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ABSTRACT: One application area of computational methods in drug discovery is the
automated design of small molecules. Despite the large number of publications describing
methods and their application in both retrospective and prospective studies, there is a lack of
agreement on terminology and key attributes to distinguish these various systems. We
introduce Automated Chemical Design (ACD) Levels to clearly define the level of
autonomy along the axes of ideation and decision making. To fully illustrate this framework,
we provide literature exemplars and place some notable methods and applications into the
levels. The ACD framework provides a common language for describing automated small
molecule design systems and enables medicinal chemists to better understand and evaluate
such systems.

■ INTRODUCTION

A great deal of attention is currently directed toward
computational (especially Artificial Intelligence) methods in
drug discovery and development.1−3 Many publications,4−7

conferences,8−10 and company meetings are devoted to
describing, understanding, and evaluating the latest methods
and results. As discussed in this Perspective, some groups have
assembled these methods into complete systems that choose or
design molecules with varying levels of machine intelligence
and autonomy. Despite this great interest, there is little
consistency or shared understanding on how to describe
computational drug discovery systems such that relevant
similarities and differences can be clearly understood and
examined.
In this Perspective, we propose definitions to describe

systems for one application area of computational methods in
drug discovery: the automated design of small molecules,
which we will refer to as Automated Chemical Design (ACD).
We focus on small molecules (as opposed to other modalities
such as protein therapeutics or antibodies) as it enables us to
sharpen the discussion to the particular challenges for small
molecules and draw relevant distinctions between systems.
Specifically, the problem of chemical design is to locate, in the
vast space11 of potential small molecules, a molecule with an
acceptable set of properties to be a drug. These properties
would naturally include engagement with the desired target,
selectivity compared to undesired targets, favorable pharma-
cokinetic profile, and synthetic accessibility. We assume this
process must be done iteratively through gradually improving
molecules that satisfy some but not all of the desired
properties.

We wish to emphasize the focus on design. The framework
and definitions here intentionally do not address the
automation of synthesis or testing of compounds. Automated
design systems can just as easily send their choices to a team of
chemists and biologists for execution as they can send
instructions to automated laboratories. While we believe the
automated execution of many lab experiments is an important
direction in the field, it is not the focus of this framework.
Similarly, although automated retrosynthetic planning is an
important enabling technology for some systems, it is not
fundamental to any of the definitions here.
Before describing the framework for categorizing automated

chemical design systems, it is important to consider what value
this automation could add. Automated design can potentially
reduce iteration cycle time, require fewer compounds and
iterations to produce a candidate, and scale to more programs.
These potential advantages have been discussed else-
where.12−14

Further, we wish to emphasize an under-discussed benefit of
automation. Across many fields, the most reliable way to
improve at a task is to experiment and get feedback. The
process of becoming an expert medicinal chemist takes years of
experience observing the effects of various decisions. Especially
in medicinal chemistry, the feedback is noisy and it is difficult
to properly attribute the causes of success and failure. For
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example, it is difficult or impossible to run a clean side by side
experiment to compare different chemical exploration
strategies, since chemists cannot simply “forget” everything
they have learned and start again with a different strategy.
However, machines are perfectly capable of being reset to the
same initial state. This means that once a system is sufficiently
automated, you can run clean, meaningful, and relatively easy
to interpret experiments on the ideation and decision making
process.15

Experiments also help focus effort on components of the
process that will lead to the most meaningful improvements.
For instance, it is common for machine learning researchers to
build new generative models or better property prediction
models with relatively abstract and reductionist objectives such
as improving performance on a benchmark data set. If these
research programs were pursued in the broader context of a
complete design-make-test system, it would be easier to assess
the real-world value of modeling improvements. This ability to
experiment and get accurate feedback will translate to
continual improvement in the system itself. Failures of the
system to make progress on a target can be examined and
understood at a level of detail that is nearly impossible for less
automated systems. This naturally implies that organizations
that are willing to invest in these experiments will have a
powerful tool for driving continual improvement.
We break autonomy, as it relates to ACD, into six levels

arranged on two axes as shown in Figure 1. The axes represent
two distinct dimensions for defining automated design. While
other authors have discussed key questions around levels of
automation,13,16 the ACD framework is more complete with
better defined distinctions between levels. We first precisely
define the axes and levels and illustrate the levels with
published systems from the literature. These examples are not

intended to be a complete review; we focus on the most
compelling examples that illustrate the technical accomplish-
ments and challenges of each level. In our descriptions, we will
be careful to distinguish when complete vs partial systems have
been assembled using the definitions in Table 1. We will then
discuss the challenges of moving to more effective and more
automated design systems and review the key points of
partnership between humans and machines even at the most
automated levels.

■ ACD LEVEL 0
Description. In an ACD Level 0 system, the molecules are

explicitly designed and selected by a chemist. This approach,
which has been effectively applied for more than 100 years, is
still the pervasive model in industrial and academic drug
discovery research.
As represented on the x-axis in Figure 1, the decision making

for what molecules to make next is solely in the hands of the
chemist (“Chemist decides”). The chemist may be looking at
machine computed or predicted properties to enable better or
more efficient decision making, but the final decision making
power resides with the chemist.
Good prediction of molecular properties is a powerful tool

for design. When asked how he had so many good ideas, Linus
Pauling famously said “Well, you just have lots of ideas and
throw away the bad ones.″17 Predictive models enable you to
“throw away the bad ones.” These predictive models can take a
variety of forms. One can employ filtering rules that specify the
types of molecules that should be selected or ignored. For
instance, Lipinski’s Rule of 518 has been used to identify
molecules that reside within “drug-like” space. The PAINS
(pan-assay interference compounds) filters19 have been used to
identify molecules that may interfere with some assays and

Figure 1. Summary graphic for the two dimensions of design automation and the named ACD levels defined in this Perspective. The x-axis
represents where the final decision making power lies and the y-axis represents the source of molecular ideas.

