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Abstract

Proteins ensure their biological functions by interacting with each other. Hence, characteris-

ing protein interactions is fundamental for our understanding of the cellular machinery, and

for improving medicine and bioengineering. Over the past years, a large body of experimen-

tal data has been accumulated on who interacts with whom and in what manner. However,

these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab

initio methods provide a means to a “blind” protein-protein interaction network reconstruc-

tion. Here, we report on a molecular cross-docking-based approach for the identification of

protein partners. The docking algorithm uses a coarse-grained representation of the protein

structures and treats them as rigid bodies. We applied the approach to a few hundred of pro-

teins, in the unbound conformations, and we systematically investigated the influence of

several key ingredients, such as the size and quality of the interfaces, and the scoring func-

tion. We achieved some significant improvement compared to previous works, and a very

high discriminative power on some specific functional classes. We provide a readout of the

contributions of shape and physico-chemical complementarity, interface matching, and

specificity, in the predictions. In addition, we assessed the ability of the approach to account

for protein surface multiple usages, and we compared it with a sequence-based deep learn-

ing method. This work may contribute to guiding the exploitation of the large amounts of pro-

tein structural models now available toward the discovery of unexpected partners and their

complex structure characterisation.

Author summary

Proteins do not act alone, but perform their biological functions by interacting with each

other. However, it is difficult to observe them directly in action, and to collect unbiased

clear-cut data on their association. Here, we propose to exploit the protein 3D structures

and models accessible nowadays to discover new interactions and alternative binding

modes. We simulate the binding of thousands of hundreds protein pairs, and estimate the

interaction strength of each pair based on their geometric, physico-chemical and evolu-

tionary properties. We measure proteins’ “sociability”, and identify a set of putative
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partners for each protein. We give some guidance for choosing the parameters, and we

provide a readout of the predictions. Our approach can complement experimental data,

and also predictions produced by machine learning methods relying on protein

sequences.

Introduction

The vast majority of biological processes are ensured and regulated by protein interactions.

Hence, the question of who interacts with whom in the cell and in what manner is of para-

mount importance for our understanding of living organisms, drug development and protein

design. While proteins constantly encounter each other in the densely packed cellular environ-

ment, they are able to selectively recognise some partners and associate with them to perform

specific biological functions. Discriminating between functional and non-functional protein

interactions is a very challenging problem. Many factors may reshape protein-protein interac-

tion networks, such as point mutations, alternative splicing events and post-translational mod-

ifications [1–5]. Conformational rearrangements occurring upon binding, and the prevalence

of intrinsically disordered regions in interfaces further increase the complexity of the problem

[6–9]. Ideally, one would like to fully account for this highly variable setting in an accurate and

computationally tractable way.

In the past years, a lot of effort has been dedicated to describe the way in which proteins

interact and, in particular, to characterise their interfaces. Depending on the type and function

of the interaction, these may be evolutionary conserved, display peculiar physico-chemical

properties or adopt an archetypal geometry [10–20]. For example, DNA-binding sites are sys-

tematically enriched in positively charged residues [10] and antigens are recognized by highly

protruding loops [12]. Such properties can be efficiently exploited toward an accurate detec-

tion of protein interfaces [10–12, 21–27]. However, the large scale assessment of predicted

interfaces is problematic as our knowledge of protein surface usage by multiple partners is still

very limited [23].

A related problem is the prediction of the 3D arrangement formed between two or more

protein partners. This implies generating a set of candidate complex conformations and cor-

rectly ranking them to select those resembling the native structure. Properties reflecting the

strength of the association include shape complementarity, electrostatics, desolvation and con-

formational entropy [28]. Experimental data and evolutionary information (conservation or

coevolution signals) may help to improve the selection of candidate conformations [29–31].

To address this problem, molecular docking algorithms have been developed and improved

over the past twenty years, stimulated by the CAPRI competition [32–36]. Nevertheless, a

number of challenges remain, including the modelling of large conformational rearrange-

ments associated to the binding [32, 37, 38]. Moreover, homology-based modelling often leads

to better results than free docking when high-quality experimental data is available.

The development of ultra-fast docking engines exploiting the fast Fourier transform [39–

41], deep learning [11] and/or coarse-grained protein models [42] has made large-scale dock-

ing computational experiments feasible. Moreover, the availability of 3D structural models

from AlphaFold for entire proteomes [43] has dramatically expanded the applicability of dock-

ing algorithms. This favourable context renders protein-protein interaction network recon-

struction accessible at a very large scale by ab initio approaches that avoid biases coming from

experimental conditions and allow for a blind search for partners that may lead to the discov-

ery of new interactions.
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In a large-scale docking experiment, hundreds or thousands of proteins are either docked

to each other (complete cross-docking, CC-D) or to some arbitrarily chosen proteins. The gen-

erated data can be straightforwardly exploited to predict protein interfaces [23, 44–47]. Indeed,

randomly chosen proteins tend to dock to localised preferred regions at protein surfaces [48].

In this respect, the information gathered in the docking experiment can complement

sequence- and structure-based signals detected within monomeric protein surfaces [23].

Beyond interface and 3D structure prediction, very few studies have addressed the question of

partner identification. The latter has traditionally been regarded as beyond the scope of dock-

ing approaches. However, an early low-resolution docking experiment highlighted notable dif-

ferences between interacting and non-interacting proteins [49], and we and others [50–53]

have shown that it is possible to discriminate cognate partners from non-interactors through

large-scale CC-D experiments. An important finding of these studies, already stated in an ear-

lier experiment involving 12 proteins [54], is that relying on the energy function of the docking

algorithm is not sufficient to reach high accuracy. This holds true for shape complementarity-

based energy functions [50], and also for those based on a physical account of interacting

forces [53, 54]. Nevertheless, combining the docking energy with a score reflecting how well

the docked interfaces match experimentally known interfaces allows reaching a very high dis-

criminative power [53]. Moreover, the knowledge of the global social behaviour of a protein

can help to single out its cognate partner [50, 53]. That is, by accounting for the fact that two

proteins are more or less sociable, we can lower down or lift up their interaction strength, and

this procedure tends to unveil the true interacting partners [50]. This notion of sociability also

proved useful to reveal evolutionary constraints exerted on proteins coming from the same

functional class, toward avoiding non-functional interactions [50].

In principle, the estimation of systemic properties such as residue binding propensity and

protein sociability shall be more accurate as more proteins are considered in the experiment.

But the problem of discriminating them will also become harder. When dealing with several

hundreds of proteins, the correct identification of the cognate partners requires an incredible

accuracy as they represent only a small fraction of the possible solutions. For instance, a set of

200 proteins for which 100 binary interaction pairs are known will lead to the evaluation of 40

000 possible pairs, and for each pair several hundreds of thousands candidate conformations

(at least) will have to be generated and ranked.

Here, we present a general approach for the identification of protein partners and their dis-

crimination from non-interactors based on molecular docking. Like our previous efforts [50,

53, 54], this work aims at handling large ensembles of proteins with very different functional

activities and cellular localisations. Although these classes of proteins appear to have different

behaviours, we approach the problem of partner identification from a global perspective. We

report on the analysis of data generated by CC-D simulations of hundreds of proteins. We

combine together physics-based energy, interface matching and protein sociability, three

ingredients we previously showed to be relevant to partner identification and discrimination

[50, 53, 54]. We move forward by investigating what other types of information may be needed

to improve the discrimination. To this end, we systematically explore the space of parameters

contributing to partner identification. These include the scoring function(s) used to evaluate

the docking conformations, the strategy used to predict interacting patches and the size of the

docked interfaces. We show that our approach, CCD2PI (for “CC-D to Partner Identifica-

tion”), reaches a significantly higher discriminative power compared to a previous study

addressing the same problem [53]. We demonstrate that this result holds true overall and also

for individual protein functional classes. Our results emphasise the importance of the docking-

inferred residue binding propensities to drive interface prediction, and the positive contribu-

tion of a statistical pair potential to filter docking conformations. We define a set of default
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parameter values, with minimal variations between the different classes, for practical applica-

tion to any set of proteins. Importantly, we place ourselves in a context where we do not know

the experimental interfaces and use predictions instead. To evaluate CCD2PI predictions, we

consider structurally characterised interactions coming from the Protein Data Bank (PDB)

[55] as our gold standard. We primarily consider the docking benchmark annotations [56],

and we extend them by transferring knowledge from complex structures involving the same or

very similar proteins. This strategy is supported by the observation that functional interfaces

are conserved across closely related homologs [57]. Moreover, previous works from us and

others have emphasised its biological pertinence and usefulness to evaluate protein-protein/

DNA/RNA interface prediction methods [23, 58]. We show that the protein interaction

strengths computed by CCD2PI are in good agreement with available structural data. We dis-

cuss the implications of these strengths for protein functions. This work paves the way to the

automated ab initio reconstruction of protein-protein interaction networks with structural

information at the residue resolution. Since, the reconstruction is based on docking calcula-

tions, it not biased by specific targets nor by the limitations of experimental techniques.

