Acrylate-grafted-carboxymethyl starch (CMS-g-AA) and 

Figure 12. (a) The synthesis strategy of NP and CS-NP, and the schematic diagram of the preparation
of nanocomposites. (b) OxiDEX NPs released Rifaximin (RIF) in PBS buffer solutions with different
concentrations of H2O2. (c) The SEM images of RIF NPs@MF that were dissolved in simulated gastric
fluid (SGF) (pH 1.2) for 2 h, and in PBS solution (pH 6.8) for 5 min and 2 h. (d) Profiles of drug release
from nanocomposites (RIF NPs@MF and CS-RIF NPs@MF) and from RIF@MF formulations. Samples
were first incubated in SGF (pH 1.2) for 2 h and then in PBS solution (pH 6.8) with or without H2O2 for
6 h. Reproduced with permission from the publisher of corresponding reference [243].

3.1.3. Oral Medications

Oral medication is the preferred route of administration because of better patient compliance.
However, many drugs themselves (protein drugs/polypeptide drugs) are sensitive to the acidic and
proteolytic environment of the gastrointestinal tract, so oral administration remains a challenge.
Factors for oral administration that should be considered include (1) the activity of biopharmaceutical
macromolecules in the gastrointestinal (GIT) environment, (2) the permeability in the intestine,
and (3) drug molecules can be absorbed into the systemic circulation through the intestine [30,253].

Diabetes mellitus is an endocrine disease characterized by hyperglycemia, which is difficult to
cure and can lead to various serious complications. The conventional way to treat diabetes is to inject
insulin using subcutaneous administration, but the development of an effective orally administered
insulin formulation would be preferred. The first attempt to treat diabetes with oral insulin can
date back to 1922 but the failure made researchers realize that the main obstacle to oral delivery of
biomacromolecules was mainly from the human body itself [254]. Chitosan/insulin/heparin sodium
(CS/Ins/HS) nanoparticles were synthesized by ionic gel method, in which heparin sodium with three
acidic functional groups can enhance the stability of the nanoparticle system in the stomach. Mucosal
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affinity for CS/Ins/HS in the small intestine were also improved due to the interaction of ins/HS with
the positive charge on chitosan. In addition, Acrylate-grafted-carboxymethyl starch (CMS-g-AA)
and methacrylic acid (MAA) were used to synthesize pH/amylase dual stimuli-responsive hydrogels
(CMS-g-AA/PMAA). Drug-loaded hydrogels can be contracted in the stomach to ensure the stability of
nanoparticles. However, in the small intestine the hydrogel can be swollen so that insulin could be
released, resulting from the carrier degradation by intestinal amylase. Additionally, because of chitosan
and heparin sodium, the reversible opening of the pathway between adjacent intestinal epithelial cells
allowed insulin molecules to pass through the intestinal epithelial cells. This approach can also be
used for the design of orally administered insulin formulations [255].

In addition to oral insulin, many stimulus-responsive systems have been designed for the
treatment of other diseases such as Helicobacter pylori [256], various cancers [257–259]. For example,
Oupciky et al. reported a nanostructured lipid carrier (NLC)-based PTT formulation that can be
orally administered. NLC showed its excellent biocompatibility, degradability and stability in the
gastrointestinal tract. Under NIR light, NLC loaded with IR780 can be used for photothermal treatment
on cancer cells [260] (Figure 13). Zhang et al. developed a supramolecular elastomer gel based on poly
(acryloyl 6-aminocaproicacid) (PA6ACA) and poly (methacrylic acid-ethyl acrylate) (EUDRAGIT L
100-55), which remained stable in acidic gastric environment, but dissolved in the small intestine with
neutral pH, allowing safe passage through the stomach and into the intestine afterwards. Under acidic
conditions, carboxyl groups were protonated, and the inter-chain hydrogen bonds between carboxyl
groups and amide units on PA6ACA and L 100-55 formed a loosely cross-linked supramolecular
network with water trapped inside, providing good elasticity and stability. Under neutral pH
conditions, the carboxyl groups in the molecule underwent deprotonation, and the disappearance of
hydrogen bonds made the gel dissolve quickly. This type of gel material could be used as a good
carrier for oral drugs with the advantages of strong elasticity, easy compression and folding. The use
of this material for oral delivery drug was also evaluated in pigs [261]. Stimulus-responsive oral
drug delivery systems are still under development and much efforts are being endeavored in order
to improve delivery efficiency and targeting capability and to reduce the side effects (e.g., potential
pathogenic risk of agents used for increased intestinal permeability).
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permission from the publisher of corresponding reference [260].

