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ExagBov: a public database 
of annotated variations from 
hundreds of bovine whole-exome 
sequencing samples
Rotem Raz1,2, Zvi Roth1 & Moran Gershoni  1 ✉

Large reference datasets of annotated genetic variations from genome-scale sequencing are essential 
for interpreting identified variants, their functional impact, and their possible contribution to diseases 
and traits. However, to date, no such database of annotated variation from broad cattle populations 
is publicly available. to overcome this gap and advance bovine NGS-driven variant discovery and 
interpretation, we obtained and analyzed raw data deposited in the SRA public repository. Short reads 
from 262 whole-exome sequencing samples of Bos Taurus were mapped to the Bos Taurus ARS-UCD1.2 
reference genome. The GATK best practice workflow was applied for variant calling. Comprehensive 
annotation of all recorded variants was done using the Ensembl Variant Effect Predictor (VEP). An in-
depth analysis of the population structure revealed the breeds comprising the database. the Exomes 
Aggregate of Bovine- ExAgBov is a comprehensively annotated dataset of more than 20 million short 
variants, of which ~2% are located within open reading frames, splice regions, and UTRs, and more than 
60,000 variants are predicted to be deleterious.

Background & Summary
Genetic variation databases are essential for the study of species population and biology1–3 and, particularly, 
for interpreting variants in the context of diseases or other phenotypes4. For instance, a key step in discover-
ing causal variation is filtering candidate variants by their frequency. In the last decade, several databases for 
human genetic variation, such as the 1000 Genomes Project5, the Exome Variant Server1, and the gnomAD6, 
have become publicly available. However, in animal studies such resources are sparse or altogether absent, spe-
cifically for livestock that is intensively studied for genetic and genomic selection7.

About a decade ago, the 1000 Bull Genomes Project was initiated to facilitate accurate imputation of animals 
genotyped with SNP arrays using whole-genome sequence data to find causative mutations affecting economic 
and health traits in beef and dairy cattle2. As of 2019, this project reported whole-genome sequences of 2,703 
individuals representing a large proportion of the world’s cattle diversity. Analysis of these data yielded more 
than 80 million single-nucleotide variations (SNVs) and small insertion deletions (INDELs), which has contrib-
uted to the identification of deleterious mutations associated with diseases and embryonic lethality2,3. However, 
although the per-chromosome VCF files for 1832 samples are available at the European Nucleotide Archive 
website8 to our knowledge, the entire database of annotated variation including their population allele frequen-
cies, is not publicly available. Moreover, the requirements for joining the consortium are not feasible for every 
research group.

To address this need and improve genome-scale sequencing-driven research, we created a genetic varia-
tion database of cattle from short reads deposited in public databases. As of June 2020, we have obtained all 
available bovine whole-exome sequencing (WES) samples deposited at the NCBI Sequences Reads Archive 
(SRA) database. By querying the SRA identifiers, all bovine WES samples were identified, and their fastq files 
were downloaded. We then mapped the fastq short reads to the most updated Bos Taurus reference genome 
(ARS-UCD1.2)9 and conducted variant calling by applying the GATK best practice recommended workflow10. 
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This step produced a joint Variant Call Format (VCF) file of all the 262 samples. The joint VCF file includes the 
genotypes of all individuals, allele number (AN), allele frequency (AF), the GATK inbreeding coefficient, and 
the coverage depth (DP) of each variant. The inbreeding coefficient measures the excess heterozygosity at a var-
iant site. A very negative value can be used as a proxy for mapping quality, whereas positive values can account 
for biases due to population stratification or inbreeding. We revealed the main breeds that compose the database 
by population structure analysis. Using kinship analysis, we found that only a few samples are closely related, 
and most of the bovine samples share only a small fraction of their genomes. The current release of the ExAgBov 
database records more than 20 million short variants, similar to the first reports from the 1000 Bull Genomes 
Project, which was carried out on whole-genome sequencing (WGS) samples from 234 animals3. This dataset is 
a useful tool for variant annotation in WGS and WES studies. In addition, it can be used to search for variations 
around quantitative trait loci identified in genome-wide association studies or any genes of interest.