Results

Computational framework

The workflow of CCD2PI is depicted in Fig 1. We exploit data generated by CC-D experiments

performed on hundreds of proteins. In the present work, the CC-D was performed using the

rigid-body docking tool MAXDo [54]. The proteins are represented by a coarse-grained

model and the interactions between pseudo-atoms are evaluated using Lennard-Jones and

Coulombic terms [42]. For each protein pair, MAXDo generated several hundreds of thou-

sands of candidate complex conformations (Fig 1, top left panel). Each one of these conforma-

tions is evaluated by computing the product of the overlap between the docked interface (DI)

and some reference interface (RI), a docking energy (either from MAXDo or another one, see

Materials and methods), and a statistical pair potential [59] (optional). By formulating the

score as a product, we effectively use the interface overlap, the docking energy and the pair

potential as successive filters to select the best conformation. The rationale is that ideally, the

selected conformation should meet all three criteria: match the expected interface, be energeti-

cally favourable, and reflect the amino-acid pairing preferences found in experimental com-

plexes. For instance, let us consider a conformation displaying a perfect interface overlap, but

with the interacting surface of the ligand rotated by 180˚ with respect to that of the receptor. It

would have a very low fraction of native contacts, and we expect it to be correctly filtered out

by the docking energy and/or the pair potential. We detect the DIs based on interatomic dis-

tances using our efficient algorithm INTBuilder [60]. To place ourself in a realistic scenario,

we predict the RIs, instead of extracting them from the known complex structures. Our predic-

tive algorithm relies on sequence- and structure-based properties of single proteins [12], as

well as a systemic property, namely residue binding propensities inferred from the CC-D [23]

(see Materials and methods). Formally, given two proteins P1 and P2, we estimate the interac-

tion index of P1 with respect to P2 as

IIP1 ;P2
¼ minðFIRP1;P2

� EP1 ;P2
½�PPP1 ;P2

�Þ; ð1Þ

where FIRP1 ;P2
(Fraction of Interface Residues) is the fraction of the DIs composed of residues

belonging to the (predicted) RIs for the two proteins, EP1 ;P2
is the docking energy (negative

value) and PPP1 ;P2
is a pair potential score which may or may not be included in the formula.

The latter evaluates the likelihood of the observed residue-residue interactions and might
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bring complementary information with respect to the docking energy. We use CIPS [59], a

high-throughput software designed to swiftly reduce the search space of possible native confor-

mations with a high precision. The minimum is computed over the whole set or a pre-filtered

subset of docking conformations (see Materials and methods). One should note that in the

general case, IIP1;P2
and IIP2 ;P1

come from two different docking runs and are not necessarily

equal. This is because the receptor and ligand surfaces are not explored in an equivalent man-

ner by the docking algorithm (see Materials and methods).

The computed interaction indices (Fig 1, matrix at the bottom right) are then normalised to

account for the protein global social behaviour. Formally, the II values are weighted using the

sociability index (S-index) [50], defined as

SPi ≔
1

2jPj

X

Pj2P

IIPi ;Pj þ IIPj;Pi ; ð2Þ

Fig 1. Principle of the method. We start from an all-to-all docking experiment (top left panel). Each protein is docked to all proteins in the set. By

convention, in each docking calculation, we define a receptor and a ligand. The red patches on the protein surfaces correspond to predicted interfaces.

For a given protein pair P1 P2, we generate a pool of conformations associated with energies (top middle panel). Here, both the predicted interfaces and

the docked interfaces are highlighted by patches, in red and purple respectively. One can readily see whether they overlap or not. The extent of this

overlap (Fraction of Interface Residue) is multiplied by the docking energy to evaluate each docking conformation (bottom left panel). Optionally, we

also consider a statistical pair potential in the formula. The best score is computed over all docking conformations and assigned to the protein pair. By

doing the same operation for all pairs we compute a matrix of interaction indices (bottom right panel, the darker the higher). If the receptor and the

ligand play equivalent roles in the docking calculations, then the matrix will be symmetrical. Otherwise, two different docking calculations are

performed for each protein pair P1 P2 and the matrix will be asymmetrical, as shown here. These indices are then normalised to account for proteins’

global social behaviour, hopefully allowing for singling out the cognate partners (top right panel). In the example here, the cognate pairs are ordered on

the diagonal.

https://doi.org/10.1371/journal.pcbi.1009825.g001
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where P is the ensemble of proteins, including Pi. The normalised interaction index NII
between P1 and P2 is computed as a symmetrised ratio of interaction indices (see Materials

and methods). Finally, the NII values are scaled between 0 and 1 and NIIP1 ;P2
¼ 1 when P2 is

the protein predicted as interacting the most strongly with P1 (Fig 1, matrix on the top right).

CCD2PI accurately singles out cognate partners within specific functional

classes

We assessed the discriminative power of CCD2PI on a set of 168 proteins forming 84 experi-

mentally determined binary complexes (Protein-Protein Docking Benchmark v2, PPDBv2, see

Methods). Here, we place ourselves in a context where we seek to identify one “true” partner,

annotated in the PPDBv2, for each protein from the benchmark. Over all possible 28 224 inter-

acting pairs, the cognate partners were singled out with an Area Under the Curve (AUC) of

0.67 (Fig 2A). On average, 3 putative partners were predicted with a NII score above 0.8, and

about 10 above 0.6, for each given protein (Fig 2C and S1 Fig). Hence, CCD2PI assigns high

interaction strengths to a relatively small number of pairs, compared to the enormous number

of potential pairs. In this respect, the contribution of the normalisation stands out as instru-

mental (S2A and S2B Fig, compare the number of dark spots between the II and NII matrices).

By lowering down the interaction strengths computed for highly sociable proteins, it elimi-

nates most of the “incorrect” partners. Given a protein, only the putative partners binding

favourably to it, with a high II score, and in a specific manner, as indicated by a low S-index,

stand out after the normalisation. This effect is illustrated by S3 Fig on the human GTPase-

activating protein p120GAP and gonadotrophin.

The docking energy and the pair potential in Eq 1 (II formula) will favour the protein pairs

whose RIs have a high physico-chemical and shape complementarity. Consistently, we

observed that the RIs of the proteins predicted as plausible partners for a given protein share

some common 3D physico-chemical patterns. For instance, we can clearly identify a pattern of

positively charged residues common to the RIs of the “incorrect” top 5 predicted partners for

the human GTPase-activating protein p120GAP (1WQ1_l) and the RI of its cognate partner

H-RAS, ranked at the 6th position (S3A Fig). In the case of the human gonadotrophin

(1QFW_l), the RI of its cognate antibody, ranked 13th, displays an enrichment in negatively

charged and aromatic residues, also observed for the RIs of the “incorrect” top 5 predicted

partners (S3B Fig).

