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The presence of immune cells in the tumor microenvironment has been associ-

ated with response to immunotherapies across several cancer types, including

melanoma. Despite its therapeutic relevance, characterization of the mela-

noma immune microenvironments remains insufficiently explored. To distin-

guish the immune microenvironment in a cohort of 180 metastatic melanoma

clinical specimens, we developed a method using promoter CpG methylation

of immune cell type-specific genes extracted from genome-wide methylation

arrays. Unsupervised clustering identified three immune methylation clusters

with varying levels of immune CpG methylation that are related to patient

survival. Matching protein and gene expression data further corroborated the

identified epigenetic characterization. Exploration of the possible immune

exclusion mechanisms at play revealed likely dependency on MITF protein

level and PTEN loss-of-function events for melanomas unresponsive to

immunotherapies (immune-low). To understand whether melanoma tumors

resemble other solid tumors in terms of immune methylation characteristics,

we explored 15 different solid tumor cohorts from TCGA. Low-dimensional

projection based on immune cell type-specific methylation revealed grouping

of the solid tumors in line with melanoma immune methylation clusters rather

than tumor types. Association of survival outcome with immune cell type-

specific methylation differed across tumor and cell types. However, in melano-

mas immune cell type-specific methylation was associated with inferior patient

survival. Exploration of the immune methylation patterns in a pan-cancer

context suggested that specific immune microenvironments might occur

across the cancer spectrum. Together, our findings underscore the existence of

diverse immune microenvironments, which may be informative for future

immunotherapeutic applications.
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1. Introduction

Metastatic cutaneous melanoma is the most aggressive

form of skin malignancy with poor patient survival

(Surveillance, 2019). Based on advancement in targeted

therapies and immunotherapies, survival outcome has,

however, increased considerably (Chapman et al.,

2011; McDermott et al., 2014; Robert et al., 2014).

Immune checkpoint inhibitors (ICIs), such as CTLA4

and PD1/PDL1 blockade, that reactivate tumor-associ-

ated effector T cells have demonstrated dramatic clini-

cal efficacy and provide long-term survival in a

substantial fraction of patients (Hodi et al., 2010;

Weber et al., 2015, 2017; Wolchok et al., 2017). Multi-

ple studies have identified predictive biomarkers for

therapy response that include activity of intratumor

immunological effector cells (Riaz et al., 2017; Yuan

et al., 2011), tumor mutational burden (Riaz et al.,

2017; Van Allen et al., 2015), mismatch repair defi-

ciency (Le et al., 2017b; Viale et al., 2017), tumor ane-

uploidy (Davoli et al., 2017), PDL1 levels (Long et al.,

2016; Patel and Kurzrock, 2015), and intestinal micro-

biota (Gopalakrishnan et al., 2018; Matson et al.,

2018). However, the still large fraction of nonrespond-

ing patients (Hodi et al., 2010; Wolchok et al., 2017)

warrants further understanding of various factors

determining primary resistance to ICIs, including the

role of the tumor microenvironment.

The tumor microenvironment is a complex mixture

of malignant and nonmalignant cells that includes

immune cells. Clearly, the microenvironment of mela-

noma tumors, especially immune cells, plays an impor-

tant role in determining progression (Passarelli et al.,

2017; Tucci et al., 2018; Villanueva and Herlyn, 2008).

Single-cell RNA sequencing of melanoma tumors has

confirmed that a complex mixture of immune T-cell

subtypes exists within a tumor (Jerby-Arnon et al.,

2018; Sade-Feldman et al., 2018). In addition, bulk

transcriptomic analyses have been utilized to explore

the immune microenvironment from melanoma

tumors, demonstrating that tumors with increased

expression of genes involved in a diverse range of

immune systems have increased survival (Angelova

et al., 2015; Bindea et al., 2013). Current methods to

decipher the immune landscape in tumors are based

on the transcriptome (Angelova et al., 2015; Bindea

et al., 2013). However, global DNA methylation pat-

terns are largely associated with cellular lineage and

show higher distinction between cellular lineages than

mRNA expression in blood and skin lineages (Bock

et al., 2012). Moreover, DNA methylation has been

demonstrated to resolve cell of origin of peripheral

blood cells (Houseman et al., 2012) and cell-free DNA

(Moss et al., 2018), and was introduced as a comple-

mentary approach to classify central nervous system

(CNS) tumors (Capper et al., 2018). Nevertheless,

DNA methylation has not been extensively exploited

to determine the immune lineages occurring in the

microenvironment of melanoma. Therefore, we created

DNA methylation signatures that reflect a wide range

of tumor-associated immune cell subsets. These signa-

tures grouped melanoma tumors into three clusters

with distinct clinical and molecular properties that

were re-identified in independent data. Further molec-

ular exploration revealed several immune exclusion

mechanisms activated in tumors. Moreover, an

immune-rich microenvironment consisting of a broad

range of immune cells was observed across several can-

cer types. In conclusion, DNA immune methylation

signatures harbor significant clinical and biological

information.