Table 1. Definitions of Words Used to Describe Previous Literature as It Relates to the ACD Framework

ACD system A complete system (both human and machine) that has been used to create and test molecules in the real world.
components Algorithms and models that address some of the problems a complete

ACD system must address (such as molecular property prediction or decision making under uncertainty).
potential ACD system An assembly of components that would form an ACD system except that it has only been tested in virtual or retrospective ways.
approaching an ACD
Level X system

A system which almost matches the description of an ACD system at level X, but adds a crucial point of human decision making.
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provide a misleading readout. A wide array of additional
computational techniques can also be applied to the
prioritization task. Molecules can be scored based on the
output of molecular similarity calculations,20 molecular
shape,21 complementarity to a protein binding site,22 or
many other factors. When optimizing a congeneric series,
methods such as Free Energy Perturbation (FEP)23 can be
used to estimate binding affinity and rank order molecules.
Over the past decade, machine learning models have become
an essential adjunct to computational and medicinal chemists.4

When used to predict a molecule’s properties or biological
activity, a machine learning model identifies patterns of
molecular features which can be related to the value being
predicted. These values, often referred to as labels, can be
either categorical, for example, “soluble” or “insoluble” or real-
valued. In early machine learning work, molecules were
typically represented by molecular fingerprint vectors24

where each position in the vector corresponded to the
presence or absence of specific chemical substructures. More
recently, several groups have developed methods that use
neural networks to learn a molecular representation.25 These
learned representations can be roughly divided into two
categories: string representations and graph representations.
String representations take their inspiration from work in
language translation and produce molecular representations
based on string encodings of molecules such as SMILES
(Simplified Molecular Input Line Entry Specification).26 In
graph-based machine learning, a molecule is represented as a
graph with nodes corresponding to atoms and edges
corresponding to bonds. A wide array of methods continues
to be developed for passing information among nodes and
edges and generating the final vector representation of the
molecule.
These predictive models can help chemists make decisions

at ACD Level 0, but they are especially critical as systems move
to higher levels of autonomy.
As represented on the y-axis of Figure 1, at ACD Level 0, the

ideas for molecules come from the chemist (“Chemist defines
recipe”). The meaning of “recipe” will be more fully covered in
ACD Level 1, but briefly, the chemist precisely defines all the
molecules to be considered. The simplest and perhaps most
common approach is for a chemist to sketch a specific set of
molecules. For a slightly more complex process, a chemist can
enumerate a set of molecules. This enumeration can be driven
by one or more chemical reactions and building blocks; the use
of precedented reactions and reagents allows a chemist to have
some confidence that the generated molecules can be
synthesized. There are, of course, numerous other approaches
to enumerating chemical structures. One can apply R-group
substitutions to attach functional groups at specific positions
on a structure or utilize techniques such as positional analog
scanning27 to generate sets of closely related molecules. Several
alternate approaches28,29 analyze databases of bioactive
molecules to identify common medicinal chemistry trans-
formations. These transformations can then be programmati-
cally applied to chemical structures to generate plausible
analogs.
Finer-grained distinctions could be made about how much

assistance the machine gives the chemist at ACD Level 0. For
example, a system where a machine ranks a million possibilities
and the chemist reviews the top 100 has more machine
assistance than one where the chemist reviews every idea.
However, to keep a clean and understandable definition, we

put all systems where the chemist has the final say at this
lowest degree of decision making autonomy.

Exemplars. One example of an efficient ACD Level 0
system is described in a 2016 paper by Gomez-Bombarelli et
al.30 In this paper, the authors describe a collaborative system
for the design of materials for organic light-emitting diodes
(OLEDs). Their process begins with a set of 1.6 million
molecules generated through a library enumeration process.
These molecules were then prioritized using an ML model, and
molecules with the best scores from the model were subjected
to quantum chemical calculations. Following the calculation
steps, a team of chemists used a web portal to select molecules
based on human assessments of calculated values, novelty, and
synthesizability. A consensus approach was then used to select
molecules that would be processed in a subsequent round of
selections. After several cycles of this design process, a number
of novel materials for OLEDs were obtained. While this system
incorporates a number of automated processes, the design of
the initial library, as well as the selection of molecules at each
iteration, was driven by human chemists.

■ ACD LEVEL 1
Description. ACD Level 1 systems move up the scale of

ideation automation, represented by the y-axis in Figure 1, to
“Machine generates ideas.” We make one primary distinction
to separate human centered and machine centered design with
the concept of a “recipe”. At ACD Level 0, “Chemist defines
recipe” means the chemist specifies precisely how to construct
molecules from existing chemical matter and what molecular
ingredients are available. We consider this degree of autonomy
to use fixed, enumerated lists of ingredients, such as a set of
building blocks available from a vendor. As the length of the
list of ingredients grows, the chemist may not review every
member of this list and therefore could be surprised at some of
the generated molecules. However, this surprise comes from
the list of ingredients and not how they were used; the
creativity and design idea came solely from the chemist. For
clarity, we consider any fully enumerated list where the chemist
has designed each molecule individually to be a very simple
form of a “recipe”.
Another key issue for a chemist-defined recipe is that the

chemist is responsible for ensuring the synthesizability of the
molecules. While no human or machine can perfectly predict
whether a given synthesis will be successful (and chemists will
not agree on some molecules), we expect the molecular ideas
to generally be amenable to a skilled chemist producing a
successful synthetic approach.
The transition to ACD Level 1 means that the machine no

longer has simple rote directions. With rote directions, when
given an output from the generation process, it will be obvious
how that molecule resulted from those directions. For machine
generated ideas, the process and reason for a particular output
molecule will no longer be obvious. While there is some gray
area between these, most ideation processes we have seen fall
clearly to one side or the other. The hallmark of this transition
is that the produced molecules can surprise the chemist, and
not just because the chemist did not review the entire list of
possible ingredients.
We note that within the scope of an ACD Level 1 system,

the chemist may provide variable amounts of guidance or
constraints. A typical constrained generation would be allowing
the machine to only modify one vector off of a fixed core.
These constraints can provide natural ways for the chemist to

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://doi.org/10.1021/acs.jmedchem.2c00334
J. Med. Chem. 2022, 65, 7073−7087

7075

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


guide the machine’s efforts in much the way a medicinal
chemistry team may decide to focus on one aspect of a
molecule. Generating less constrained molecules is a technical
challenge for generation as well as potentially making the
decision making process harder.
Even though the machine is generating ideas, at ACD Level