Methods
Data acquisition and short read mapping. We used the SRA Toolkit (https://trace.ncbi.nlm.nih.gov/
Traces/sra/sra.cgi?view=software) to obtain from the publicly available SRA at NCBI (https://www.ncbi.nlm.nih.
gov/sra) fastq files of bovine short reads from 262 Bos Taurus samples. A metadata file of all samples was depos-
ited in the ExAgBov repository at Mendeley https://doi.org/10.17632/m3p9m9vc4g.3. Exome sequences were 
analyzed as follows: Raw reads were mapped to the reference genome (Bos taurus ARS-UCD1.2)9 downloaded 
from the Ensembl genome browser (http://ftp.ensembl.org/pub/release-104/fasta/bos_taurus/dna/). Using the 
default arguments, reads were aligned to this genome build by the Burrows-Wheeler Aligner software (bwa-mem 
algorithm)11. Next, to avoid biases introduced by data generation steps such as PCR amplification, PCR dupli-
cates were removed using Picard tool (version 2.20.2; https://broadinstitute.github.io/picard/). Base quality score 
recalibration (BQSR) was performed to detect errors made by the sequencing machine, and the curated BAM files 
were coordinated, sorted, and indexed using the Picard algorithm.

Variant calling and annotation. Variant calling was carried out with the Genome Analysis Tool Kit 
(GATK, version 4.1.6.0)10 as recommended by the GATK workflow. SNVs and INDELs variants were called via 
local re-assembly of haplotypes that were generated by the HaplotypeCaller algorithm. The HaplotypeCaller was 
run per sample to generate an intermediate genomic VCF (g.VCF) file, which was then used for efficient joint 
genotyping of multiple samples while retaining coverage data for uncalled or non-polymorphic sites. Genotype 
files were produced with the CombineGVCFs algorithm by first combining the g.VCF files of all samples and then 
by a joint call of the combined g.VCF file. The joint call procedure allows the calculation of the GATK inbreeding 
coefficient for each variant. This measurement, which is based on the Hardy-Weinberg principle, was calculated 
as: 1- [observed heterozygotes / expected heterozygotes]. Finally, all variants in the combined VCF file under-
went comprehensive annotation by the Ensembl VEP12. Because the analyzed samples were possibly obtained 
from different sequencing platforms using different read lengths and coverages, we calculated and obtained the 
median, average, and maximal sequence depth for all documented variants. In addition, the DP of all variants 
in all samples is provided in the ExAgBov repository13. Variant calling in the complete database was carried out 
without filtering, allowing users to use the supporting information and perform filtering steps according to their 
requirements and needs. In addition, we produce a filtered database by performing the following filtering steps: 
we calculated the 95th percentile depth of coverage for each of the variants and then filtered out only those variants 
that passed 95th percentile >  = 4 with a mean quality (MQ) > 30. The filtering steps retained > 2.7 million vari-
ants, and these variants’ consequence distribution can be found in figure S1. The outcome filtered database file is 
also provided in the ExAgBov repository13, at https://data.mendeley.com/datasets/m3p9m9vc4g/.

ExagBov population structure analysis. To assess the population structure of the ExAgBov database 
and relatedness among samples, we computed a kinship matrix. From the joint VCF file, we obtained more than 
860 thousand informative alleles with a total number of alleles called (AN) > 150, allele frequency (AF) > 0.03, 
and mean quality (MQ) > 30. Next, using plink software14, we transformed the filtered VCF into plink bed and 
ped files using the make-bed flag. The identical by state (IBS) similarity matrix was then calculated using the 
--genome flag and a multidimensional scaling (MDS) analysis was carried out with --cluster and --mds_plot 
arguments. Then, using KING software15, we computed the pairwise kinship levels among all ExAgBov samples 
by calculating the proportion of Identical By Descent (IBD) genomic segments shared by each bovine pair. The 
resulting table was then converted to a kinship matrix by a Perl script, where the columns and rows are the bovine 
WES samples, and the bins are the IBD proportion of each pair. The kinship matrix was hierarchically clustered 
by the Pearson correlation coefficient using Morpheus software (https://software.broadinstitute.org/Morpheus) 
and the population structure was visualized as a clustered heatmap.