2. Materials and methods

2.1. Patient sample information

The study was approved by the Regional Ethics Com-

mittee at Lund University (Dnr. 191/2007 and 101/

2013). The experiments were undertaken with the

understanding and written consent of each subject.

The study methodologies conformed to the standards

set by the Declaration of Helsinki. The sample cohort

consisted of 214 melanoma tumors and was obtained

at the Department of Surgery at Sk�ane University

Hospital. This is a historic cohort collected before the

era of ICIs and targeted therapies.

2.2. Sample preparation and bisulfite conversion

DNA extraction from patient samples was done as

described previously (Harbst et al., 2014) and bisulfite-

converted using EZ DNA Methylation Kit (Zymo

Research Europe, Freiburg, Germany) according to

the manufacturer’s instructions and analyzed using

Illumina Infinium MethylationEPIC BeadChip array.

Methylation data are available in Gene Expression

Omnibus with accession number GSE144487.

2.3. Immune cell type-specific CpG set for

metastatic melanoma

We selected two immune cell type-associated gene sig-

natures (Angelova et al., 2015; Tirosh et al., 2016) to
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identify immune cell types in melanoma tumors. Next,

we combined both gene signatures, and after removing

conflicting genes (genes belonging to different cell

types in each signature), we obtained a total of 920

genes associated with 30 immune cell subsets. Next, we

selected corresponding promoter CpGs (< 1500 bp

from TSS) of these genes, since their association with

the transcriptional regulation of a gene is well known

and thus more likely to be lineage-specific. After map-

ping the gene signatures with the list of CpG probes

shared between 450K and EPIC platforms, we found

4228 promoter CpGs belonging to 744 genes and asso-

ciated with 30 immune cell subsets.

The CpGs were then further filtered using the fol-

lowing criteria:

1 Selecting the most differentially methylated CpGs

across reference immune cells: We dichotomized the

b-values into robust methylation bins, as unmethy-

lated (b < 0.3) and methylated (b ≥ 0.3). We then

selected CpGs that have significantly different pro-

portions of methylated and unmethylated signals

among the reference immune cells using Fisher’s

exact test and an FDR < 0.01.

2 High methylation in nonimmune cells: To ensure that

any methylation difference we observe is likely com-

ing from immune cells and not from other cells pre-

sent in the microenvironment, we further shortlisted

CpGs with a high percentage and level of methyla-

tion (b > 0.7 in > 98% of samples) among nonim-

mune normal cells and melanoma cell lines.

3 Forming gene–CpG pairs: We wanted to ensure that

any single gene is not over-represented through the

presence of multiple CpGs. We therefore selected

the most significant CpG for each gene from Fish-

er’s exact test in step 1.

The selection processes resulted in 67 gene–CpG
pairs belonging to 21 immune cell populations.

2.4. Immune cell type-specific CpG set for

nonmelanoma TCGA pan-cancer cohorts

The CpG selection procedure was identical to the pro-

cess we followed for metastatic melanoma (MM)

tumor cohorts except step 2. At step 2, we filtered the

immune CpGs against methylation profiles of match-

ing tumor cell lines from Genomics of Drug Sensitivity

(GDSC) database and selected CpGs for further analy-

ses if they had shown high level and percentage of

methylation in the tumor cell lines (b > 0.7 in > 90%

of samples). Here, we had to relax the sample selection

criteria since for a number of GDSC tumor types a

minority of cell lines were displaying a methylation

pattern that deviated from the majority of cell lines of

the tumor type.

2.5. Immune methylation centroid-based

classification

Immune methylation centroid-based classification was

performed by correlating sample methylation profiles

across centroid CpGs to each cluster centroid

(Table S3) and then selecting the cluster that reported

highest correlation (sKendall). If no cluster displayed

correlation ≥ 0.3, then the sample was annotated

unclassified.

2.6. Immune cell type-specific methylation score

calculation

Immune cell type-specific methylation scores were cal-

culated using the matching CpGs from the 67 CpG set

for MM cohorts and by taking median methylation

value of all CpGs belonging to a specific immune cell

type. For non-MM solid tumor cohorts, the process is

almost identical to MM but here cohort-specific

immune CpG sets were used for score calculation.

2.7. PTEN promoter hypermethylation

calculation

We selected promoter CpGs for the PTEN gene that

are located at the DNase hypersensitivity sites (DHS)

of the promoter, as the PTEN promoter contained a

complex set of CpGs on the Illumina 450K array.

Next, we called PTEN hypermethylation in tumors if

more than 10% of the DHS promoter CpGs are

hypermethylated (b > 0.7) and median b-value for all

PTEN promoter CpGs for the corresponding tumor is

above 0.5.

2.8. Statistical analyses and calculations for

immune cell type methylation and gene

expression scores

All statistical and bioinformatics analyses were per-

formed in R. For comparing numerical values, we used

Spearman and Kendall correlation. Comparisons

between two groups were performed using Mann–
Whitney U-test/Wilcoxon rank-sum test, and for more

than two groups, we used Kruskal–Wallis test. For

survival analyses, we used univariate and multivariate

Cox regression.