1, the ultimate selection of molecules to be synthesized is
performed by a human chemist. A key job for the chemist is to
decide which of the machine’s ideas are synthesizable. Better
machine ideation algorithms will produce a higher rate of
synthesizable molecules, but this assessment by the chemist is
fundamentally tied to the evaluation for fitness.
Exemplars. Over the last five years, we have seen a

renaissance in the development of de novo design methods.
Advances from fields such as image analysis, language
translation, and reinforcement learning have been adapted to
molecule generation. These methods have been coupled with
predictive models and will likely become key components of
ACD approaches. While there have been dozens, perhaps
hundreds of recent publications describing generative models
for chemistry,5,31,32 there has been a paucity of prospective
studies that resulted in the synthesis and testing of molecules.
The earliest work we know of using these recent style of

generative models is a potential ACD Level 1 system by
Gomez-Bombarelli.33 In this paper, the authors used a type of
neural network known as an autoencoder to encode molecules
into a continuous vector representation known as a latent
space. Points in this latent space can subsequently be decoded
to generate new molecules represented as molecular graphs or
text strings. By selecting latent space coordinates near the
representation of a molecule in the latent space, one can
generate representations of similar molecules. The traversal of
latent space can be coupled with predictive models to generate
the structures of molecules predicted to be optimal by the
model. While the paper by Gomez-Bombarelli demonstrated
the ability of latent space traversal to optimize the scores for
computed functions, the lack of experimental testing leads this
to be categorized as a potential ACD Level 1 system.
One complete ACD Level 1 system was described in a 2018

paper by Merk et al.34 The authors use a type of neural
network called recurrent neural networks (RNNs). When
applied to text, an RNN begins by analyzing a large corpus of
documents and collecting distributions of words that tend to
follow other words. Given these distributions, an RNN can,
among other things, suggest that the phrase “for lunch” would
follow the phrase “would you like to meet”. In a similar fashion,
the authors use an RNN to analyze a set of molecules
represented by Simplified Molecular Input Line Entry System
(SMILES) strings and identify groups of characters, represent-
ing atoms, that tend to occur together. They train on a set of
more than 500 000 bioactive molecules from the ChEMBL
database. The RNN was subsequently tuned on a task-specific
set of 25 fatty acid mimetics with reported activity against RXR
and PPAR. A set of computational models was then used to
rank 1000 structures generated by the RNN and 49 molecules
were selected by visual inspection to assess synthesizability and
novelty, resulting in the selection of five compounds. In
subsequent testing in a reporter gene assay, four of the five
compounds demonstrated agonist activity against at least one
RXR or PPAR subtype.
A potential ACD Level 1 system with a similar technical

approach was published by Popova et al.35 The authors add an
additional Reinforcement Learning (RL) step during the

generation. RL is a branch of machine learning that focuses on
how to identify optimal actions in a framework where there is a
series of actions that change the state of the world and the
value of an action might not be known for many more steps.
The generation of a molecule is considered a series of actions
of adding characters to a SMILES string. The RL step learns to
generate SMILES strings that a separately trained predictive
model rates highly.

■ ACD LEVEL 2
Description. The move to ACD Level 2 is a move up the

decision making automation axis (“Machine decides, single
iteration”) while the human still determines the chemical space
to explore on the ideation axis (“Chemist defines recipe”). The
machine makes the final decisions on which molecules to make
next, but this is only done a single time without the
opportunity for multiple feedback cycles. This is common for
hit finding systems or a single round of expansion around
known hits. Typically, many molecules would be identified and
tested in parallel. The transition to an ACD Level 2 system
represents a dramatic departure from the typical role of
computation in drug discovery, from human-driven selection
to computer-driven selection. Many of the implicit assump-
tions and biases in an ACD Level 1 system become explicit in
an ACD Level 2 system, requiring a much more systematic
definition of the search space and objectives in order to match
ACD Level 0 or 1 performance. For example, chemist-driven
selections in an ACD Level 1 system may implicitly consider
multiple properties and trade-offs between them, like balancing
potency and logP; in an ACD Level 2 system, these objectives
must be defined explicitly and have associated models for
predicting and combining them. In lower level systems, the
chemist is relied on to fix poor choices by the machine and we
are left wondering whether outcomes from the system can be
attributed to the machine or to the skilled chemist.15 Moving
to this degree of decision making autonomy allows for
understanding the value of the machine’s decision making.
ACD Level 2 systems will typically have to consider multiple

desired properties, typically termed multiparameter optimiza-
tion (MPO), which integrates multiple scores into a decision
making process. This MPO score can be a simple weighted
sum of different scores or can employ more sophisticated
functional forms to adjust the weights of specific parame-
ters.36−40

It is important to restate that while ACD Level 2 requires
that the decision making be automated, the execution of
synthesis and assays does not have to be automated. Further,
some of the designed molecules may fail synthesis. Even if
humans are evaluating or attempting synthesis, the key point is
that they are making decisions about synthesizability only, not
about the value of a molecule to the overall goals.

Exemplars. A recent study by Sadybekov et al.41 on
gigascale virtual docking is a prototypical example of an ACD
Level 2 system. The authors designed a computer program that
can search the approximately 11 billion molecules originating
from the 129 reactions in the Enamine REAL Space. The
algorithm exploits the combinatorial nature of the molecular
libraries to examine only a small portion of the input space and
identify high scoring molecules. Top-ranked molecules were
clustered and standard cheminformatic filtering applied to
identify compounds for synthesis. The program was prospec-
tively tested on two protein systems (a cannabinoid receptor
and kinase ROCK1) and successfully found submicromolar

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://doi.org/10.1021/acs.jmedchem.2c00334
J. Med. Chem. 2022, 65, 7073−7087

7076

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


hits. This is a prototypical example of a ACD Level 2 system as
the chemical search space was precisely defined by reaction
schemes and reagents, while the final compounds for synthesis
were selected algorithmically.
Stokes et al.42 trained a machine learning model on 2335

molecules with experimental data to predict E. coli growth
inhibition and used it to screen 6111 molecules from the Drug
Repurposing Hub. The top 99 unique molecules were tested
experimentally, and 51 molecules showed antibacterial activity
(vs only two from the bottom 63 predictions). These new
experimental data were added to the previous data and a new
model was trained and used to screen the WuXi
antituberculosis library; however, none of the 300 molecules
tested (200 top-scoring and 100 bottom-scoring) showed
antibacterial activity. A third model was trained using the
accumulated data and used to screen a subset of the ZINC15
database of commercially available molecules. From a set of
more than 107 M molecules, 23 were selected with high
prediction scores and low similarity to known antibiotics; eight
of these 23 molecules showed growth inhibition against at least
one of three species tested. The experiments in this paper are
good examples of ACD Level 2 systems because each used a
defined chemical space and only relied on algorithmic
predictions or measurements for compound selection.
Konze et al.43 used FEP (Free Energy Perturbation)