We further assessed CCD2PI’s ability to identify the PPDBv2 cognate partners among pro-

teins coming from the same functional class (Fig 2A, blue curve). The partnerships between

bound antibodies and their antigens (ABA), between enzymes and their inhibitors, substrates,

or regulators (EI, ES, ER) and between the other proteins and their receptors (OR) are particu-

larly well detected (AUC>0.75). By contrast, the subset regrouping everything that could not

be classified elsewhere (others, OX) is the most difficult to deal with. This subset likely contains

proteins involved in signalling pathways and establishing transient interactions through modi-

fied sites, such as phosphorylated sites. As a consequence, correctly predicting their interfaces

may be particularly challenging. Conformational changes occurring upon binding seem to

play a role as the antibody-antigen cognate pairs are better detected when the antibodies are

bound (Fig 2A, compare AA and ABA).

The AUC values achieved by CCD2PI are systematically and significantly better than

those computed with our previous pipeline (Fig 2A, compare the blue and purple curves), or

similar in the case of the other-with-G-protein class (OG). Replacing the predicted RIs by the

interfaces extracted from the PDB complex structures, which can be seen as perfect predic-

tions, leads to increased AUC values for almost all classes (Fig 2A, areas in grey tones, and
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Fig 2. Predictive performance on the PPDBv2. (A) AUC values computed for the whole dataset and for the different functional

classes. For each protein, we consider one “true” cognate partner, defined from the PPDBv2 annotations. The results obtained with

CCD2PI are indicated by the blue curve. For comparison, we also show the results reported in [53] in purple. The areas in grey tones

give the discriminative power reached when exploiting the knowledge of the experimental interfaces, using either our default

parameters (in light gray) or parameters optimized for such interfaces (in dark grey, see also Materials and methods). The number of

proteins in each subset is indicated in parenthesis. (B) Proportion of proteins with at least one known partner found in the top 20%

of CCD2PI predictions, for each subset. The known partners are defined from the PPDBv2 annotations (in blue) or are inferred from

complex PDB structures involving the proteins from the set or their close homologs, sharing more than 90% (in dark red) or 70% (in

orange) sequence identity. The grey bars give baseline expected values based on the number of known partners (see Materials and

methods). (C) NII matrices computed by CCD2PI. The proteins are ordered on the x-axis such that the receptors (e.g. antibodies)

appear first, and then the ligands (e.g. antigens). They are ordered on the y-axis such that the cognate pairs annotated in PPDBv2 are

located on the diagonal. The orange tones highlight the experimentally known interacting pairs (annotated in the PPDBv2 and

transferred by homology). AA: antibody-antigen, ABA: bound antibody-antigen. EI: enzyme-inhibitor. ER: enzyme with regulatory

or accessory chain. ES: enzyme-substrate. OG: other-with-G-proteins. OR: other-with-receptor. OX: others.

https://doi.org/10.1371/journal.pcbi.1009825.g002
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S2C and S2D Fig). This suggests that proteins competing for the same region at the protein

surface do not target exactly the same set of residues. Knowing exactly which residues are

involved in an interaction greatly helps in the identification of the partner. Of course, this

perfect knowledge is generally inaccessible in a fully predictive context. In fact, the predicted

interfaces might give a more realistic view on protein surface usage since they tend to better

match interacting regions [23], defined from several experimental structures and representing

the interface variability induced by molecular flexibility and multi-partner binding. Notice-

ably, the advantage of experimental over predicted RIs reduces or even cancels out for the

small subsets (<15 proteins, ER, ES and OR). This suggests that approximations in the

definition of the interfaces do not influence partner identification when few proteins are

considered.

The interaction strengths predicted by CCD2PI reveal the multiplicity of

protein interactions

To estimate the agreement between the interaction strengths predicted by CCD2PI and experi-

mental data, we extended the set of “true” partners by homology transfer. Specifically, we

looked in the PDB for 3D structures of complexes involving the proteins from PPDBv2 or

their close homologs (see Materials and methods). We considered that a structurally character-

ised interaction found for P0
1

and P0
2
, sharing a high sequence similarity with P1 and P2, respec-

tively, was a strong indicator of the possibility for P1 and P2 to interact with each other. We

identified 585 interacting pairs from homologs sharing more than 90% sequence identity with

the proteins from PPDBv2, and 1 834 at the 70% sequence identity level (Fig 2C, cells colored

in orange). These high levels of sequence similarity ensure a high confidence in the newly

detected interactions, although homology transfer per se does not guarantee they are functional

in the cell. We observed the biggest increase in the number of partners for the antibodies (Fig

2C, S4A, S4B and S4C Fig). Some of the homology-transferred partners are direct competitors

of the cognate partners annotated in PPDBv2 as they target the same region at the protein sur-

face. Depending on the approximations in the predicted RIs, the former may be more favoured

than the latter by CCD2PI. A few examples of homology-transferred partners better ranked

than the PPDBv2-annotated partners are shown in S5 Fig. Overall, the probability of finding at

least one “true” partner in the top 20% predictions is almost systematically increased when

extending the set of positives (Fig 2B). For instance, 71% (27 out of 38) of the proteins from

the EI subset have at least one partner inferred at more than 70% sequence identity ranked in

the top 7. Moreover, the homology-transferred interactions tend to populate the regions of the

matrices displaying high interaction strengths (Fig 2C and S4D Fig). For instance, CCD2PI

predictions suggest that antigens tend to avoid each other much more than antibodies, and

indeed much more homology-transferred interactions are found among antibodies, compared

to antigens (AA and ABA). A similar trend is also observed for the enzyme-regulator (ER) and

enzyme-substrate (ES) and other-with-G-protein (OG) subsets (Fig 2C and S4D Fig). We

observe more predicted and experimental regulator-regulator and substrate-substrate interac-

tions than enzyme-enzyme interactions, and more other-other interactions than interactions

among G proteins.

The ingredients of partner discrimination

CCD2PI comprises four main hyper-parameters potentially influencing the results (Table 1),

namely (a) the distance threshold used to detect the DIs, (b) the scoring strategy used to pre-

dict the RIs, (c) the docking energy function used to compute II, and (d) the optional inclusion

of the pair potential in the II formula. The distance threshold modulates the size of the DIs
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while the scoring strategy influences how close the RIs are from the experimentally known

interfaces. The choice of the energy function and that of using or not the pair potential directly

impact the calculation of the interaction index. In order to avoid the risk of overfitting, we

strove to determine global default parameter values (Table 1, see also Materials and methods).

In the following, we report on a systematic analysis of the influence of the parameters on the

discriminative power of the approach, also by considering functional classes (Fig 3). The total

number of possible parameter combinations is 72, and we focused on the top 15, for the whole

dataset and for its eight subsets. Given a parameter under study, the pool of 15 top combina-

tions was divided by the set of possible values for the parameter (see Materials and methods).

The estimation of the match between the DIs and the RIs depends on the way the former

are detected and on the strategy adopted to predict the latter. We observed that varying the dis-

tance threshold used to detect the DIs between 4.5 and 6Å does not significantly impact the

discrimination on the whole dataset, nor on most of the functional classes (Fig 3A). Neverthe-

less, it is clearly preferable to define smaller than bigger DIs for the identification of antibody-

antigen cognate pairs (Fig 3A, see AA and ABA). Interestingly, this trend is not observed when

using experimental interfaces as RIs (S5B Fig). This suggests that as the DIs grow, residues not

specific to the cognate interactions but present in the predicted RIs are being considered. To

predict interfaces, we considered four main strategies, each one of them comprising between 3

and 4 scoring schemes (S6 Fig and see Materials and methods). Our algorithm relies on four

descriptors, evolutionary conservation, physico-chemical properties, local geometry and

docking-inferred binding propensities, and the strategies differ in the way we combine these

properties. The one leading to the best results on the whole dataset and also on a couple of

functional classes is SC-dockSeed-mix (Fig 3B, see ABA and OX). In this scoring scheme, the

seed of the predicted interface is defined based on the propensities of protein surface residues

to be targeted in the docking calculations. Then, the seed is extended combining these docking

propensities with evolutionary, geometrical and physico-chemical properties (see Materials

and methods). The strategy leading to the worst results, SC-monoSeed-mix, introduces the

docking propensities only after seed detection. The seeds are detected because they are highly

conserved or protruding. SC-monoSeed-mix is not even found in the top 15 combinations of

parameters for the whole dataset, nor for the enzyme-substrate and other classes (Fig 3B). This

analysis emphasises the crucial role of the docking propensities to drive the interface

predictions.