Both methylation and gene expression scores were

calculated by median methylation/expression of
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CpGs/genes belonging to each immune cell type. We

used median-centered gene expression for calculating

expression scores in Lund and TCGA cohort analyses;

noncentered gene expression scores were used in pan-

cancer analysis of correlation between methylation and

gene expression.

3. Results

3.1. DNA methylation-based immune profiling of

metastatic melanoma tumors

To explore the DNA methylation immune landscape

in MM tumors, we first curated two previously

described immune gene expression signatures (Ange-

lova et al., 2015; Tirosh et al., 2016) (Fig. 1A) to iden-

tify corresponding gene promoter CpGs. Next, we

identified those CpGs that were most differentially

methylated across seven normal peripheral blood-

derived immune cell subsets (Reinius et al., 2012),

while in parallel showing high methylation in nonim-

mune cell types in the tumor microenvironment (can-

cer cell lines and normal stromal cells—dermal

fibroblasts, epidermal keratinocytes, and melanocytes)

(Lauss et al., 2015). After subsequent selection of the

best CpG (CpG showing lowest FDR in Fisher’s exact

test for differential methylation) for individual genes,

we arrived at a final list of 67 CpGs (Table S1). These,

we hypothesize, are DNA methylation signatures rep-

resentative of different immunological cell types

(Fig. 1B). Next, we used this CpG set to analyze Illu-

mina EPIC methylation array-based profiles from 180

MM tumors (the Lund cohort, Table S2).

3.2. Immune cell type-associated CpGs reveal

melanoma subgroups

Consensus clustering of the Lund cohort using the

selected immune cell type-specific CpGs identified three

immune methylation clusters (Fig. S1A). Cluster 1

showed overall lower methylation in the majority of

the immune CpGs, whereas Cluster 3 displayed the

opposite, with Cluster 2 being intermediate in appear-

ance (Fig. 2A). To explore the observed methylation

differences further, we constructed a median methyla-

tion score for all CpGs associated with the described

immune cell types for each tumor. We found that dif-

ferences in methylation scores between Clusters 1 and

3 were most pronounced, with 19 out of 21 immune

cell types being significant (Fig. 2B, Kruskal–Wallis

and post hoc Dunn test; multiple testing corrections

across cell types for each comparison individually,

FDR < 0.001). The biggest difference in methylation

values was observed for central memory CD4+ T cells

(absolute Db: 1 vs 2: 0.25; 2 vs 3: 0.14; 1 vs 3: 0.39;

FDR < 0.001) and effector memory CD8+ T cells (ab-

solute Db: 1 vs 2: 0.3; 2 vs 3: 0.18; 1 vs 3: 0.48;

FDR < 0.001). Significant differences between Clusters

1 and 2 were observed mostly in the lymphoid lineage

and differences between Clusters 2 and 3 followed a

similar pattern of significance to that of Clusters 1 and

3, albeit with lower level of methylation difference (ab-

solute Db-value).

3.3. Immune methylation clusters are associated

with patient survival

To determine whether the identified methylation pat-

terns have prognostic value, we analyzed for differ-

ences in the survival outcome of the melanoma

patients in Lund cohort. Immune methylation clusters

showed significant difference in survival using both

distant metastasis-free survival (DMFS) for regional

metastatic cases and melanoma-specific survival for the

entire metastatic cohort (DSS) using univariate Cox

regression models (Fig. 2C,D, respectively). Cluster 2

showed significantly decreased DMFS [hazard ratio

(HR): 2.45; 95% confidence interval (CI): 1.30–4.61;
P = 0.005] compared to Cluster 1. Regarding DSS, we

found both Cluster 2 (HR: 2.10; 95% CI: 1.22–3.64;
P = 0.008) and Cluster 3 (HR: 2.18; 95% CI: 1.33–
3.56; P = 0.002) to be of significantly higher risk when

compared to Cluster 1. Furthermore, multivariable

Cox regression models with adjustments for age and

gender (DMFS) and metastasis type (DSS) reported

analogous findings for both DMFS (Fig. S1B) and

DSS (Fig. S1C). Overall, using DNA methylation-

based immune profiling we identified three melanoma

subgroups with different patient survival.