simulations to construct a potential ACD Level 2 system
based on enumeration constrained by a synthetic route
(PathFinder). The first step of the process uses template-
based retrosynthesis to identify potential synthetic routes to a
known starting compound. After the preferred route is chosen,
candidate molecules are generated with reaction-based
enumeration that applies the selected route to a set of building
blocks. The enumerated library is then filtered based on
property criteria and docking to reduce the candidate set to a
size appropriate for more expensive FEP calculations. Since the
library is still likely to be too large to run every molecule
through a full FEP simulation, the authors used short FEP
simulations to train a machine learning model for predicting
potency: a random set of molecules are chosen for the initial
training set, and the model is used to select the next batch of
compounds for evaluation; this was repeated four times, after
which the model was used to select compounds for full FEP
simulations. This system tackles the synthesizability challenge
by limiting compound generation to a single synthetic route. It
is a potential ACD Level 2 system because the evaluation of
selected compounds was purely in silico rather than
experimental.
McCloskey et al.44 described a system approaching ACD

Level 2. The authors trained machine learning models to
predict protein binding using experimental data from DNA-
encoded library (DEL) selections. These models were then
used to search two enumerated sets of molecules: the MCule
vendor catalog and an internal database based on building
block chemistry. Top-scoring selected compounds were further
pruned by sphere exclusion clustering and “automated or
automatable filters” including restricted chemist review for
reactivity and assay interference. The system was applied to
three protein systems sEH (a hydrolase), ERα (a nuclear
receptor), and c-KIT (a kinase), and successfully identified
potent (IC50 < 10 nM) molecules for all three systems. This
system has many of the components of an ACD Level 2
system, but due to the limited manual chemist review of

selected compounds this system is classified as approaching
ACD Level 2.
Lyu et al.22 performed experiments that directly compared

their ACD Level 1 and ACD Level 2 systems. Both
experiments began by docking 170 million molecules into
AmpC β-lactamase and the D4 dopamine receptor before
diverging into “person” and “machine” workflows. In the
“person” approach, the 1000 top scoring molecules were
visually inspected and 124 were selected to be synthesized and
screened. In the “machine” approach, the top 114 molecules
were selected purely based on the docking score. The hit rates
from the two screens were similar at approximately 24%, but
the “person” approach identified more potent molecules. As
the field of automated chemical design progresses, it will be
important to conduct additional objective comparisons of
ACD Level 2 and lower level systems.

■ ACD LEVEL 3
Description. An ACD Level 3 system is distinguished

primarily by the definition of the search space. In an ACD
Level 2 system, the chemical space is explicitly defined by a
recipe, and the machine chooses compounds exclusively from
that set of molecules. In an ACD Level 3 system, this
constraint is relaxed to allow for automated non-recipe
approaches to molecule generation that explore chemical
space with fewer restrictions. Note that like ACD Level 2, an
ACD Level 3 system still requires machine-driven selection; a
system with machine-generated molecules that relies on human
selection would be classified as ACD Level 1. The key
technical challenge for moving to an ACD Level 3 system is
assessing the synthetic feasibility of candidate molecules that
are generated by the machine. In lower-level systems, the
responsibility for determining what can be made falls to
humans as they define the chemical space or select
synthesizable compounds, but in an ACD Level 3 system,
the machine is required to generate the chemical space and
prioritize compounds without human intervention. The
machine should produce mostly synthesizable compounds
(see the “Synthesizability” section below for more discussion of
this challenge).

Exemplars. Morris et al.45 described an ACD Level 3
system that combined property modeling and prediction of
synthetic routes to identify compounds active against SARS-
CoV-2 without any human intervention. The chemical space
was defined by “chemically reasonable perturbations” and
molecule fragmentation to generate building blocks for
recombination; the final space contained nearly 9 M molecules.
Molecules were ranked by a property prediction model, and
the best-scoring compounds were fed into a synthesis planning
model to prioritize compounds with likely synthetic routes
containing ≤3 steps, and the top five molecules were
synthesized (one with great difficulty) and tested experimen-
tally; one of these five molecules showed micromolar
biochemical activity and activity in live virus cell assays. The
algorithmic estimation of synthetic feasibility played a critical
role in compound selection, highlighting its importance for
real-world applications.
A 2019 paper by Zhavoronkov et al.46 extended the work of

Gomez-Bombarelli33 and demonstrated the application of
latent space exploration to the design of inhibitors of DDR1, a
tyrosine kinase that has been implicated in fibrosis. In this
work, the authors defined a latent space based on a set of
known molecules including DDR1 inhibitors to generate a set
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of 30 000 structures which were subsequently prioritized using
a variety of computational models and filters. This prioritiza-
tion process yielded a set of 40 molecules that were
subsequently reviewed by human chemists to assess synthesiz-
ability. Note that this system still qualifies as ACD Level 3
because the human review was limited to synthesizability. Of
the 40 selected molecules, 6 were synthesized and assayed for
in vitro DDR1 activity. Subsequent pharmacokinetic assays
also demonstrated that one molecule exhibited acceptable
bioavailability in a mouse model.
A recent paper from Novartis described the use of a

generative model to identify antimalarial compounds.47 The
model was trained using 21 065 compounds with experimental
data, and three compounds were used as seeds for the
generative model to produce a pool of 282 candidate
molecules. Each molecule was scored with an activity
prediction model, and the top four molecules were selected
for synthesis. Of these four compounds, only two were made,
and both were active in antimalarial activity assays in the
single- to double-digit nanomolar range. It is not clear how the
number of top-scoring compounds to select was determined;
in an ACD Level 3 system, it is expected that this would either
be predetermined or algorithmically decided.
Besnard et al.48 iteratively optimized the structure of

donepezil, a D4 dopamine receptor inverse agonist, for activity
against the D2 receptor and blood−brain barrier penetration.
The chemical space was defined by repeated rounds of
enumeration using transformations mined from the liter-
atureeach round considered novelty, rule-of-five properties,
and synthetic accessibility to reduce the pool for the next
roundresulting in thousands of candidate structures. In the
first experiment, eight compounds were selected by the authors
for synthesis based on predicted polypharmacological profiles,
and all showed D2 affinity between 156 nM and 1.7 μM.
Subsequent experiments focused on reducing activity against
α1-adrenoceptors and increasing D4 potency and selectivity,
identifying a highly selective benzolactam series that was not
present in the training data. Additionally, the authors identified
a morpholino chemotype with D4 affinities in the double-digit
nanomolar to single-digit micromolar range. This system
approaches ACD Level 3 due to its machine-driven chemical
space exploration, but the system as described falls into ACD
Level 1 since the final compounds were chosen by humans for
reasons beyond synthesizability. Additionally, the use of a
synthetic accessibility score is likely insufficient to produce