Regarding the docking energy, we considered MAXDo, iATTRACT and PISA. MAXDo

and iATTRACT are very similar as they include the same contributions (see Materials and

methods). They mainly differ in the treatment of the clashes, better tolerated in iATTRACT,

and of the electrostatic contribution, more persistent at long distances in iATTRACT. PISA is

different as it estimates the likelihood of a macromolecular assembly to be functionally relevant

Table 1. Main hyper-parameters of CCD2PI.

Docked interfaces Distance threshold (in Å) Predicted interfaces Scoring strategy Docking energya (E) Pair potential b (PP)

4.5

5

6

SC-mix

SC-monoSeed-mix

SC-dockSeed-mix

SC-juxt

MAXDo

iATTRACT

PISA

CIPS

None

The default parameter values are highlighted in bold. They were optimized on PPDBv2 (see Methods).
a MAXDo was chosen for all functional classes but EI and ER, where it was replaced by PISA and iATTRACT respectively.
b CIPS was used for all functional classes but OR.

https://doi.org/10.1371/journal.pcbi.1009825.t001
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based on chemical thermodynamics (see Materials and methods). While all three energies per-

form almost equally well on the whole dataset, with a little advantage for MAXDo, the results

on the individual subsets are more contrasted (Fig 3C). In particular, PISA is the only energy

function appearing in the top 15 combinations for the enzyme-inhibitor subset (EI) while

MAXDo is the only one for the other-with-G-protein subset (OG). Finally, we investigated the

influence of including or not the statistical pair potential CIPS to compute the interaction

index (Fig 3D). While CIPS improves the discrimination for the antibody-antigen subsets (AA
and ABA), it is clearly detrimental for the other-with-receptor class (OR). The extent of these

impacts may vary depending on the energy function with which CIPS is paired, but the trends

are consistent from one energy function to another. The picture is very different when we

Fig 3. Influence of the parameters for PPDBv2 when considering predicted RIs. (A-D) Variation of the AUC values upon parameter changes. The

four parameters considered are: (A) the distance threshold used to define docked interfaces, (B) the scoring strategy used to predict interfaces, (C) the

docking energy, and (D) the presence or absence of the pair potential, depending on the docking energy. In each plot, for each protein class, we

considered the 15 combinations yielding the highest AUC values, among all 72 possible combinations. For a given parameter, the different bars

correspond to a partition of this combination set according to the possible values of the parameter. If a parameter value was not present in the 15 best

combinations, then it does not appear on the plot. We report the average AUC values (in opaque) and the maximum AUC values (in transparent). The

black segments indicate the intervals [μ − 2σμ, μ + 2σμ], where μ is the mean and σμ is the standard error of the mean. (E-G) Resemblance between

predicted and experimental interfaces. (E) F1-score. (F) Sensitivity. G) Positive predictive value.

https://doi.org/10.1371/journal.pcbi.1009825.g003
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replace the predicted RIs by experimental interfaces (S7D Fig). In this context, CIPS is mostly

contributing in a negative way to the identification of the cognate partners. This suggests that

CIPS may underrate some near-native conformations. Although this would not affect much

the results when the RIs are predicted, since the number of incorrect conformations removed

largely surpasses the number of near-native conformations wrongly removed, this could prove

detrimental when using the experimental interfaces, especially in a context where the number

of positives is very small compared to that of negatives.

Small approximations in the reference interfaces may significantly impact

partner identification

We further characterised the relationship between the ability of singling out cognate partners

and the resemblance between the predicted and the experimental interfaces. The average

F1-values of the predicted interfaces range between 0.37 and 0.58 (Fig 3E). The strategy leading

to the best AUC values for partner discrimination, namely SC-dockSeed-mix, gives the most

accurate predicted interfaces overall (Fig 3E, 3F and 3G, ALL). It is also significantly more pre-

cise than the other strategies in the detection of the antibody-antigen interfaces (Fig 3E, 3F and

3G, AA and ABA). Looking across the different classes, it is a priori not obvious to assess a

direct correlation between the quality of the predicted interfaces and the discriminative power

of the approach. In particular, the three subsets (ER, ES and OR) for which predicted RIs lead

to AUCs as good as those obtained with experimental RIs (Fig 2A) do not stand out for the

quality of their predicted interfaces (Fig 3E, 3F and 3G). This confirms that when dealing with

few proteins (<15), working with approximate interfaces do not hamper the identification of

the cognate partners. However, if we disregard these subsets, then we find that the ability to

detect the cognate pairs is highly correlated with the F1-score and the precision of the pre-

dicted interfaces (S8 Fig). The Pearson correlation coefficient is of 0.86 (resp. 0.90) between

the AUC values and the F1-scores (resp. positive predictive values, PPV) computed for SC-

dockSeed-mix. Focusing on the 16 proteins for which the F1-score is very low (<0.2), we

found that replacing the predicted interfaces by the experimental ones largely improves the

ability to single out the cognate partner in half of the cases (S9 Fig). Nevertheless, in the

remaining half, improving interface quality brings little gain to partner identification, or even

has a deleterious impact. In five cases, the cognate partner is even identified in the top 20%

despite the low quality of the predicted RI. These results reveal the existence of protein surface

regions onto which cognate partners bind more favourably than non-interactors, although

they have not been experimentally characterised as directly involved in the interaction. We

hypothesise that these regions might correspond to alternative binding modes with the cognate

partner.

To investigate more precisely the sensitivity of partner discrimination with respect to

approximations in the RIs, we generated shifted decoys from the experimental interfaces. For

each interface in the dataset, we moved between 10 and 100% of its residues, by increments of

10% (see Materials and methods). This allowed us to control the deviation of our RIs with

respect to the experimentally known interfaces of the cognate interactions. We observed that

the AUC computed for partner identification decreases as the shifted decoys share less and less

residues in common with the experimental interfaces (Fig 4). The only notable exception is the

smallest class, namely ER, which displays a chaotic behaviour. The two other smallest classes,

ES and OR also show some chaotic variations, to a lesser extent. On the whole dataset, the

AUC drops by 0.12 when the interfaces are shifted by 10%,corresponding to an F1-score of

0.9. A similar or even bigger gap is observed for all subsets comprising more than 15 proteins,

except the enzyme-inhibitor subset (EI). On the whole dataset, the two antibody-antigen
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subsets (AA and ABA) and the other subset (OX), we identify cognate partners with en AUC

lower than 75% with shifted decoys that still match very well (F1-score >0.8) the experimental

interfaces. This shows that many competing proteins are able to bind favourably to almost the

same protein surface region as the cognate partner. Compared to the shifted interfaces, our

predicted interfaces allow reaching a similar or better partner discrimination for all classes

but ER.