3.4. Molecular characterization of immune

methylation clusters

Next, we set out to explore whether the identified

immune methylation clusters were associated with

transcriptional differences of the immune cell-specific

genes in matched tumors (n = 179). Overall, transcrip-

tional differences followed the observations on DNA

methylation levels (Fig. 3A). Indeed, for most selected

immune cell CpGs, moderate-to-high negative correla-

tions (�0.2 to �0.5 and below, sKendall) were found

between methylation and expression of the correspond-

ing genes, as expected for the promoter CpGs involved

in the regulation of gene expression (Fig. S1D). Next,

we investigated whether the identified methylation
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clusters were accompanied by differences in immune

cell infiltration using hematoxylin and eosin staining

for tumor-infiltrating lymphocytes (TILs) along with

immunohistochemical staining (IHC) for CD3 and

CD8 for T cells, and CD68 and CD163 for myeloid

cells. Using matched staining data from 127 of 180

MM tumors, we analyzed association between clusters

and staining categories (strong infiltration, localized

infiltration, and absent for TILs and T cells; absent/

low infiltration, nontumor infiltration, and tumor infil-

tration for myeloid cells). In line with the DNA

methylation data, Cluster 1 had the highest percentage

of samples with strong and localized infiltration of

TILs, CD3+, and CD8+ T cells (P < 0.001;

FDR < 0.001) (Fig. 3B). The presence of TILs showed

significant association with DSS in the Lund cohort

(Fig. S1E). Regarding CD68+ and CD163+ myeloid

cells, Cluster 1 had fewer absent/low-infiltrating sam-

ples compared to Cluster 3. Together, these results

support that tumor infiltration of lymphocytes and

myeloid cells is accurately reflected by DNA methyla-

tion.

Recently, the existence and importance of tertiary

lymphoid structures (TLS) in the melanoma tumors

have been reported along with their close relationship

with prognosis and response to immunotherapeutic

treatments (Cabrita et al., 2020; Helmink et al., 2020).

Here, using the matched TLS information for the

tumors (Cabrita et al., 2020), we observed significant

enrichment of TLSs in Cluster 1 tumors (P < 0.001;

FDR < 0.001) (Fig. 3B), indicating the possibility of a

successful antitumor immunity in these tumors.
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Fig. 2. Immune methylation clusters and association with survival. (A) Selected immune cell type-specific CpGs for immune methylation

clusters across Lund cohort. Color bar on the right indicates the corresponding range for methylation b. Color bars on the left indicate the

corresponding cell type for the CpG. Row names indicate corresponding gene names for the CpGs. (B) Balloon plot of absolute methylation
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Tumor mutational burden has emerged as an impor-

tant biomarker for predicting response to ICI treat-

ments (reviewed in Chan et al., 2019). Using mutation

data from 1368 cancer genes in 129 of 180 MM

tumors from the Lund cohort, we did not observe a

relationship between immune methylation clusters and

tumor mutational burden or specific melanoma hot-

spot mutations (Fig. 3C,D, respectively). Additionally,

we analyzed association between immune methylation

clusters and our previously reported gene expression

phenotypes (Cirenajwis et al., 2015) and observed

strong association between high-immune class and low

methylation Cluster 1 (Fisher’s exact P < 0.001,

Table S3).

Overall, the immune methylation clusters are inde-

pendent of mutational patterns and tumor mutational

burden but are confirmed by the presence or absence

of immune cells on the mRNA and protein level.

3.5. Analysis of immune exclusion mechanism

associated with immune methylation clusters

Several molecular mechanisms have been proposed to

explain why certain tumors are able to escape the

immune system (Casey et al., 2016; Gettinger et al.,

2017; Le et al., 2017a; Peng et al., 2016; Spranger et al.,

2015; further reviewed in Spranger and Gajewski, 2018;

Trujillo et al. 2018). Clearly, immune methylation Clus-

ter 3 was characterized by an immune-poor DNA

methylation pattern reflected by increased methylation

levels of immune cell-specific CpGs (Fig. 2A). Further,

we hypothesized that the differentiation state of the
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melanoma tumor may determine the ability of Cluster 3

tumors to evade the immune system. Thus, we used

matched staining information for 127 of 180 MM

tumors for the MITF protein, which is a melanocyte-

specific transcription factor important in melanocyte

differentiation and melanoma cell survival (Carreira

et al., 2005; Garraway et al., 2005; McGill et al., 2002;

reviewed in Levy et al., 2006; Steingr�ımsson et al.,

2004). Overall, 25% of the matched stained tumors

were negative for MITF protein. Intriguingly, we found

fewer MITF-negative tumors in the immune-rich

methylation Cluster 1 (Fig. 4A; chi-square P = 0.06).

As MITF-positive and MITF-negative tumors are

known to harbor different transcriptional programs

and presumably represent two distinct melanoma states

(Hoek et al., 2006), we thus performed subsequent anal-

yses in MITF-positive and MITF-negative tumors sepa-

rately. In pathway analysis of gene expression data, we

found that MITF-positive tumors showed enrichment

for c-MYC (MYC) target genes and DNA repair-asso-

ciated genes in Cluster 3 (FDR < 0.05); however, such

observations were not found for the MITF-negative

group. Upon stratification by MITF status, we

observed a significant difference in MYC expression

across clusters for MITF-positive tumors (Fig. 4B,

P = 0.001), which was not observed for the combined

data (Fig. S2A). Furthermore, we explored the molecu-

lar profiles of known immune exclusion-associated

genes (beta-catenin pathway, PI3K pathway, TP53,

reviewed in Spranger and Gajewski (2018)) across clus-

ters. CTNNB1 showed a significant mRNA expression

difference across clusters (Fig. 4C, P < 0.001,

FDR < 0.05); however, when stratified by MITF status,

characteristics similar to MYC were revealed (Fig. S2B,

P < 0.001). Together, these observations delineate that

MYC and CTNNB1 may act as immune exclusion

molecules in MITF-positive melanoma tumors. Among

PI3K-Akt pathway genes, we observed significant gene

expression differences across clusters for PTEN and

PIK3R1 (Fig. 4D and Fig. S2C, P = 0.005;