generally synthesizable molecules that are a feature of a ACD
Level 3 system.
Bos et al.49 described an ACD Level 1 system that

approaches ACD Level 3 that combines matched molecular
pair transformation, reaction-based enumeration (see Konze et
al.43), recursive trimming, and R-group decoration to create
large pools of candidate molecules (>100M) for identifying
DAO inhibitors. Each pool was reduced with property and
complexity filters, and compounds unsuitable for structure-
based evaluation with docking or FEP were discarded. The
CNS MPO score,37 predicted potency, and lipophilic ligand
efficiency (LLE) metric were used for ranking, and several
compounds showed <1 μM experimental activity. This system
only approaches ACD Level 3 because the final compounds
were prioritized by chemists.

■ ACD LEVEL 4

Description. An ACD Level 4 system moves to the highest
degree on the decision making axis (“Machine decides,
multiple iterations”). Multiple rounds of decision making
explicitly forces the machine to consider exploration-
exploitation trade-offs rather than just myopically focus on
the next best molecule. These iterations refer to synthesis and
testing in the real world (not just in silico rounds of search
through chemical space) and must be performed without
human intervention in the decision making process. If a human
chemist intervenes to redefine the problem or space of
molecules to consider after every round, we consider that to be
a repeated application of a single iteration autonomous system
and not true multiple-iteration automation.
Systems at this level typically use a class of machine learning

methods known as active learning. In contrast to standard
learning methods (as illustrated in Figure 2) where a model is
trained and then directly utilized to find potent compounds,
active learning models are refined in multiple rounds of
training.50−53 Initially a model is trained and then this model is
used to select candidate molecules from a source pool. The
selected molecules are then assayed and in conjunction with
the original data set used to retrain the model in preparation
for the next round of selection.
Active learning systems are composed of two main

components: an evaluation function that predicts a score and
its associated uncertainty, and an acquisition function or
selection policy that uses these values to select the next set of
molecules. Within the machine learning community, the main
goal of active learning is to quickly refine the predictive power

Figure 2. Graphical representation of the difference between standard machine learning and active machine learning.
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of the underlying model. However, within the drug design
community, the goal of active learning is twofold: to both
quickly identify optimal compounds (“exploitation”) as well as
to refine the model and hence disambiguate the underlying
structure activity landscape (“exploration”). The primary
differences in active learning methods relate to the acquisition
function and how uncertainty estimates are utilized. Popular
methods include upper-confidence bound,54 expected-im-
provement,55 and Thompson sampling.56 Drug discovery
projects typically select a batch of compounds to synthesize
and test due to the long latency in that process. Most active
learning algorithms are designed to select single compounds
and effective strategies for optimal selection of a batch of
compounds are an ongoing research challenge.
Exemplars. The earliest ACD Level 4 system we are aware

of is by Weber et al.57 They described the use of a genetic
algorithm to identify thrombin inhibitors by repeated selection
from a pool of 160 000 possible Ugi reaction products. After
starting with an initial set of 20 randomly selected compounds,
subsequent rounds selected batches of 20 compounds each for
synthesis and testing, and the top 20 compounds from the full
library were used as parents for the next round of selection.
The authors ran the experiment for 20 rounds (a total of 400
compounds) and identified submicromolar thrombin inhib-
itors (the initial random set was in the hundreds of micromolar
range). A least two of the compounds shared structural features
with previously known inhibitors, emphasizing the role of
human chemists in defining the chemical space.
Another example of an ACD Level 4 system was built by the

team at Cyclofluidic.58 In 2013, they published a report
detailing the discovery of BCR-Abl inhibitors using a closed-
loop flow chemistry system that prioritized compounds over
many rounds of active learning.59 The chemical space was
defined by three templates chosen by their potential for hinge-
binding and occupation of the DFG-out conformation of the
target. Each template contained two vectors; four substituents
were used for R1, while 27 were chosen for R2 by structure-
based assessment of their likely interactions with the target. In
total, 270 compounds were available for flow synthesis
followed by inline assays with a cycle time of 1−2 h.
Compounds were selected by machine learning models with
both exploration and exploitation strategies based on predicted
potency and reactant frequency. The first experiment ran 29
rounds of exploration and identified several inhibitors (the
Abl1 model used for compound selection was updated after
each round), including a 60 nM inhibitor of Abl1. The second
experiment focused on improving potency and ran for 20
rounds, and the third experiment alternated between
exploration and exploitation for an additional 41 rounds.
Overall, 90 rounds of selection resulted in 64 successfully
synthesized/assayed compounds and the identification of
single-digit nanomolar inhibitors of Abl1 and Abl2. Although
this system meets the criteria for ACD Level 4, the limited size
of the explored chemical space highlights the fact that reaching
a certain level of autonomy does not guarantee any specific
level of utility relative to lower-level systems.
The “robot scientist” Eve, described by Williams et al.60 is

another example of an ACD Level 4 system. The authors
developed assays for DHFR inhibition and gathered single-
concentration data for a library containing about 14k
compounds. A subset of this data was chosen as a training
set for a QSAR model, which was then used to select a batch of
96 compounds for dose−response assays. For subsequent

rounds of selection (three in total), the newly acquired data
were added to the training set and the model was retrained.
The authors also performed computational simulations using
the original single-point data to investigate the behavior of the
system over many more rounds of selection. The paper does
not provide a description of how the training set was chosen;
this is likely to have a profound effect on the success of the
active learning and the apparent effectiveness of different
compound selection strategies.
With the renewed interest in automated molecular design, it

becomes easy to overlook historical research in this field.
However, automated molecular design in the pharmaceutical
industry has been an active area of research for over 5 decades.
In the early 1970s, Darvas61 described a potential ACD Level 4
design system based upon a simplex optimization method
coupled with a two-dimensional descriptor space. Starting from
three compounds with known activity, a simplex is constructed
in the descriptor and activity space and the direction of
increase of biological activity calculated. A new compound is
selected from the source pool that is located along this
direction. The activity of the selected compound is obtained,
and the process repeats using the newly obtained data point.
The paper demonstrated statistical superiority of the method
to identify optimal compounds as compared to random
selection. Although this is a small study by modern standards,
it embodies the essential components of an ACD Level 4
system: iterative design and algorithmic selection of molecules.
Another potential ACD Level 4 system is the information