To assess the degree of inbreeding in the population, we calculated the Runs of Homozygosity (ROH)15 using 
the KING software. The inferred breed affiliation of the clustered samples in the MDS and the hierarchically 
clustered matrix was determined by obtaining the WES sample breeds from the SRA metadata (see https://doi.
org/10.17632/m3p9m9vc4g.313), whenever denoted in the relevant SRA project. Thus, unknown samples within 
a cluster of known samples were assumed to be from the same or closely related breed.

Selection analysis. Rare variants are predominantly affected by non-adaptive factors, whereas selection 
mainly affects variants with higher population frequencies16–18. Based on this principle, we assessed selection 
trends for each gene. First, we obtained all missense and synonymous variants with an average depth (DP) > 5 
and AN > 150. Then, the number of missense and synonymous variants for each gene was calculated for two AF 
ranges: less than 0.01, representing rare to low-frequency variants, and greater than 0.03, representing low to 
common polymorphism. Then, the per-gene missense to synonymous ratio (M/S) was calculated for each range, 
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as described previously16. Lastly, we calculated the M/S<0.01 to Ms/S>0.03 ratio for each gene as an indicator for 
selection direction. Thus, if functional substitutions are adaptive in nature, then the M/S<0.01 to M/S>0.03 ratio 
is expected to be ≫ 1, and vice versa for purifying selection. Top 100 genes with M/S<0.01 to M/S>0.03, all with 
ratios > 2, were further assessed for their functional contribution by enrichment analysis using GeneAnalytics19.

Data Records
The compressed ExAgBov database file can be downloaded from the Mendeley Data repository13. The database 
has three components. The first seven columns are in the VCF format, followed by four columns denoting the 
allele count (AC), AN, AF, and inbreeding coefficient. A description of the VCF file format can be found at 
https://gatk.broadinstitute.org/. The second section includes all the VEP annotations of the variant. A description 
of the VEP annotations format can be found at https://www.ensembl.org/info/docs/tools/vep/script/index.html. 
The last three columns provide the variant sequencing depth information. The following files can be downloaded 
from the ExAgBov data repository13. The filtered database file includes variants that pass the quality filtration for 
the read quality and depth of coverage in the BovExAg.DB.TSV + DP.filtered.gz file. A list of all the SRA sample 
accessions and their breed affiliations is provided in the SRA.ID + breed.csv file. The complete SRA metadata is 
reported in the ExAgBov.SRA.metadata.txt file. The sequencing depth of each variant in each WES sample can be 
found in the ExAgBov.DP.all-var.csv.gz file. The fastq files of all samples can be retrieved from the SRA repository 
(https://www.ncbi.nlm.nih.gov/sra) using the identifiers denoted in the SRA.ID + breed.csv file.

technical Validation
The ExAgBov database contains more than 20 million short variants, most of which were SNVs (Fig. 1a). 
Although WES was designed to selectively capture exonic regions, most of the identified variation was found 
in non-exonic regions, mainly in intronic and intergenic regions (Fig. 1b). About 400,000 variations (SNVs and 
INDELs) were located within exonic regions. Nearly half of them predicted protein alteration (e.g., missense and 
splice variants, Fig. 1b,c). 30–40% of the missense variants were predicted deleterious (Fig. 1d). Analysis of the 
average depth distribution of all variants as a function of their consequence showed that most exonic variants 
had an average depth > 20 (Fig. 2) and were covered in all samples, as reflected in the AN distribution (Fig. 3). 
By contrast, intergenic and intronic variants had a very low sequence coverage. They were covered in less than 
half of the samples (Figs. 2 and 3). This is possibly due to significant differences in the overall sample coverage, 
as shown in Figure S2. Thus, the reliability of the AF of the intergenic variants is low and should be carefully 
assessed for each variant. Alternatively, we produced an additional filtered database file that retained only those 
variants that pass our qualities criteria as denoted in the methods section. The filtered database includes 2.7 mil-
lion variants, and the variants’ consequences distribution is represented in figure S1. Most exonic variants were 
rare, with an AF lower than 0.01 (Fig. 3). The high number of variants and the AF distribution might be unex-
pected given the recent reduction in effective population size; however, similar results were reported previously3.