FDR < 0.05 and P = 0.03; FDR < 0.05, respectively)

irrespective of MITF status. Upon further investigation,

we found that PTEN somatic copy number alterations

(SCNAs) showed good overlap with PTEN promoter

hypermethylation and nonsynonymous mutations for

the same tumors. However, PTEN hypermethylation

and mutations were found to be mostly exclusive

(Fig. 4E, Fig. S2D). Next, we summed up all molecular

alteration events of PTEN for each tumor and found

significant concordance between PTEN alteration

events and corresponding mRNA expression

(Fig. S2E). Also, the distribution of tumors harboring

any PTEN alteration event varied significantly across

clusters (chi-square P < 0.001) with Cluster 3 showing

highest enrichment (Fig. 4F). We further explored the

association between PTEN mRNA expression and TILs

and observed a trend in difference in terms of PTEN

expression between tumors with absent and brisk TILs

(Fig. S2F). The association of TILs with molecular

events in PTEN was more prominent (Fig. 4E), and a

significant difference in terms of TILs was observed

between tumors with and without PTEN molecular

events (chi-square P = 0.001). Association between

immune methylation clusters and molecular event status

in PTEN was also validated in the TCGA MM cohort

(Fig. S2G). Together, we observed a known immune

exclusion mechanism in the immune-poor MM tumors

displaying a complex pattern with upregulation of

PI3K-Akt pathway by blocking PTEN functioning

through molecular alterations and upregulation of

MYC and CTNNB1 in MITF-positive tumors only.

3.6. Validation of immune methylation clusters

in external melanoma cohorts

To confirm the immune methylation clusters, we built

methylation-based centroids to classify samples belong-

ing to the TCGA MM cohort. For this, we selected

CpGs from the immune CpG set (Table S1) which

showed a significant methylation difference across

Lund clusters (Kruskal–Wallis test, FDR < 0.0001).

Median methylation values for these significant CpGs

(n = 51) were computed for each cluster to form

methylation centroids (Table S4). A minor fraction of

samples (2.37%) could not be classified (sKendall < 0.3).

Immune methylation clusters in TCGA cohort dis-

played methylation profiles similar to corresponding

clusters in the Lund cohort (Fig. S3A). When we

grouped both the Lund and TCGA cohorts together

using common centroid CpGs and tSNE (van der

Maaten and Hinton, 2008) (perplexity = 30; h = 0.1),

we noticed clear segregation between the immune

methylation clusters in the first two dimensions, as

expected (Fig. 5A, left). Such segregation was not

observed when samples were annotated on the basis of

the site of metastasis (metastasis type) or cohort

(Fig. 5A middle and right, respectively). Additionally,

gene expression scores, tumor mutational burden, and

mutational patterns displayed identical characteristics

for clusters as observed in the Lund cohort (Fig. 5B,C,

Fig. S3B, respectively). Importantly, Cluster 3 dis-

played a significant inferior overall survival (OS, HR:

2.29; 95% CI: 1.54–3.40; P < 0.001) compared to

Cluster 1 in TCGA data (Fig. 5D) and remained sig-

nificant in multivariate analyses with adjustment for

metastasis type (P < 0.001, Fig. S3C). Additionally,

940 Molecular Oncology 14 (2020) 933–950 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

DNA immune methylation patterns in melanoma S. Mitra et al.



MITF+ MITF–

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

Cluster 1 Cluster 2 Cluster 3

P = 0.084

-2

-1

0

1

2

M
YC

 e
xp

re
ss

io
n

MITF – MITF +

P = 0.001

–2

–1

0

1

2

CT
N

N
B1

 e
xp

re
ss

io
n

P < 0.001

–2

–1

0

1

2

PT
EN

  e
xp

re
ss

io
n

P = 0.005

Cluster 1
MITF Status

Promoter 

Non-synonymous 

SCNAs

mRNA expression

Cluster 2 Cluster 3
Yes
No

Loss
Dele
Gain

Mut/Hypermeth

SCNAs

–1
–0.5
0
0.5
1

mRNA Exp

None
NA

NANA

MITF status

A B

C D

E

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

Present Absent

Cluster 1 Cluster 2 Cluster 3

F

Cluster 3Cluster 2Cluster 1

Cluster 3Cluster 2Cluster 1

TILs
Absent
Non-brisk
Brisk

TILs

Fig. 4. Exploration of immune exclusion mechanisms in the Lund clusters. (A) Barplot showing the distribution of MITF+ and MITF�

samples across immune methylation clusters. (B) Boxplot showing distribution of c-MYC (MYC) mRNA expression for MITF� samples

across clusters (left) and same for MITF+ samples (right). P-value from Kruskal–Wallis test. (C, D) Boxplots showing distribution of b-catenin