theory based iterative design strategy introduced by Bradley et
al.,62 which was used for lead identification and optimization of
CDK-2 ligands. To mimic a typical discovery program, this
study used two different source pools of molecules: an early
stage pool for initial model building and a late-stage pool for
compound optimization. The early stage pool consisted of
13 359 diverse chemical structures containing 207 actives while
the late-stage pool contained approximately 4500 compounds
with 161 actives spread across 22 different scaffolds. Using the
early stage pool, an initial binary molecular descriptor space
was defined using approximately 4 million 3D pharmaco-
phores. Subsequently, each molecule was encoded into a
binary vector denoting the presence or absence of a particular
pharmacophore in any of its molecular conformations. This
space was subsequently pruned by retaining only those
pharmacophores which were populated to a sufficient degree
by molecules in the early screening pool. This resulted in
retaining approximately 1.8 million pharmacophores. Using an
information theory-based selection algorithm, a small set of
molecules were selected from the late-stage pool, their
activities exposed, and then used to refine the pharmacophore
space by retaining only pharmacophores overrepresented in
the newly discovered active compounds. This process was
repeated four times, ultimately pruning the space to 82K
pharmacophores. In the final step, compounds in the late-stage
pool enriched in the final pharmacophores were predicted as
“active” compounds. The procedure discovered 11 of 14 active
scaffolds in the late-stage pool and outperformed other profiled
methods. This study is an excellent embodiment of a potential
ACD Level 4 system containing both iterative design and
algorithmic selection of molecules.
A further example of a potential ACD Level 4 system is the

retrospective study conducted by Warmuth et al.51 which
utilized support vector machines (SVM) coupled with an
active learning strategy. The methodology was evaluated on
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two different ligand binding systems: Thrombin and CDK2.
The Thrombin data set contained approximately 2000
compounds with 190 actives while the CDK2 data set
consisted of 17 500 compounds and 383 active molecules.
The experimental setup was designed to be analogous to an
iterative drug discovery project, in that an initial classifier is
constructed using available data and subsequently refined as
more information becomes available. For this study, the initial
classifier was constructed using 5% of the available data. This
classifier, coupled with a selection policy, is then used to select
a new batch of compounds, and retrained using the exposed
labels of the newly selected batch. As is definitional for an
ACD Level 4 system, compounds were selected iteratively and
algorithmically. Notably, in an ACD Level 4 system the
algorithmic selection policy can be automatically tuned to the
stage of the project. One policy can be utilized at the beginning
of a project when it is important to quickly identify active
chemical matter, while at later stages of the project, when
understanding the structure activity landscape becomes
important, a different policy can be used.
An example of an approaching ACD Level 4 system is the

methodology utilized by Fujiwara et al.,63 who applied a
“query-by-committee” active learning strategy to explore SAR
landscapes and identify potent compounds. This study used a
well-known approach termed “bagging” to create a collection
of machine learning models, where each model is trained on a
unique random sample of the currently available data. A batch
of molecules for testing is then selected by identifying a set of
molecules where there is maximal disagreement among the
created group of machine learning models. The activities of
these selected molecules are obtained, and the process iterates.
The method was retrospectively tested on three systems, and
outperformed conventional hit selection strategies in each case.
The method was prospectively tested on biogenic amine
receptors by using the algorithm to select 50 compounds from
a source pool of approximately 50 000 molecules. From the
machine-selected molecules, 10 compounds were manually
selected, ordered, and assayed with four compounds exhibiting
inhibitory potency of more than 50%. The additional manual
selection step means that this prospective application only
approaches ACD Level 4; as described, the system would be
ACD Level 0.
A further example of a potential ACD Level 4 system is

research by Ahmadi et al.64 In this system, a machine learning
algorithm known as Gaussian process regression is used as the
base algorithm while the acquisition function employs an
expected improvement methodology. The method was
retrospectively tested on 12 data sets and, compared to
baseline methods, required significantly fewer iterations to
identify the most potent compounds. However, the utility of
this study to inform prospective drug discovery projects is
limited; during the active learning update cycle, the current
study selected only one compound per round, which is in stark
contrast to typical drug discovery efforts where larger batches
of compounds are selected for synthesis and assays in each
cycle.

■ ACD LEVEL 5 AND FUTURE CHALLENGES
Description. ACD Level 5 is the most autonomous on

both the decision making and ideation axes. We know of no
examples of complete ACD Level 5 systems. The closest
potential ACD Level 5 system we are aware of is Green et al.65

which describes a fully automated platform (BRADSHAW)

developed for internal use at GSK that supports molecule
generation, property prediction, multiobjective optimization,
and compound selection. The platform is configured by
composing multiple “Tasks” that incorporate best-practice
implementations of steps like MMP (Matched Molecular
Pairs) transforms,66,67 filtering by similarity or SMARTS
(SMILES Arbitrary Target Specification),68 and assigning
multiobjective scores based on linear desirability functions
for each property. The system anticipates active learning
applications by allowing compound selections to include both
exploitation of known desirable chemical matter as well as
exploration into new chemical space by targeting areas where
the property models are uncertain. Additionally, the system
considers the challenge of starting a program with very little
data by including methods for selecting an initial set of
compounds. The use of the platform in the paper is purely
retrospective.