Because the ExAgBov database contains information obtained from an uncontrolled population, we per-
formed a set of analyses to evaluate the population structure and additional factors that could bias the AF. First, 
we calculated the per-variant GATK inbreeding coefficient. This measurement indicates the degree of deviation 
from the Hardy-Weinberg equilibrium, thereby exposing biases resulting from the structure of the sampled 
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population. The inbreeding coefficient distribution of exonic variants showed mostly low to intermediate posi-
tive values (Fig. 4). This could result from the presence of closely related animals in the sampled population or 
the relatively high inbreeding among sampled individuals, as has been observed in modern commercial cattle 
herds20–22. To assess the contribution of inbreeding, we calculated the per-sample ROH proportion. The results 
showed relatively high levels of inbreeding for many animals, as the ROH of several animals exceeded 10% 
(Fig. 4). Such ROH levels are similar to those previously observed in commercial herds, resulting from the small 
effective population size and the intensive genetic and genomic selection strategies20–22. This observation can 
explain, at least partially, the high inbreeding coefficient observed for some of the variants.

Next, we assessed kinship levels among ExAgBov samples by computing the shared IBD between all pairs 
(Fig. 5). Overall, most of the bovine samples shared none or small IBD genomic segments with each other. We 
detected a shared IBD pattern for seven bovine pairs that can be inferred as a full sibling, and 10–20 pairs might 
be suspected as second-degree relatives. All other pairs of samples were non- or remotely related.

The clustered kinship matrix revealed 4–7 major clusters of bovine samples that were more related to one 
another (Fig. 6). We therefore used information about breed affiliation, which was available for some samples, 
to infer the affiliation of other samples within the same cluster (Fig. 6). Next, we performed MDS analysis to 
uncover the population structure of the ExAgBov database (Fig. 7). Combining the MDS analysis with the 
data from the clustered kinship matrix, we inferred the breeds composing the ExAgBov database. We found 
that ExAgBov mainly comprises Holstein bulls from several herds as well as Belgian Blue (BBB). In addition, it 
includes several beef breeds, like Angus and Simental, and dairy breeds like Brown Swiss.