(CTNNB1) and PTEN mRNA expression across clusters, respectively. P-value from Kruskal–Wallis test. (E) Heatmap showing distribution of

different molecular alteration events in PTEN along with the corresponding gene expression for samples across clusters and staining

information for TILs, further stratified by sample MITF status. Staining categories are represented as follows: absent (absence of infiltration),

nonbrisk (localized infiltration), and brisk (Strong infiltration) for TILs. (F) Barplot showing distribution of overall PTEN alteration event status

across clusters. A PTEN alteration event is defined as either promoter hypermethylation, nonsynonymous mutation, or copy number loss/

deletion.

941Molecular Oncology 14 (2020) 933–950 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

S. Mitra et al. DNA immune methylation patterns in melanoma



we analyzed the association between immune methyla-

tion clusters in TCGA cohorts and previously reported

gene expression classes for the same cohort (Akbani

et al., 2015) and observed strong association between

Immune class and low methylation Cluster 1 (Fisher’s

exact P < 0.001, Table S5).

To further explore immune gene methylation in dis-

tant metastases, we classified brain, lymph node, and

other metastases from distant sites from TCGA skin

cutaneous melanoma (SKCM) cohort (n = 68) and

brain metastases (n = 30) from another cohort

(GSE108576) (Orozco et al., 2018) into the immune

methylation clusters using methylation-based centroids.

We found that samples in both cohorts were enriched

for Cluster 3 irrespective of the metastasis location

(Fig. 5E). In TCGA cohort, we did not find any signif-

icant association between metastasis location and clus-

ter membership. When both cohorts were analyzed

together across the common centroid CpGs and tSNE

(perplexity 30; h = 0.1), observations similar to earlier

Lund and TCGA joint analysis were made (Fig. 5F).

Together, the immune cell methylation characteristics

of the Lund cohort were re-identified in external data,

with similar prognostic implications, and the immune

methylation profiles were largely independent of the

site of metastasis.

3.7. Implications of the epigenetic immune

clusters in a pan-cancer context

Next, we wanted to investigate whether immune methy-

lation signatures have the same prognostic implications

in other cancer types as in melanoma, and to which

extent immune environments display shared characteris-

tics among solid tumors. At first, we wanted to dissect

the role of specific immune cell lineages across cancer

types. To this purpose, we created immune cell methyla-

tion scores for MM tumors (both Lund and TCGA

cohorts) using previously derived melanoma-specific

immune CpG set. Similar scores for non-MM TCGA

solid tumor cohorts were constructed by identifying

immune cell type-specific CpGs individually for each

cohort in a process analogous to MM. Here, the

immune CpGs were filtered against cancer type-specific

CpGs using cell lines from the Genomics of Drug Sensi-

tivity (GDSC) database. The resulting methylation

scores were highly anticorrelated to the corresponding

gene expression scores (computed in the similar manner

as methylation scores, using genes instead of the corre-

sponding CpGs), for most immune cell types and tumor

cohorts (Fig. 6A). Next, to explore the relations among

the immune microenvironments across tumor types, we

constructed a tSNE plot using aforementioned

methylation scores for 17 immune cell types. When

tumor types were annotated on the basis of their tissue

of origin, we observed some tumor cohorts were more

localized than others (Fig. 6B, Left). Known immune-

deprived tumor types like CNS tumors (lower grade

glioma, LGG; and glioblastoma multiforme, GBM)

colocalized with a group of similarly immune-poor

tumor types from the developmental gastrointestinal

tumors (pancreatic adenocarcinoma, PAAD; and liver

hepatocellular carcinoma, LIHC), thus indicating that

immune microenvironments of these tumor types bear

resemblance despite their diverse tissue of origin. More-

over, the immune methylation Clusters 1 and 3 from

MM separated well in this immune microenvironment

plot (Fig. 6B, Right). Cluster 1 tumors were found to

be colocalizing with a group of diverse tumor types,

indicating existence of similar type of immunologically

active tumors across the cancer spectrum. Conversely,

we found Cluster 3 tumors colocalizing with most CNS

and endocrine tumors, indicating that the immune

microenvironment of these immune-poor melanomas

likely resembles other immune-poor tumor types. Next,

we analyzed the prognostic implications of immune cell

type methylation scores across the cohorts using overall

patient survival (OS). For this, we dichotomized the

methylation scores into two categories, b > 0.7 as

hypermethylated and b ≤ 0.7 as not hypermethylated.

We found methylation scores for CD56+ dim NK cells,

and activated and effector memory CD8+ T cells, to be

significantly prognostic across multiple cancer cohorts

including melanoma, with low methylation levels infer-

ring good prognosis in most cancer types (Fig. 6C).