Fig 4. Sensitivity of partner identification to approximations in the reference interfaces. The RIs were obtained by gradually shifting the

experimental interfaces (see Materials and methods). On each plot, we show 10 boxes corresponding to 10 different shift magnitudes. Each

box comprises 10 AUC values obtained from 10 random generations of shifts in interfaces at a given amplitude. The values in x-axis give the average

F1-scores computed for these shifted interfaces. The red dot and the blue triangle indicate the performance achieved using the experimental interfaces

and the interfaces predicted by SC-dockSeed-mix as RIs, respectively. To compute the AUCs, we used the parameters identified as the best ones when

using the experimental interfaces as RIs, namely a distance threshold of 6Å, the MAXDo docking energy, and without CIPS.

https://doi.org/10.1371/journal.pcbi.1009825.g004
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Accounting for protein surface multiple usage

Next, we assessed CCD2PI on an independent set of 62 proteins for which we defined some

interacting regions accounting for the multiple usage of a protein surface by several partners

and for molecular flexibility [23]. More precisely, we obtained each interacting region by merg-

ing overlapping interacting sites detected in the biological assemblies (from the PDB) involv-

ing the protein itself or a close homolog, as described in [23]. These regions can be seen as

binding “platforms” for potentially very different partners. In this experiment, we used pre-

dicted interfaces as RIs, and all of them match well the experimentally known interacting

regions (F1-score>0.6). CCD2PI identifies at least one known partner in the top 3 predictions

(3/62 = 5%) for about a third of the proteins (Fig 5A, inset). For instance, CCD2PI identifies

the Bcl-2-like protein 11 (2nl9:B), known partner of the Mcl-1 protein (2nl9:A), at the second

position. It ranks first a tropomyosin construct (2z5h:B) that folds into an α-helical shape simi-

lar to that of the known partner. For trypsin-3 (2r9p:A), five proteins are predicted as better

Fig 5. Assessment of CCD2PI on an independent dataset, and comparison with a sequence-based deep learning method. (A) The main barplot

gives the rank(s) determined by CCD2PI for the known partner(s) of each protein from the independent dataset. The partners are inferred from the

complex PDB structures involving the proteins from the set or their close homologs, sharing more than 90% sequence identity (see S10 Fig for the 70%

sequence identity level). There are up to 4 partners for each protein, and they can be distinguished by the blue tones. The experimental structures of 3

cognate complexes are depicted as cartoons, with the query protein in dark grey and the best-ranked known partner in dark blue. For 2nl9:A and 2r9p:

A, we also show, in other colors, the “incorrect” partners that obtained better ranks than the best-ranked known partner. For the complex made of two

copies of 1iw0:A, the position and orientation of the copies was taken from the PDB structure 1wzg. The surfaces represent the RIs. The barplot in inset

gives the proportion of proteins with at least one known partner in the top x% predictions. The grey bars give baseline values expected based on the

number of known partners (see Materials and methods). (B) Comparison with DPPI. Best known partner ranks obtained from CCD2PI (on top) and

DPPI (at the bottom). We focus on the subset of proteins for which the ranks provided by CC2PI are better (see S11 Fig for the full distributions).

https://doi.org/10.1371/journal.pcbi.1009825.g005
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binders than its known inhibitor (2r9p:E). An extreme example is given by the heme oxyge-

nase (1iw0:A), whose interaction with itself is very poorly ranked. This may be explained by

the fact that the homodimer is asymmetrical, with two different interaction sites for the two

copies, one of them not being taken into account by CCD2PI.

Comparison with a sequence-based deep learning approach

Finally, we compared CCD2PI with DPPI [61], a deep learning method predicting protein

interactions from sequence information only. DPPI takes as input two query proteins, each

represented by a sequence profile, and outputs a score reflecting the probability that they phys-

ically interact. The parameters of the architecture are learnt from experimentally known inter-

actions. We re-trained the architecture to assess its performance on PPDBv2 (see Materials

and methods). DPPI is able to single out the known partners (annotated in the database or

inferred at>90% identity) with a very high accuracy, reaching an AUC of 95% versus 79% for

CCD2PI. Yet, for a subset of 20 proteins, we obtained better ranks for the known partners (Fig

5B). These proteins belong to different functional classes. Two of them, namely 1i4d_r and

1he1_r (according to the PPDBv2 nomenclature) are copies of the human Rac GTPase (Uni-

prot id: P63000). In total, Rac GTPase appears in three complexes from PPDBv2, 1i4d, 1he1

and 1e96, where it interacts with its three known partners. While the three partners are identi-

fied in the top 5 by DPPI when using 1e96_l as the query, they are ranked between 95 and 101

when using 1i4d_r or 1he1_r.The three query sequences display near-perfect sequence identi-

ties, but they cover more or less extended portions of the protein. Hence, the discrepancy

between the results reveals a substantial sensitivity of DPPI with respect to different sequence

contexts. The lack of a detection may be explained by an altered balance between signal and

noise or between different signals coming from different interactions, or by some missing out-

of-interface signal relevant for the interaction. In that case, we observed that our docking-

based approach is more robust, as it finds at least one partner in the top 18 whatever the query.

Discussion

We have addressed the issue of predicting protein-protein interaction networks from the per-

spective of structural modelling, which is a useful complement to the machine learning sys-

tems working with sequences and trained on experimental data.We have proposed a general

approach to identify protein partners from large-scale docking experiments. We found that

cognate partners can be singled out with high accuracy within specific functional classes.

Beyond this parameter, we have identified a number of factors contributing to improving the

discriminative power of the approach. We have primarily placed ourselves in a context where

we seek to identify only one “true” partner for a given protein, while the other studied proteins

are considered as non-interactors. We have found that in such conditions, the definition of the

binding interface should be very precise to allow achieving high discriminative power. This

requirement could be alleviated by putting more weights on the docking energy and pair

potential contributions in the calculation of the interaction index. Nevertheless, we highlighted

a few cases where “incorrect” reference interfaces might actually correspond to alternative

binding modes.

In reality, most proteins interact with multiple partners, via overlapping or distinct regions

at their surface. Our current knowledge and understanding of the multiplicity of protein sur-

face usage is still very limited. To move forward, we have collected experimentally character-

ised protein complexes among the proteins in our benchmark set and also among their close

homologs. The rationale was that protein interactions tend to be conserved among close

homologs, as evidenced by the success of homology-based prediction of protein complex 3D
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structures. This analysis revealed many possible interactions between the studied proteins, and

showed that these interactions tend to populate regions in our predicted matrices displaying

high interaction strengths. Hence, the propensities of interaction inferred from docking agree

with the available structural data. As more complexes will be structurally characterised, we

expect that the “experimental” interaction matrix will resemble more and more the predicted

one, i.e. with many dark spots (high values).

A limitation of both experimental structural data and our computational framework is that

they often cannot determine whether a protein-protein interaction will be functional or not in

the cell. For instance, many antibody-antigen interactions can be inferred by homology trans-

fer while the specificity of such interactions is very high and determined by only a few residues.

A previous cross-docking study also highlighted the importance of the backbone conformation

of the antibody to obtain a high-quality docked interface and thus be able to discriminate bind-

ers from non-binders [62]. More generally, the role of short peptide motifs for substrate selec-

tivity and protein specific functions is being widely recognised [63], and there are documented

examples of enzymes sharing high sequence identity while targeting different substrates [64].

Sequence-based learning approaches may overcome these limitations, but they do not provide

direct information about the role of each residue in the formation and/or stabilisation of the

assembly yet. By providing a 3D geometrical and physico-chemical description of the interac-

tions at the residue level, our approach can help to reason about sequence-based predictions.

For instance, we observed some common patterns shared between the proteins competing for

the same partners. A systematic analysis of the effect of the sociability-based normalisation on

different parts of the interface could give clues about the specificity determinants of molecular

recognition. Reciprocally, sequence-based motif or specificity-determining site detection

approaches could help to guide the docking toward boosting the accuracy of complex configu-

ration prediction and to improve functional annotations of protein interactions. Such a

combination of approaches may be particularly useful to distinguish multiple (potentially

overlapping) interfaces.

Complete cross-docking calculations between hundreds of proteins remain computation-

ally demanding. Nevertheless, they can be efficiently parallelized on grid-computing systems.

Here, the docking calculations were distributed on the public World Community Grid (www.

worldcommunitygrid.org). For a more convenient usage on a personal computer, the

approach can be applied to discover and characterise interactions between proteins involved

in a particular metabolic or signaling pathway. For instance, one could use it to explore the

interactions between the 11 enzymes of the Calvin-Benson cycle and their inhibitors/activators

[65].