Future Challenges. The creation of an ACD Level 5
system that is truly effective at drug design represents both a
shared goal of the community and significant technical
challenge. One challenge is the further improvement and
evaluation of algorithms and models for generating molecular
ideas. While generation algorithms have sometimes been
shown to produce synthesizable molecules that improve
desired properties, the robustness, completeness, and effective-
ness of the existing algorithms remains to be better understood
and improved. Several benchmarks have been introduced
(GuacaMol69 and MOSES70) to standardize measurements of
the novelty, diversity, and properties of molecules produced by
molecular generators, though questions remain about the
quality of the metrics used.71 The Molecular Turing Test72 is a
well done example of how to evaluate whether a molecular
generator produces molecules similar to those that would be
selected by chemists. These evaluations should continue and
drive algorithm development.
Another significant challenge is that we do not yet

understand the effectiveness of current optimization algorithms
for the peculiarities of chemical design. Chemical space is
discrete and thought to be quite “rough”, meaning that nearby
molecules can have vastly different properties.73 Improvements
in optimization algorithms for this complex space and/or
improvements in the notion of “nearby” molecules which make
the optimization problem simpler are ongoing challenges. For
example, some molecules that seem very different when
examined as 2D molecular graphs may adopt very similar
electrostatic shapes in 3D. This change from a 2D to a 3D view
can result in very different performance of models and
optimization algorithms.
Especially as the space of molecules to be explored is made

more global, machines will have to grapple with estimating the
long-term value of exploring a region of chemical space and
not just the value of a particular molecule. In other words,
choosing one chemical series over another and not just one
molecule over another. This is fundamentally a much more
difficult estimation problem; even great medicinal chemistry
teams struggle to estimate whether they will succeed with a
given series. While absolute estimates (for example, “we need
to make between 100 and 200 more compounds to reach a
development candidate”) would be beneficial, especially for
managing an entire portfolio, relative comparisons (for
example, “this series is more likely to be successful than that
one”) may be sufficient for the decision making needed at
higher ACD levels.

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://doi.org/10.1021/acs.jmedchem.2c00334
J. Med. Chem. 2022, 65, 7073−7087

7080

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In addition to the levels defined above, there are a few issues,
common to multiple levels, that merit additional discussion.
Proper handling of model uncertainty and addressing the
synthesizability of designed molecules are two larger challenges
we discuss further in the following sections.
Uncertainty. Automated chemical design requires an

exploration of the underlying structure−activity landscape so
that regions of chemical space yielding productive molecules
can be quickly identified. While various selection policies are
employed by different algorithms to identify the next set of
molecules to synthesize and test, what unifies these approaches
is an estimate of predictive uncertainty. For example, if a
candidate molecule is identified to be inactive with high
certainty, then it would make little sense to acquire and test
that molecule. Conversely, if a molecule is predicted to be
moderately active, but with a sufficiently high uncertainty that
it could be extremely active, then that molecule should perhaps
be tested as it provides information pertinent to disambiguat-
ing the SAR landscape. Unfortunately, there exist few
computational procedures for estimating uncertainty that
provide theoretical guarantees of performance. This lack of
well-founded uncertainty estimates is a potential source of
frustration for automated chemical design as it hinders accurate
decision making.
Well-calibrated uncertainty estimates that enable accurate

decision making possess two fundamental properties: coverage
and discriminability. Coverage ensures that the true value of a
predicted point falls within the uncertainty estimate for the
predictive value of that point. Discriminability relates to the
confidence of the prediction and is directly related to the width
of the confidence interval, with smaller widths implying higher
confidence. For an uncertainty estimate to be useful, it must
contain both of these properties. The true value for a
prediction should ideally lie within the uncertainty estimate,
and the uncertainty estimate should be meaningfully tight;
excessively large uncertainty estimates provide little value.
Gaussian Process Regression74 is the most common

traditional machine learning technique with well founded
uncertainty estimates and is frequently used in active learning
problems such as those encountered in ACD systems. For
other machine learning models, numerous other techniques of
varying computational expense and quality have been
developed (for example, Monte Carlo dropout,75 deep kernel
learning,76 epistemic neural networks,77 and Jackknife+78).
Especially for neural network models, better techniques for
estimating uncertainty is an active area of research.79

Synthesizability. A typical lead optimization program goes
through many design, make, test cycles before a development
candidate is nominated. It is imperative that these cycles be
made as short as possible to increase the probability of success
as shorter cycle times will translate into more cycles over a
fixed time horizon, amplifying the benefits of an active learning
approach. The synthesis of organic compounds during the
“make” step is the most time-consuming and has the most
variability in the cycle.80 While automatic synthesis planning
and execution are exciting areas of research, neither is required
for an ACD system; however, they can be used to drive down
cycle times to accelerate ACD systems.
Moving to an ACD Level 3 or ACD Level 5 system requires

the machine to consider the synthesizability of the molecules it
designs. While chemist review for synthesizability can still
happen at these levels, it is required that only a small fraction
of the molecules be filtered (that is, the machine does most of

the work). If the chemist has to filter a large fraction of the
molecules, it becomes difficult for them to do this in a
repeatable, unbiased way, mitigating much of the expected
value of the ACD system.81

Predictions of synthesizability are related to, but distinct
from, prediction of routes. Several methods of predicting
synthesizability are structure based82−84 which provide a score
but no suggested route or reaction conditions. A synthetic
pathway approach assesses synthesizability using a computer-
aided synthesis planning (CASP) program.85,86 These
programs are more interpretable and can provide suggested
reaction conditions to aid in synthesis execution. Synthetic
pathway approaches are not prevalent in existing ACD systems
because their runtimes are currently impractical for large
chemical spaces.
De novo molecular design methods have a high risk of

proposing molecules that may be difficult or even impossible to
synthesize.87 Recent methods that combine de novo design
and synthesis planning,88 or that bias generation87 by a
synthesizability heuristic, are likely to produce more actionable
molecules.
Several methods have been proposed to generate synthesiz-

able chemical spaces including SAVI89 and SynthI.90 These
methods maintain a set of expert encoded reaction transforms
and a set of available building blocks to assemble molecules
and optionally score them based on likelihood of synthetic
success. As an example, SynthI has methods for transforming
building blocks into synthons with their reaction centers
annotated to indicate the type of reaction center. These
synthons can then be combined using SMIRKS (a reaction
transform language) transforms.91

The downside of these template-based approaches is the
need for experts to maintain the reaction rules and the
difficulty of staying up to date with advances in chemistry. It is
estimated that over 10 000 template-based rules must be
encoded to match the knowledge of a skilled chemist.85