Overall, we found low methylation scores of immune

cell types to be associated with good outcome for the

majority of cell types, particularly for immune cells

from the lymphoid lineage, which might reflect the role

of the adaptive immune system for an effective response

to tumor neoantigens. However, the majority of signifi-

cant associations with good outcome (adjusted P < 0.1)

occurred in only two tumor types, that is, MM and

head and neck squamous cell carcinoma (HNSC). Col-

lectively, methylation-based immune cell signatures

inform on prognosis in several solid tumor cohorts, par-

ticularly in melanoma.

4. Discussion

In this study, we report that immune methylation-speci-

fic signatures harbor important prognostic information

and simultaneously inform us about the different tumor

immune microenvironments across cancer landscape

with a particular focus on MM. DNA methylation has

established its role as a major epigenetic driver in cancer
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progression and development. However, its contribu-

tion to define the characteristics of tumor microenviron-

ment remains poorly understood. It has been pointed

out recently that DNA hypomethylation promotes

immune evasion in the corresponding tumors (Jung

et al., 2019). Also, DNA methylation pattern predicting

response to ICI treatment for non-small-cell lung cancer

has been unveiled (Duruisseaux et al., 2018). Thus, fur-

ther emphasis on DNA methylation for the distinction

of different tumor microenvironments is warranted.

Our analyses with an immune cell type-specific CpG set

have unraveled diversity in the immune landscape of

MM tumors in terms of DNA methylation. We identi-

fied three immune methylation clusters that were signifi-

cantly associated with patient survival and further

supported by transcriptomic and immunostaining data.

Together, these analyses have hinted at the inverse rela-

tionship between immune cell type-specific methylation

and enrichment of the corresponding immune cell types

in the tumor microenvironment.

Tumor mutational burden has often been associated

with positive clinical response to ICI treatments for

several tumor types including melanoma (Goodman

et al., 2017; Van Allen et al., 2015, reviewed in Chan

et al., 2019). However, we did not observe a clear

association of immune methylation clusters with the

tumor mutational burden, in line with a previous

report (Spranger et al., 2016). This might be due to a

universally high immunogenicity of melanoma cells,

where immune evasion, as observed in Cluster 3, that

is, immune methylation high cluster, can rather be

achieved by transcriptional changes (Jerby-Arnon

et al., 2018). Therefore, in this study we additionally

explored the possible immune exclusion mechanisms

(reviewed in Spranger and Gajewski, 2018) at play for

the Cluster 3 tumors in our cohort. Upregulation of

PI3K-Akt pathway and subsequent downregulation of

PTEN are a major immune evasion mechanism that

has been observed across cancers including melanoma

(reviewed in Dituri et al., 2011; Spranger and Gajew-

ski, 2018). However, somatic mutations in PTEN gene

have found to be infrequent in melanomas (reviewed

in Aguissa-Tour�e and Li, 2012); hence, alternative

molecular mechanisms such as SCNAs and promoter

hypermethylation have been proposed as an alternative

mechanism of blocking PTEN functions (Roh et al.,

2016; Stahl et al., 2003). Our observations for Cluster

3 tumors further supported the hypothesis that

immune-poor melanomas likely achieve immune eva-

sion through blocking of PTEN functioning through

promoter hypermethylation and SCNAs and often in

conjunction with one another. The role of MITF as a

major transcription factor regulating melanoma pro-

gression and development is well established (Carreira

et al., 2005; Garraway et al., 2005; McGill et al., 2002;

reviewed in Levy et al., 2006; Steingr�ımsson et al.,

2004). MITF-low melanomas have been shown to be

resistant to multiple targeted treatments (M€uller et al.,

2014). Studies have also shown that decreased expres-

sion of melanocyte differentiation antigens through

downregulation of MITF could possibly trigger

immune evasion in melanomas (Kono et al., 2006;

Woods et al., 2014). Nonetheless, exact role of MITF

in the immune exclusion mechanism is still unclear.

Our analyses with immune-poor melanomas stratified

by MITF immunostaining suggested transcriptional

upregulation of b-catenin-dependent canonical Wnt

signaling pathway along with the upregulation of c-

Myc in the MITF-positive group. Immune evasion

through upregulation of canonical Wnt signaling path-

way is common in melanomas (Spranger et al., 2015),

and the role of c-Myc in the immune exclusion process

has previously been described (reviewed in Casey

et al., 2018). Since b-catenin-induced melanomas

Fig. 6. Immune-specific methylation in pan-cancer context. (A) Correlation between tissue-specific immune cell type methylation and

corresponding gene expression scores for MM cohorts (Lund and TCGA SKCM) and 15 other TCGA primary cancer cohorts (BLCA, bladder

urothelial carcinoma; BRCA, breast invasive carcinoma; CRC, colorectal carcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma

multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LGG, lower grade glioma; LIHC, liver

hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma of lung; PAAD,

pancreatic adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma). MM cohorts are highlighted in red. Methylation

scores for MM cohorts were calculated from the melanoma-specific 67 immune CpG set, whereas for other tumor types, they were

calculated using individual tissue type-specific immune CpG sets in the similar fashion to MM. (B) tSNE plot of pan-cancer cohorts based on

the previously mentioned methylation scores of common 17 immune cell types; plot is annotated by tissue of origin (left) and immune

methylation cluster membership for MM (right). (C) Balloon plot of hazard ratios (HR) for dichotomized immune methylation scores (b > 0.7:

hypermethylated, b ≤ 0.7: not hypermethylated) from univariate Cox regression models for each immune cell type and cancer cohorts. MM

cohorts are highlighted in red. Balloon colors are indicative of direction of hazard ratios, and sizes indicate value category of HR (large:

HR ≥ 1.5 or HR ≤ 0.66; small: HR < 1.5 or HR > 0.66). Additional black circles indicate significance after correction for multiple testing

(Benjamini–Hochberg corrected P-value < 0.1). Gray circles indicate situations where HR calculations were not possible, and missing circles

indicate cell types where no CpG survived filtering.
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require functional MITF (Schepsky et al., 2006; Wid-

lund et al., 2002) and loss of MITF expression affects

the corresponding expression of c-Myc (Seoane et al.,

2019), thus the role of MITF seems important in dis-

tinction of the immune evasion mechanisms in mela-

noma. As immune-low tumors respond poorly to
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immunotherapeutic treatments (Cristescu et al., 2018;

Van Allen et al., 2015), hence these results suggest fur-

ther studies to clarify the role of PTEN and MITF

levels in immune exclusion.

Notably, our analyses on distant MMs did not

reveal a major difference in the immune microenviron-

ment characterization among tumors from different

locations, most notably brain. This is further sup-

ported by clinical trials showing efficacy of ICI for

intracranial metastases concordant with the extracra-

nial ones and systemic response (Kluger et al., 2019;

Margolin et al., 2012; Tawbi et al., 2018). A recent

study using mouse models suggested such efficacy is

likely due to infiltration of T cells especially

CD44+CD62L� effector memory cells from the

extracranial sites (Taggart et al., 2018).

Our analyses on a pan-cancer cohort revealed simi-

larities in the immune microenvironments of tumors

from diverse tumor types in terms of immune methyla-

tion. Generally, our findings are compatible with the

concept of inflammatory and noninflammatory tumor

environments (Chakravarthy et al., 2018); however, our

pan-cancer analyses suggest that immune environments

carry additional complexity beyond this concept, as has

been demonstrated before (Thorsson et al., 2018).

Using cohort-specific immune methylation scores, we

observed grouping of MM tumors belonging to the low

immune methylation cluster along with tumors from

lung and gastrointestinal (GI) tract. Such observation

indicates that immune-rich microenvironments from

melanoma have similarities to microenvironment of

lung and GI tumors. In this regard, it is interesting that

ICI treatments have garnered significant attention for

non-small-cell lung cancer (NSCLC), which is among

the cancer types where such an immune-rich microenvi-

ronment likely occurs (reviewed in Moon et al., 2017).

Therefore, in addition to a high mutational burden,

such as induced by microsatellite instability (MSI) (Le

et al., 2015), an immune-rich environment may confer

improved outcome to immunotherapy agents. Among

the different immune cell types, the prognostic value of

effector memory T cells could also be established in

several tumor types of the pan-cancer cohort. Memory

T cells have received attention recently, as their pres-

ence in the tumor microenvironment was associated

with clinical response to ICI treatment in melanoma

(Gide et al., 2019; Sade-Feldman et al., 2018).

5. Conclusion

In summary, we explored the immune microenviron-

ment in MM tumors from a DNA methylation per-

spective. DNA methylation offers several advantages

over transcriptomic characterization of mixed cellular

environments, primarily due to its higher frequency in

terms of differences between cellular lineages compared

to gene expression (Bock et al., 2012). Additionally,

the biologically limited range of methylation b-values,
being restricted from 0 (unmethylated) to 1 (methy-

lated), facilitates the comparison across experiments

and laboratories, whereas transcriptomic data natu-

rally have a higher dynamic range. Also, greater stabil-

ity of DNA compared to RNA in formalin-fixed,

paraffin-embedded (FFPE) samples (Okello et al.,

2010) makes it easier to work with DNA methylation

in archival, historical cohorts.

Our use of a largely untreated historic cohort

ensured that the immune cell type methylation patterns

are not biased by treatment. Also, the extension of our

study to other solid tumors revealed an immune-rich

environment in several other cancer types. The prog-

nostic implications of some innate and adaptive

immune cell types were re-identified in other cancer

types. These results point toward a more tailored

approach to immunotherapy based on tumor immune

microenvironment.
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notypes and Lund immune-methylation clusters.

Table S4. List of centroid CpGs with methylation b
values for each cluster.

Table S5. Overlap between TCGA gene expression

classes and TCGA immune-methylation clusters.

Appendix S1. Supplementary methods.
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