Very recent studies indicate that the AlphaFold2 deep learning system [66–68], or a modi-

fied version trained specifically for multimeric inputs [69], outperforms all ab initio docking

algorithms and template-based docking approaches. It predicts acceptable conformations for

about two thirds of the tested dimers, and estimates prediction quality with a very small error

rate. Moreover, its ability to predict a near-native conformation can be used to discriminate

partners from non-interactors. These exciting results suggest that interfaces, conformations

and interaction strengths can be directly obtained for a large number of complexes. Alpha-

Fold2 predictions could be included in our approach in several ways. High-quality models

could be used to predict reference interfaces, either directly, or by contributing to the residue-

based scoring schemes we have defined. The prediction quality estimates could serve as pair-

specific weights in the calculation of the interaction indexes. In addition, we could restrict the

docking calculations to the subset of pairs for which AlphaFold2 produces low-quality predic-

tions. For instance, AlphaFold2 struggles with some eukaryotic complexes, with antibody-anti-

gen complexes, and with complexes displaying small interfaces [66, 69]. In such cases, the
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information provided by the deep learning system is limited to an unreliable conformation. By

contrast, we have shown that the conformational ensembles generated by docking, even

between non-interacting pairs, are useful to guide the prediction of interfaces, to gain insight

into protein sociability, and to discover alternative binding modes and new partners.

Materials and methods

Protein datasets

The first dataset is the Protein-Protein Docking Benchmark 2.0 (PPDBv2) [56] (https://zlab.

umassmed.edu/benchmark/), which comprises 168 proteins forming 84 binary complexes.

Each protein may be comprised of one or several chains, and is designated as receptor (r) or

ligand (l). For most of the proteins, we used the unbound crystallographic structures for the

docking calculations. The 12 notable exceptions are antibodies for which the unbound struc-

ture is unavailable and the bound structure was used instead. As there are also unbound anti-

bodies present in the dataset, we can evaluate the impact of conformational changes on the

results. The complexes of PPDBv2 are grouped in eight classes following [70]: antibody-anti-

gen (AA, 20 proteins), bound antibody-antigen (ABA, 24), enzyme-inhibitor (EI, 38), enzyme

with regulatory or accessory chain (ER, 6), enzyme-substrate (ES, 12), other-with-G-protein

(OG, 24), other-with-receptor (OR, 14) and others (OX, 30). Note that for three cases, namely

1IR9, 1KXQ and 2HMI, there was an inversion in the original dataset between receptor and

ligand, which we fixed here.

The second dataset is the P-262 benchmark introduced in [23]. It comprises 262 single pro-

tein chains for which single and multiple partners interactions are known in the PDB. We

used bound conformations found in complex structures for the docking calculations. This

dataset was extracted from a larger set of 2246 protein chains defined in the scope of the

HCMD2 project (see http://www.ihes.fr/*carbone/HCMDproject.htm). Based on the infor-

mation recovered from the PDB, the proteins were manually classified in eleven groups, fol-

lowing and extending the classification proposed [70]. Hence, the set is comprised of 16 bound

antibodies (AB), 25 complex subunits (C), 60 enzymes (E), 10 enzyme regulators (ER), 9 G

proteins (G), 6 antigens from the immune system (I), 23 receptors (R), 24 structural proteins

(S), 16 substrates/inhibitors (SI), 7 transcription factors (TF) and 66 proteins with other func-

tion (O).

Interacting pair identification by homology transfer

We extended the set of known partners by transferring knowledge from close homologs. Spe-

cifically, we exploited the pre-computed PDB homology clusters with 90% and 70% sequence

identities. For each protein pair considered, we verified the existence of a physical contact

between the proteins in the pair, or some homologs at 90% (resp. 70%) sequence identity. Two

proteins were considered to be in a contact if their interface was larger than 5 residues, as

detected by INTBuilder [60] (http://www.lcqb.upmc.fr/INTBuilder/). This procedure was per-

formed at the protein chain level. To deal with the multi-chain proteins from PPDBv2, we con-

sidered that two proteins were in interaction whenever at least one pair of chains from the two

proteins was in interaction.

Cross-docking calculations

Given an ensemble of proteins, complete cross-docking consists in docking each protein

against all the proteins in the dataset, including itself. All calculations were performed by the

MAXDo (Molecular Association via Cross Docking) algorithm [54].
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Reduced protein representation. The protein is represented using a coarse-grain protein

model [42] where each amino acid is represented by one pseudoatom located at the Cα posi-

tion and either one or two pseudoatoms representing the side-chain (with the exception of

Gly). Interactions between the pseudoatoms are treated using a soft Lennard Jones (LJ) type

potential with parameters adjusted for each type of side-chain (see Table 1 in [42]). In the case

of charged side-chains, electrostatic interactions between net point charges located on the sec-

ond side-chain pseudoatom were calculated by using a distance-dependent dielectric constant

� = 15r, leading to the following equation for the interaction energy of the pseudoatom pair i, j
at distance rij:

Eij ¼ ð
Bij

r8
ij

�
Cij

r6
ij

Þ þ
qiqj
15r2

ij
ð3Þ

where Bij and Cij are the repulsive and attractive LJ-type parameters respectively, and qi and qj
are the charges of the pseudoatoms i and j. More details about the representation can be found

in [54].

Systematic docking simulations. MAXDo implements a multiple energy minimization

scheme similar to that of ATTRACT [42] where proteins are considered as rigid bodies. For

each protein pair, one protein (called the receptor) is fixed in space, while the second (called

the ligand) is placed at multiple positions on the surface of the receptor. For each pair of

receptor/ligand starting positions, different starting orientations are generated by applying

rotations of the gamma Euler angle defined with the axis connecting the centers of mass of

the 2 proteins. We used two different protocols to explore the docking space for our two

datasets. In the case of PPDBv2, the whole surface of the receptor was probed by the ligand.

This was guaranteed by generating starting positions that covered the whole surface and

restraining the ligand motions during the simulation so as to maintain its center of mass on

a vector passing through the center of mass of the receptor protein. As a result, the receptor

and the ligand are treated differently and given en protein pair P1 P2, docking P1 against P2

is not equivalent to docking P2 against P1. More details about this protocol can be found in

[53, 54]. In the case of P-262, the ensemble of starting positions was restricted using predic-

tions from the JET method [13]. This reduced the docking search space by up to 50%.

Moreover, the restrain was removed, so that the ligand was free to migrate to a position

completely different from its starting position. Thus, for each couple of proteins P1 P2, con-

sidering P1 as the receptor and P2 as the ligand is essentially equivalent to the reverse situa-

tion where P2 is the receptor and P1 is the ligand. More details about this protocol can be

found in [71].

Computational implementation. For each pair, several hundreds of thousands of energy

minimizations were performed. As each minimization takes 5 to 15 s on a single 2 GHz proces-

sor, a CC-D of several hundreds of proteins would require several thousand years of computa-

tion. However, the minimizations are independent from each other and thus can be efficiently

parallelized on grid-computing systems. Our calculations have been carried out using the pub-

lic World Community Grid (WCG, www.worldcommunitygrid.org), with the help of thou-

sands of internautes donating their computer time to the project. It took approximately seven

months to perform CC-D calculations on the PPDBv2, and three years on the complete

HCMD2 dataset (2246 proteins) from which P-262 is extracted. More technical details regard-

ing the execution of the program on WCG can be found in [72]. The data analysis was partly

realized on Grid’5000 (https://www.grid5000.fr).
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Data analysis

Detection and prediction of interface residues. The docked interfaces are defined by the

sets of residues from the two partners closer than d Å. They were computed using INTBuilder

[60] (http://www.lcqb.upmc.fr/INTBuilder/), and we considered three values for d, 4.5, 5 and

6. The experimental interfaces were detected in the X-ray structures of the cognate complexes

using the same tool and a distance d of 5 Å.

The reference interfaces were predicted using a modified version of dynJET2 [23] (http://

www.lcqb.upmc.fr/dynJET2/), a software tool predicting interacting patches based on four res-

idue descriptors. Specifically, dynJET2 relies on three sequence- and structure-based properties

of single proteins, i.e. evolutionary conservation, physico-chemical properties and local geom-

etry (measured by the circular variance), and on a systemic property reflecting docking-

inferred binding propensities (S4 Fig, see also [23] for more detailed definitions). dynJET2

algorithm first detects the seed of the patch, then extends it and finally add an outer layer [12].