3.2. Applications for Bio-Imaging

Non-invasive bioimaging approaches have been used for observation of biological activities
and disease diagnosis. Commonly used bioimaging techniques include optical imaging, magnetic
resonance imaging (MRI), ultrasound (US), computed tomography (CT), positron emission tomography
(PET). Photoacoustic imaging is another emerging imaging modality that shows potential for future
clinical use. In this section, we will mainly introduce the latest research results of stimulus responsive
nano-systems used for bio-imaging.

Among the optical imaging methods, fluorescence imaging plays an important role because
of its high resolution and low cost. For higher accuracy and specificity, optical imaging is also
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synergistically used with chemo-pharmacotherapy [262,263]. Huang et al. recently reported a pH
responsive nanocarrier using NIR-II dye-based multifunctional telechelic glycopolymer (TTQ-TC-PFru).
The NIR-II dyes in PFru-BTZ-PBOB nanoparticles could be used for optical imaging and photothermal
therapy. Additionally, anticancer drug bortezomib (BTZ) was conjugated for chemotherapy. This novel
NIR-II dye-based drug-loaded nanoparticles showed potential because of their precise targeting
capability and the real time imaging modality to achieve better therapeutic effects [264]. In addition,
a site-selective in situ growth-induced self-assembly method was reported recently. pH-responsive
micelles were synthesized based on site-specific human serum albumin-poly(2-(diisopropylamino) ethyl
methacrylate) (HSA-PDPA) conjugates. ICG could be loaded into the core of micelles. When present in
the weak acid microenvironment in tumors, the nanoparticles rapidly decomposed into protonated
moieties, allowing the fluorescence enhancement by 3–6 fold compared to non-stimulus-responsive
nanoprobe and ICG [265] (Figure 14a).
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Figure 14. Stimulus-responsive systems for different bioimaging modalities. (a) Responsive to the acidic
microenvironment in tumors, nanoprobes significantly enhanced tumor fluorescence imaging [265].
(b) ROS significantly enhanced the ultrasound signal [266]. (c) MR contrast could be enhanced in the
tumor microenvironment by ATP/pH stimuli [267]. (d) PA signal could be significantly enhanced in
tumor microenvironment by NO/pH stimulation [268]. (e) PET imaging enabled real-time monitoring
of Enzyme/NIR/pH stimulus-responsive drug delivery systems [269]. (f) pH and NIR responsive
system resulted in significant enhancement of CT contrast [270]. Reproduced with permission from the
publishers of corresponding references.

US has become one of the most commonly used medical imaging techniques due to its excellent
portability, noninvasiveness and low cost. However, ultrasound contrast imaging typically requires
the use of diffusible microbubbles to diffuse into the surrounding media to enhance contrast. With the
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diffusion of gas, these microbubbles will be quickly cleared in vivo, for this reason the ultrasonic
imaging has a shorter imaging time [266,271,272] (Figure 14b). In recent reports, a pH responsive solid
ultrasound nanosensor (sUN) was developed that did not require the generation of bubbles. The sUN
consists of three parts, a multi-empty silicone shell, a solid silica core and a pH-sensitive coating on its
surface. This new type of sUN could expand and shrink responsive to the change of pH value owing to
the pH-sensitive coating. When the concentration of hydrogen ions decreased, the ultrasound imaging
was significantly enhanced [273].

Magnetic resonance imaging (MRI) is a powerful technology for diagnosis and bioimaging of
diseases because of its non-invasiveness, reasonable imaging time, deep tissue penetration and high
resolution [274,275]. Zhang et al. recently developed a triple stimulus (GSH/pH/NIR)-responsive
nanocarrier based on magnetic hollow porous carbon nanoparticles (MHPCN). The outer shell of
MHPCN consists of two layers: the inner layer with iron oxide (Fe3O4) as contrast agent for MRI and
the outer layer with fluorescent carbon nanodots as the outer layer. DOX was selected as a model
drug and folic acid (FA) was crosslinked for targeting purpose. This new triple stimulus-responsive
nanodrug carrier can achieve synergistic photothermal/chemical therapy of tumor guided by MRI
under the synergistic stimulation of low pH, high concentration of GSH and external NIR light in tumor
cells [276]. In addition, a strategy using magnetic resonance/near-infrared fluorescence (MR/NIRFL)
was developed to determine the location of tumors. Using pH and NIR as stimuli, chemo/photothermal
therapy could be achieved for efficient cancer nanotheranostics [277]. Yang et al. used polyphenols as
phase transfer agents to increase the solubility of hydrophobic magnetic nanoparticles. Meanwhile,
polyphenols also promoted the self-assembly of nanoparticles. The core of this assembly is ATP/pH
responsive for the dual imaging of MR/FL and photothermal therapy. When the nano-assembly entered
the tumor microenvironment with lower pH value and higher concentration of ATP, they showed
enhanced MR contrast (due to the strong binding affinity of ATP to Fe3O4) and significantly altered
fluorescence signal (the protonation of hydroxyl groups in tannic acid (TA). Thus, functional activities
in tumors could be tracked using this MR responsive nanoplatform [267] (Figure 14c).