Fig. 2 Average depth distribution of ExAgBov variants as a function of their consequence category. 
The sequencing depth (DP) of all variants in all samples was obtained (see additional files at https://doi.
org/10.17632/m3p9m9vc4g.313), and the per-variant average DP (Y-axis) was calculated and summarized for 
each variant category (X-axis).
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Because cattle herds underwent intensive genetic selection as well as continuous adaptation to environmen-
tal constraints23, we used the ExAgBov data to preliminary assess the per-gene selection trends. For that, we 
computed the ratio between missense variants, which are likely functional substitutions, and synonymous var-
iants, likely neutral substitutions (M/S). We then compared the M/S ratios of rare to low-frequency variants 
(AF < 0.01; M/S<0.01) to those of moderate-to-common polymorphism (AF > 0.03; M/S>0.03). We found that 
the M/S ratio of common variants tended to be lower than that of rare variants (M/S>0.03 < M/S<0.01; Fig. 8), 
indicating an overall purifying selection. This was expected, as likely functional variants tend to be purged from 
the population more than neutral variants. We then calculated the rare-to-common M/S ratio for each gene 
to identify genes that might have undergone adaptive selection. Higher ratios indicate less purifying selection 
and likely adaptive selection. To assess the functional involvement of genes with a ratio indicating likely adap-
tive selection, we performed enrichment analysis on the 100 genes with the highest M/S<0.03 to M/S<0.01 ratios 
(Supplementary Table 1). We found that these genes were associated with protein metabolism, protein synthesis, 
immune response, and host-pathogen interaction (Supplementary Table 2). Adaptive selection is well estab-
lished in genes affiliated with host-pathogen interaction and the immune system and has been demonstrated in 
several species populations, including cattle24. The seemingly rapid evolution of genes associated with protein 
synthesis and metabolism might result from the intensive genetic selection for productive traits23.
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Usage Notes
The ExAgBov database can be used directly to obtain variations in different genomic regions or variants asso-
ciated with a specific gene. This can be done by extracting relevant lines using simple command lines or scripts. 
For instance, Linux users can custom the grep command with the gene name and the term “missense” to obtain 
all missense variants within a certain gene (e.g., zcat BovEx.DB.TSV.gz| grep –e “NDUFC2” | grep –e “missense”: 
will retrieve all missense variants in the gene NDUFC2). The main usage of the ExAgBov database is for com-
prehensive annotation of NGS-driven variants, like in WES and WGS (Table 1). This is done by customizing a 
script that adds the desired information to identified variants of NGS analysis whenever recorded within the 
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ExAgBov database. A more suitable way to implement the ExAgBov data when comprehensively annotating 
NGS-driven variants is by formatting and adding the AN, AF, average-DP, and inbreeding coefficient informa-
tion to the Ensembl VEP pipeline. VEP enables the integration of custom annotation from simple format files 
into the annotated variant call file by using the --custom flag (see https://m.ensembl.org/info/docs/tools/vep/
script/vep_custom.html). Lastly, the ExAgBov allows to accurate the reference genome data for variants that 
exceed 50% AF and, thereby, better representation of the bovine consensus sequence.

Code availability
The full pipeline is available at https://github.com/morangershoni/BovEx.
All software used in this study are freely available:
SRA Toolkit: https://github.com/ncbi/sra-tools.
BWA: https://github.com/lh3/bwa.
Picard Tools: https://broadinstitute.github.io/picard/.
GATK software: https://github.com/broadinstitute/gatk/releases.
VEP: https://m.ensembl.org/info/docs/tools/vep/script/vep_download.html.
PLINK: https://zzz.bwh.harvard.edu/plink/download.shtml.
KING: https://www.kingrelatedness.com/Download.shtml.
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CHR.1 POS REF ALT Consequence Gene AF AN IC

4 25851940 C T missense ENSBTAG00000007746 0.025 522 0.38

8 94696012 G A splice_region ENSBTAG00000020661 0.035 520 −0.028

10 1191682 C T missense ENSBTAG00000018852 0.019 522 0.26

8 80873738 C T splice_region ENSBTAG00000000738 0.089 518 0.17

1 157758838 C T missense ENSBTAG00000051758 0.045 286 0.06

10 26636185 T A missense ENSBTAG00000012317 0.021 288 −0.019

10 26648481 G C missense ENSBTAG00000037452 0.06 250 0.07

4 112208828 G A splice_region ENSBTAG00000017143 0.069 494 −0.02

8 89125920 TG T frameshift ENSBTAG00000011374 0.011 522 0.259

4 48998296 G C missense ENSBTAG00000011412 0.004 494 0.436

28 9182425 A G missense ENSBTAG00000013544 0.055 492 0.399

10 19988964 A G missense ENSBTAG00000004990 0.063 504 0.17

27 7686074 G A missense ENSBTAG00000014135 0.032 474 0.13

Table 1. Applying the ExAgBov database for WGS analysis. 1CHR., chromosome; POS, position; REF, reference 
allele; ALT, alternative allele; AF, ExAgBov allele frequency; AN, ExAgBov allele number; IC, inbreeding 
coefficient. Annotation of variants identified in WGS analysis in a study of Israel Holstein using the ExAgBov 
database (unpublished results). The AF, AN, and the inbreeding coefficient (IC) were retrieved for each variant 
for downstream filtering.
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