At each step, surface residues are selected using a combination of the four descriptors. Four

scoring strategies are implemented, to cover a wide range of interfaces. The first one, SCcons

detects highly conserved residues and then grows the patches with residues less and less con-

served and more and more protruding, and likely to be found at interfaces based on their phy-

sico-chemical properties. The second one, SCnotLig is a variant of SCcons where local geometry is

accounted for in the seed detection step to avoid buried ligand-binding pockets. The third one,

SCgeom disregards evolutionary conservation and looks for protruding residues with good phy-

sico-chemical properties. The fourth one, SCdock, defines patches exclusively comprised of resi-

dues frequently targeted in docking calculations. We refer to this group of SCs as SC-juxt. We

modified dynJET2 to create 9 additional scoring schemes grouped in 3 main strategies, namely

SC-mix, SC-monoSeed-mix and SC-dockSeed-mix (S4 Fig). All 9 scoring schemes are variants

of SCcons, SCnotLig and SCgeom including the docking-inferred binding propensities in different

ways. SC-mix combines them with the other descriptors at each step. SC-monoSeed-mix detects

the seeds using only the single-protein based properties, and then combines the latter with the

docking propensities to grow the patches. SC-dockSeed-mix relies exclusively on the docking

propensities to detect the seeds and then grows them using a combination of all four descrip-

tors. We implemented all scoring schemes in dynJET2. For each protein, given a chosen main

strategy, we detected a set of predicted patches using all its scoring schemes. Each patch was

defined as a consensus of at least 2 iterations over 10 of dynJET2. We then retained the patch

or combination of patches matching the best the experimentally known interfaces.

We also used shifted decoys as reference interfaces. To generate them, we gradually shifted

the experimentally known interfaces from the PPDBv2. For each experimental interface, we

randomly generated 100 decoys, by moving between 10% and 100% of its residues. More pre-

cisely, the first 10 decoys were generated by moving 10% of the residues, the next 10 by moving

20%, etc. . . At each step of the algorithm, we randomly pick up an interface residue rs located

at the border, i.e. at less than 5 Å of a surface residue that is not part of the interface. Then, we

identify the interface residue located the farthest away from rs, and we randomly pick up one

of its neighbours rn (< 5 Å). We then switch the status of rs and rn. In other words, rs is

removed from the interface and rn is added to the interface. The residue rs cannot be picked

again in the following iteration.

Re-scoring of the docking models. We considered three scoring functions, namely iAT-

TRACT [73], PISA [74] and CIPS [59], in replacement or complement of the one implemented

in MAXDo.

iATTRACT [73] is a docking software more recent than MAXDo and mixing a rigid-body

docking approach with flexibility. The energy function is similar to that of MAXDo, except
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that the repulsive term in the Lennard-Jones potential decreases more rapidly with the inter-

atomic distance while the electrostatic contribution decreases less rapidly. Specifically, iAT-

TRACT interaction energy of the pseudoatom pair i, j at distance rij is expressed as

Eij ¼ ð
sij

rij
Þ

12
� ð

sij

rij
Þ

6
þ
qiqj
�rij

ð4Þ

where σij is the LJ-type parameter, qi and qj are the charges of the pseudoatoms i and j, and the

dielectric constant � is set to 10. Each of the docking models obtained from the CC-D was sub-

jected to iATTRACT’s minimisation process and we used the energy value coming from this

minimization.

PISA [74] is a scoring method developed to discriminate between biological and non bio-

logical complexes. It relies on the dissociation free energy to evaluate the stability of a complex.

On top of the dissociation free energy, PISA considers larger assemblies more probable than

the smaller ones and considers that single-assembly sets take preference over multi-assembly

sets. We used PISA to re-score the docking conformations produced by MAXDo.

CIPS [59] (http://www.lcqb.upmc.fr/CIPS/) is a statistical pair potential meant to be used as

a high throughput technique able to largely filter out most of the non-native conformations

with a low error rate. It was trained using 230 bound structures from the Protein-Protein

Docking Benchmark 5.0 [75]. We used it to obtain complementary scores on the docking

conformations.

The protein interaction index—II. We evaluate docking models using an interaction

index II computed as a product between three terms (see Eq 1). For a given protein pair P1 P2,

the first term, FIRP1 ;P2
, is the overall fraction of the docked interfaces composed of residues

belonging to the reference interfaces for the two proteins: FIRP1 ;P2
¼ FIRP1

� FIRP2
. It reflects

the agreement between the docked interfaces and the reference interfaces. The reference inter-

faces may be experimentally known or predicted. The second one, EP1 ;P2
, is the docking energy

provided by MAXDo, PISA or iATTRACT. The third one, PPP1 ;P2
is the value computed by

CIPS and it may or may not be included in the formula. The product is computed for every

docking conformations and the minimum (best) value is kept.

The protein normalized interaction index—NII. To account for the global social behav-

ior of the proteins, we further normalize the interaction indices. The normalized interaction

index NII between P1 and P2 was determined as

NIIP1 ;P2
¼

minðII0P1 ;P2
; II0P2 ;P1

Þ
4

minPðII0P1 ;P
Þ �minPðII0P;P2

Þ �minPðII0P;P1
Þ �minPðII0P2 ;P

Þ
ð5Þ

where II0P1 ;P2
is a symetrized weighted version of the interaction index IIP1 ;P2

and it is defined

as:

II0P1 ;P2
≔

IIP1 ;P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP1
� SP2

p ; SPi ≔
1

2jPj

X

Pj2P

IIPi ;Pj þ IIPj;Pi ð6Þ

where P is the ensemble of proteins considered. The normalization can be applied to the

whole dataset or to subsets. In either case, NII values vary between 0 and 1. For each protein Pi,
we defined its predicted partner as the protein Pj leading to NIIPi ;Pj ¼ 1.

Parameter setting. The four main parameters of our approach and the different values we

considered are reported in Table 1. They were optimized on the PPDBv2. For each subet, we

computed 72 AUC values corresponding to the 72 possible combinations of parameter values.

Then, we ranked the combinations based on their weighted average AUC values. Given a
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combination Ci, the average was computed as

AUCðCiÞ ¼

Pn
j¼1
ðNj � AUCjðCiÞÞ
Pn

j¼1
Nj

; ð7Þ

where Nj is the number of proteins in the subset j and n is the number of subsets. We consid-

ered as subsets the eight functional classes and also the entire dataset itself, leading to n = 9.

The weighting minimises the effect a subset with a low number of proteins could have on the

global ranking, while putting more importance on subsets with a large number of proteins.

The combination maximizing the value of AUCðCiÞ was chosen as the default one (Table 1, in

bold).

Then, for each class j, we ranked the 72 possible combinations according to their AUC val-

ues, AUCj(Ci), and we retained the top 20%, hence 15 combinations. This pool was separated

by each one of the four parameters. Whenever we found a parameter value leading to a better

AUC than the default value, we further assessed this difference with a Mann Whitney U-test

[76, 77]. For this test, we went back to the whole ensemble of 72 combinations and compared

the distributions of AUC values obtained with the default value and the other value, respec-

tively. If the p-value was lower 0.01, then we considered the other value to significantly

improve our discrimination potency over the default one. And we decided to use it for the

given class.

We applied the same procedure when dealing with the experimental interfaces. Since the

number of possible combinations (18) is much lower in that case, we retained the top 30%,

hence 6 combinations.

Assessment of the predictions. We compute the proportion of proteins with at least one

known partner in the top X% predictions as:

PtopX ¼
1

N

XN

i¼1

1minkðRikÞ�
X

100
N ; ð8Þ

where Ri
k is the rank of the kth partner predicted by CCD2PI for protein Pi, and N is the total

number of proteins in the set. We put this proportion in context with respect to some baseline

value computed by counting the number of times we expect to find at least one known partner

in a randomly chosen subset:

Pbase
topX ¼

1

N

XN

i¼1

1 X
100

Ni�1; ð9Þ

where Ni is the number of known partners for protein Pi.