Photoacoustic (PA) imaging is an emerging biomedical imaging modality with deep penetration
depth, high spatial resolution, and high selectivity that combines the advantages of optical imaging
and ultrasound imaging [278]. When laser irradiation is applied to biological tissues, PA signals are
generated in the tissues, and the detailed information of human internal tissues could be collected
and reconstructed in computer. Tan et al. designed a nitric oxide (NO)/pH activatable theranostic
nanoprobe (DATN), taking advantage of high concentration of nitric oxide and low pH in tumor
microenvironment. Benzo [C] [1,2,5] thiadiazole-5,6-diamine was used for the stimulus responsive
π-receptor-π-donor (D-π-A-π-D) molecules. In the tumor microenvironment, DATN could turn on
PA signals for tumor specific PA imaging in vivo. Using these dual stimuli, the PA signal intensity
of DATN was 9.8 times higher than that NO responsive system and 132 times higher that of acid
responsive system [268] (Figure 14d). Pu recently reported the synthesis of a fluoro-photoacoustic
polymeric renal reporter (FPRR) for noninvasive near-infrared fluorescence (NIRF) and PA dual
imaging of drug-induced acute kidney injury (AKI) in mice. FPRR consists of dextran (used to promote
renal clarity), hemicyanine CyOH (used for imaging), and γ-glutamate (enzyme-responsive moiety).
FPRR exhibited high renal clearance efficiency in living mice, it also enhanced NIRF and PA signals for
real-time molecular imaging of AKI after the enzyme responsive moiety is cleaved. This nanoplatform
showed potential for early detection of AKI in clinics [279].

Positron emission tomography (PET) can provide precise biological information on metabolic
processes with whole-body penetration and excellent sensitivity at the molecular level using
radiopharmaceuticals. It has been widely used in clinical disease treatment and diagnosis [280].
When used in combination with computed tomography (CT), the clinical effect of PET can be
improved for disease diagnosis such as tumors and heart diseases [281]. For example, hyaluronic acid
(HA)-functionalized MoS2 was designed with the surface modified by PEI and 64Cu (positron emitter
with a half-life of 12.7 h). The resulting MoS2-PEI-HA multifunctional nanoplatform was endowed
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with the property of triple stimuli (pH/HAase/NIR) responsiveness. This new nanocarrier can be used
as contrast agent for PET imaging, providing an effective way to monitor the treatment process and
optimize disease management plan [269] (Figure 14e). Chen et al. developed a multimodal imaging
synergistic therapy based on amphiphilic iron oxide-gold Janus nanoparticles (Fe3O4-Au-JNPs) in
response to pH stimulus. It was shown that under the guidance of PET, MR and PA multimodal
imaging, Fe3O4-Au-JNPs could effectively carry out ROS-mediated cancer treatment. After intravenous
injection of [64Cu] radiolabeled JNP vesicles, PET imaging showed that the drug vesicles remained
stable in the blood, but gradually dissociated in the liver, showing reduced hepatotoxicity. PET imaging
modality provided effective real-time monitoring of the whole treatment process [282].

Computed tomography (CT) collects information of anatomical structures via X-ray scans and
cross-sectional images are reconstructed by computer operation. Due to its penetration capability and
fast scanning speed, CT is one of the most widely used clinical imaging methods. It is also usually
used in combination with MRI, PA and other imaging modalities to achieve better imaging results.
For example, as coronavirus disease 2019 (COVID-19) is spreading worldwide, CT has served as an
important imaging tool for the assessment of COVID-19. CT scans can spot abnormalities of lungs
such as multiple opacities (denser, more profuse and confluent) [283]. In other applications such as
cancer diagnosis and treatment, CT also plays a significant role and is mostly used in combination
with other imaging approaches. For example, Yu et al. recently developed bismuth nano-raspberries
(Bi-BSA NRs) modified by BSA. Bi-BSA NRs have high drug loading efficiency (~69%) and can release
the cargo in response to pH and NIR stimuli. The efficiency of CT contrast agent is improved by
infrared thermal and PA. 100% tumor treatment rate was achieved by chemo-photothermal therapy.
In conclusion, this Bi-BSA NRs have potential for the application of multimodality imaging and
combination therapy [270] (Figure 14f).