However, given the relatively few reactions92 regularly in use in
pharmaceutical companies and the diversity available from
common reactions,93 this drawback may be academic in
practice.
Newer methods have recently been proposed to train deep

learning models to predict reaction outcomes.94 These
methods operate by encoding sets of reactants and products
from the chemical literature to learn reaction pathways. When
presented with a new molecule, the programs can propose
synthetic routes. These methods, while promising, suffer from
a lack of widely available curated data setsespecially negative
results. While internal electronic lab notebooks (ELNs)
provide a compelling source of training data, reactions and
their outcomes are often not captured in a consistent fashion.
In order to address this shortcoming, internal ELNs should be
outfitted with strict business rules such that over time these
databases can become a rich source of training data. Hopefully,
public efforts such as the Open Reaction Database95 can fill
this need over time for the broader community.
Ranking of synthetic difficulty will also be an important area

of research.84 Leveraging synthetic risk in the active learning
process can provide an important component of exploitation vs
exploration by explicitly tying synthetic difficulty to expected
reward. It is important to not think of synthesizability as a
binary condition but a measure of difficulty. It will be necessary
to accurately estimate the effort and risk in synthesizing a given
molecule so the system can make optimal choices between
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easier but less informative molecules and more informative but
more challenging molecules. The field of optimal design96 can
be leveraged to maximize the reward over variable duration
cost functions.
Ordering of ACD Levels. Figure 3 summarizes the ACD

systems discussed above. Note that as listed in Table 1, we
intentionally do not call something an ACD system unless it
has been used to create and test molecules in the real world.
We chose to assign linear levels from these two axes of

automation with the decision making axis as primary. While
there are significant technical challenges on both axes, we
believe moving to more automated decision making is a more
holistic challenge. For automated decision making to be
effective, all relevant criteria have to be handled by the
machine to avoid the machine going toward dead-end
molecules. This change in the control of decisions represents
a level of trust being placed in the system. Automated decision
making also enables clean experimentation on the system (as
discussed in ACD Level 2) and is therefore key to producing
continually improving systems.
Note that systems do not have to advance step by step on

this single linear scale. For example, a system may be gradually
improved from an ACD Level 0 system to a ACD Level 2
system without ever being an ACD Level 1 system.

■ HUMAN−MACHINE PARTNERSHIP

The ACD levels above describe increasing levels of autonomy
and decision making vested into the machine. But even at the
highest levels, a human-machine partnership is core to a
successful system (see the work of Jensen et al.16 for additional
discussion of this topic). The decisions that require the most
context and integration of disparate types of information are
best done by human experts and are done so even in an ACD
Level 5 system.
First and foremost, humans define the goals for a molecule.

This requires partial understanding of the relevant biological
processes (from clinical and preclinical data), the clinical
setting for the treatment that would be acceptable, the useful

level of disease modification, and the relationship of this
potential treatment to alternatives.
Second, all of our assays for molecules are merely proxies for

the true goal of effective treatment in humans. Even the best
assays can produce misleading results. This can be for
fundamental reasons (for example, rats are biologically
different from humans) or technical reasons specific to an
assay. For instance, a redox cycling compound97 may produce
a false positive readout with some assay formats. In many cases,
an ACD system would mistakenly classify such a compound
and choose to further optimize it. Noticing and debugging
these issues often requires a deep understanding of the
underlying physics and chemistry of the assay. Different assays
notionally measuring the same physical phenomenon can
produce inconsistent results and a key job of the human
experts is to define the assay cascade that provides the most
convincing evidence for translation to human disease. A careful
assay cascade design will help a machine avoid chasing assay
artifacts, but we also expect that more effective ACD systems
will need to learn or be told how to avoid some of these
artifacts in the first place. However, given the lack of publicly
available data and multiple paths to assay interference, this may
be a challenging task.
Third, the notion of novelty that underlies chemical patents

can often be ambiguous and difficult for a human, let alone a
computer, to comprehend. While it may be possible to extract
specific chemical examples from patents and automatically
compare these with molecules generated by an algorithm, the
interpretation of Markush claims is an artform that has yet to
be mastered by a machine. At present, humans are responsible
for assessing the novelty of computer generated molecules.
Given the complexity of this evaluation, the lack of standards
for reporting patent claims, and the obfuscation present in
patent filings, the assessment of novelty may be the province of
human chemists for the foreseeable future.
Fourth, humans will continue to provide oversight of the

overall process at several levels. Automated systems can get
stuck in dead ends and need to be reset to make progress. New
exogenous information may arrive (such as competitive

Figure 3. The most notable ACD systems discussed in this paper are grouped into the levels defined in Figure 1. Systems described as approaching
a particular ACD Level in the text are categorized by their actual ACD Level, and no potential ACD systems are listed.
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developments or new biological insights) that redefine the
goals. The overall decision of whether to continue the program
given the observed progress is fundamentally a human decision
involving the context of the organization and the human
impact of the unmet medical need.
The job of the medicinal chemist has continually evolved as

technology has come into common use. Tools such as
structure searching systems, that medicinal chemists take for
granted today have only been in use for the last 30 years. The
property calculations that every chemist uses did not become
commonplace until the early 2000s. We expect the increasing
use of ACD systems will continue this trend of changing a
chemist’s allocation of time on the wide variety of activities
needed to successfully produce a drug.98

■ CONCLUSIONS

One goal with the ACD framework we propose is to enable
better probing and understanding of the function and value of
automated design systems. While it may be tempting to use the
ACD levels directly as a value judgment such as “An ACD
Level 3 system is better than an ACD Level 2 system”, this is
not necessarily the case. Just because a system operates with a
certain level of autonomy does not imply that that the system is
either applicable to many problems or well suited for its
intended purpose. For example, one can imagine an ACD
Level 5 system that can only operate on unbranched
hydrocarbon chains. While it may autonomously find the
best unbranched hydrocarbon chain for a purpose, there are
not many problems for which that is useful. Similarly, an ACD
Level 2 system may simply make poor choices, such that a
human-driven ACD Level 0 system can discover an acceptable
molecule faster. The evaluation of the usefulness of the system
is separate from establishing its level of autonomy.
However, the ACD levels do inspire questions that a user or

customer of an ACD system should ask to more deeply
understand the value of the system, similar to those proposed
by others.16 We list a number of such questions in Table 2.
Not every question applies to systems at every level, but these
should lead to a more rigorous conversation between creators
and potential users of the systems.
On a related note, there are many useful applications of

computation and AI methods in drug discovery that do not
move a system to higher ACD levels. Systems to provide
biological insight from literature or images can help humans
pick the right targets. Analysis of clinical data can help identify
the right patients for a treatment. Better AI or physics-based
predictions in an ACD Level 0 system can significantly
improve decision making. The definition of the levels in this

perspective is capturing just one of the many useful trajectories
of computation in drug discovery.
The current great interest in further developing autonomous

computational approaches to molecular design will create
many systems that can be classified into the ACD levels. We
hope that the nomenclature we have introduced here will
facilitate discussion, understanding, and focused research
throughout the community.
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