Comparison with DPPI

We re-trained DPPI architecture [61] on the Profppikernel database [78] containing 44 000

interactions (10% positive). The positive samples were taken from the HIPPIE database [79].

We removed from the training set all sequences which share more than 70% identity with any

sequence from PPDBv2. We clustered the samples such that any two sequences do not share

more than 40% identity. We used MMseqs2 [80] to cluster and filter sequences.

Supporting information

S1 Fig. Number of putative partners predicted by CCD2PI. Each grey curve corresponds to

a protein from the PPDBv2, and indicates the number of putative partners (y-value) with a NII
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greater than a threshold (x-value). The red curve shows the average behaviour.

(TIF)

S2 Fig. Predicted interaction matrices for the PPDBv2. (A-B) Matrices computed using pre-

dicted interfaces as references. (C-D) Matrices computed using experimental interfaces as ref-

erences. The matrices on the left give interaction indices (II) and those on the right the

normalized interaction indices (NII).
(TIF)

S3 Fig. Comparison of cognate partners and competitors interfaces. The “interaction

strength” is used for plotting pairs with respect to II values (grey) and NII values (blue). The

168 proteins are ordered along the x-axis according to the II ranks they obtained with the pro-

tein of interest, and for each position on the x-axis, two points are plotted. The point corre-

sponding to the NII value of the cognate partner is highlighted in red. The II values are scaled

between 0 and 1. The predicted RIs for the cognate partner and the top 5 competitors are

depicted as surfaces colored by amino acid properties: positive (KR) in blue, negative (DE) in

red, polar (HNQST) in cyan, aromatic (FWY) in pink, hydrophobic (AGILMV) in white, cys-

teine (C) in yellow, and proline (P) in green. The boxplots show the distribution of the propor-

tion of positives (panel a) or negatives and aromatic (panel b) residues in the RIs. The values

for the cognate partner and the top 5 competitors are indicated by colored dots.

(TIF)

S4 Fig. Properties of the known interacting pairs. (A-B) Distributions of the number of part-

ners, for each protein within each subset, inferred by homology at 90% (a) and 70% (b)

sequence identity levels. (C) Cross-interaction density, defined as the percentage of cells corre-

sponding to a known interaction, within the matrix associated to each subset. The two grey

tones indicate the sequence identity level. (D) Agreement between cross-interaction density

and predicted NII values. In x-axis are reported the ratios rk ¼ max
P

i;j2Sk
NIIRi ;RjP

i;j2Sk
NIILi ;Lj

;

P
i;j2Sk

NIILi ;LjP
i;j2Sk

NIIRi ;Rj

� �

.

For each subset Sk, rk reflects the difference in predicted interaction strengths among the recep-

tors versus the ligands. When the dot is grey, it means the receptors are predicted to interact

more with each other, while a red dot indicates that the ligands interact more. In y-axis are

reported the different of cross-interactions densities between receptors and ligands, or recipro-

cally. When the value is positive, it means the tendency observed for the known interactions

agrees with that observed for the predictions. For instance, antibodies are predicted to interact

with each other twice more than antigens, and there are 50% more known interactions between

them. Known interactions were determined with a sequence identity level of 70%.

(TIF)

S5 Fig. Examples of annotated and homology-transferred interactions. The query protein is

represented as a grey cartoon. The cognate partner annotated in the PPDBv2 is shown in blue

and a partner identified in the PDB by homology transfer (>90% sequence identity) is shown

in dark red. In each case, the proteins come from the same functional class: (A-B) other-with-

G protein, OG, (C) others, OX. The intra-class ranks of the partners are given.

(TIF)

S6 Fig. Scoring schemes used to predict interfaces. Each scoring scheme is depicted by a

schematized representation of a predicted patch, where the different concentric layers

correspond to different combinations of four residue-based descriptors. TJET: evolutionary

conservation. PC: physico-chemical properties. CV: circular variance. NIP: docking-inferred

binding propensities. Top left panel: SC-juxt comprises four scoring schemes, three of them

PLOS COMPUTATIONAL BIOLOGY Cross-docking for partners prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009825 January 28, 2022 21 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009825.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009825.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009825.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009825.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009825.s006
https://doi.org/10.1371/journal.pcbi.1009825


(SCcons, SCnotLig and SCgeom) using TJET, PC and CV and the fourth one (SCNIP) exclusively

based on NIP. SCcons detects highly conserved seeds and extend them using physico-chemical

properties and local geometry. SCnotLig is a variant of SCcons including circular variance at the

seed detection step to avoid buried ligand-binding pockets. SCgeom disregards evolutionary

conservation and detects protruding regions with good phyisco-chemical properties. All other

scoring schemes are variants of SCcons, SCnotLig and SCgeom including NIP in different ways.

Top right panel: SC-mix combines NIP with the other descriptors at each step. Bottom left

panel: SC-monoSeed-mix disregards NIP to detect the seeds and then combines it with the

other descriptors. Bottom right panel: SC-dockSeed-mix relies exclusively on NIP to detect

seeds and then uses a combination of the four descriptors.

(TIF)

S7 Fig. Detailed predictive performance for PPDBv2, when using the knowledge of the

experimental interfaces. (A) Comparison of the AUC values obtained when the parameters

were optimized for dealing with experimental interfaces or for dealing with predicted inter-

faces. The parameters for experimental interfaces are a 6 Å threshold, the MAXDo energy

function and no CIPS. They were applied to all classes but EI, where PISA was used instead of

MAXDo. The parameters for predicted interfaces are a 5 Å threshold, the MAXDo energy

function and CIPS. There are three exceptions: PISA was used for EI, iATTRACT was used for

ER and CIPS was not used for OR. (B-D) Influence of the individual parameters on the predic-

tive performance. (B) Distance threshold used to define docked interfaces. (C) Docking

energy. (D) Presence or absence of the CIPS pair potential, depending of the docking energy.

In each plot, for each protein class, we considered the 6 combinations with the highest AUC

values. This pool of combinations was divided into 2 to 4 subsets depending on the number of

values considered for the parameter. The opaque bars indicate the average AUC values com-

puted over the subsets of combinations. The parts in transparent indicate the maximum val-

ues. If a parameter value was not present in the 6 best combinations, then it does not appear

on the plot.

(TIF)

S8 Fig. Influence of the quality of the interface predictions on partner identification. The

AUC values are plotted in function of the F1-score and the positive predictive value (PPV) of

the predicted RIs, for the whole dataset and a subset of classes (each containing more than 15

proteins). On each plot, the red line corresponds to a linear regression between the two vari-

ables, whose adjusted R2 is reported in the top left corner. The scoring strategy is SC-dock-

Seed-mix and the AUC values correspond to CCD2PI default parameter setting.

(TIF)

S9 Fig. Partner identification for proteins where the predicted and experimental interfaces

do not match (F1-score < 0.2). For each protein, we show the improvement (in green) or the

deterioration (in red) of the native partner’s rank upon replacing the predicted RIs with the

experimental interfaces. The ranks obtained using the predicted RIs are marked with horizon-

tal ticks—the other extremity of the segment corresponding to using the experimental RIs.

The partner is identified either within the whole PPDBv2 (left segment) or only within the

functional class of the protein (right segment).

(TIF)

S10 Fig. Assessment of CCD2PI on an independent dataset. For each protein from the set,

the barplot indicates the rank(s) determined by CCD2PI for its known partner(s). The partners

are inferred from the complex PDB structures involving the proteins from the set or their close

homologs, sharing more than 70% sequence identity. There are up to 12 partners for each
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protein, and they can be distinguished by the blue and purples tones. Compare with Fig 5A in

the main text.

(TIF)

S11 Fig. Comparison with DPPI on PPDBv2. Distributions of the best ranks predicted by

DPPI (left, lightblue) and CCD2PI (right, lightgreen) for the known partners, inferred at 90

and 70% sequence identity levels.

(TIF)
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