4. Conclusions

In summary, nanotechnology-based therapeutics have developed rapidly in recent years, and a
wide variety of novel strategies have been explored. Particularly, stimulus-responsive nano-systems
warrant attention as they show promise in targeting and controlled release in response to endogenous
or exogenous stimuli. Owing to their unique advantages, stimulus-responsive systems have been
widely investigated as a strategy well-suited for nanotherapeutics. Furthermore, dual/multiple
stimulus-responsive systems have been investigated for more accurate disease diagnosis and
management. Self-immolative linkers with different cleavage and self-immolation rates hold potential
as a versatile technology to address controlled drug release. Stimulus-responsive systems have
shown promise for the treatment of various cancers, IBD, neuroinflammation, gastrointestinal diseases,
bio-imaging and many others. However, the translational potential, especially for the highly complex
chemically modified systems, is a concern. Drug-device combinations for external stimuli are
more complicated than drug-alone approaches from regulatory perspectives. For example, for cancer
treatment, stimulus-responsive systems treating only local tumors would require one to find advantages
over the well-established modalities of surgery, radiotherapy and other ablation approaches, which do
not have the complications of drugs. In addition, toxicity of not only the API, but also the carrier system,
is another factor for consideration. Nevertheless, with smart and rational design, stimulus-responsive
nanotechnology adds a new weapon to drug delivery and molecular imaging arsenal, and warrants
further research and development.
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Abbreviations

API Active pharmaceutical ingredient
AAV2 Adeno-associated virus 2
APA Apatite
ACP Acetylated-chondroitin sulfate-protoporphyrin
BSA Bovine serum albumin
CDDP Cisplatin
CPT Camptothecin
CS Chitosan
CT Computed tomography
COVID-19 Coronavirus disease 2019
DSS Dextran sodium sulphate
DPPC 1,2-dipalmitoyl-sn-glycerin-3-phosphocholine
DOX Doxorubicin
DAEs Diarylethenes
Epo B Epothilone B
FI Fluorescence imaging
FA Folic acid
FPRR Fluoro-photoacoustic polymeric renal reporter
GSH Glutathione
GIT Gastrointestinal tract
GNS Gold nanostars
GOx Glucose oxidase
Hf Hafnium
HPMCAS Hydroxypropyl methylcellulose acetate succinate
HPPH Hexyloxyethy-pyropheophorbide
ICG Indocyanine green
IBD Inflammatory bowel disease
Ins Insulin
LCST Lower critical solubility temperature
MRI Magnetic resonance imaging
MTX Methotrexate
MC Merocyanine
MSNs Mesoporous silica nanoparticles
MBs Microbubbles
NCPs Nanoscale coordination polymers
NQO1 NAD(P)H, quinone oxidoreductase isoenzyme I
Nap Naproxen
NPCS N-palmitoyl chitosan
NIPAAm N-isopropylacrylamide
NIRF Near-infrared fluorescence
NLC Nanostructured lipid carrier
OEGMA Poly (ethylene glycol) methyl ether methacrylate
OSPE Organic semiconducting pro-nanoenzyme
OxiDEX Oxidatively sensitive dextran
OPV Oligo (p-phenylene vinylene) derivative
ONB O-nitrobenzyl
OEG Oligo (ethylene glycol)
PBA Phenylboronic acid
PBE Phenylboronic ester
PDT Photodynamic therapy
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PLGA Poly (d,l-lactic-co-glycolic acid)
PEGDA Poly (ethylene glycol) diacrylate
PS Polystyrene
PEG Polyethylene glycol
PEI Polyethylenimine
PAMAM Poly(amidoamine)
PNP-UC PEG-NMAB-PLA-UCNPs
PTX Paclitaxel
PDP Pentadecylphenol
pTSL Polymer-modified temperature-sensitive liposome
PAA Propylacrylic acid
PAI Photoacoustic imaging
PGA Penicillin G amidase
PET Positron emission tomography
P-gp P-glycoprotein
ROS Reactive oxygen species
RAFT Reversible addition-break chain transfer
SPN Semiconductor polymer nanoparticles
sPLA2 Phospholipase A2
sUN Solid ultrasound nanosensor
SP Spiropyran
TK Thioketal
TL Thioketal linker
TGMS Triglyceride monostearate
TPA Two-photon absorption
TSL Temperature-sensitive liposomes
US Ultrasound
UC Upconversion
UCST Upper critical solubility temperature
VEGF Vascular endothelial growth factor
W/O/W Water/oil/water
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