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A B S T R A C T   

Randomized controlled trials have shown efficacy of trauma-focused psychotherapies in youth with post
traumatic stress disorder (PTSD). However, response varies considerably among individuals. Currently, no bio
markers are available to assist clinicians in identifying youth who are most likely to benefit from treatment. In 
this study, we investigated whether resting-state functional magnetic resonance imaging (rs-fMRI) could 
distinguish between responders and non-responders on the group- and individual patient level. Pre-treatment rs- 
fMRI was recorded in 40 youth (ages 8–17 years) with (partial) PTSD before trauma-focused psychotherapy. 
Change in symptom severity from pre- to post-treatment was assessed using the Clinician-Administered PTSD 
scale for Children and Adolescents to divide participants into responders (≥30% symptom reduction) and non- 
responders. Functional networks were identified using meta-independent component analysis. Group-differences 
within- and between-network connectivity between responders and non-responders were tested using permu
tation testing. Individual predictions were made using multivariate, cross-validated support vector machine 
classification. A network centered on the bilateral superior temporal gyrus predicted treatment response for 
individual patients with 76% accuracy (pFWE = 0.02, 87% sensitivity, 65% specificity, area-under-receiver- 
operator-curve of 0.82). Functional connectivity between the frontoparietal and sensorimotor network was 
significantly stronger in non-responders (t = 5.35, pFWE = 0.01) on the group-level. Within-network connectivity 
was not significantly different between groups. This study provides proof-of-concept evidence for the feasibility 
to predict trauma-focused psychotherapy response in youth with PTSD at an individual-level. Future studies are 
required to test if larger cohorts could increase accuracy and to test further generalizability of the prediction 
models.   

1. Introduction 

Posttraumatic stress disorder (PTSD) is a common mental health 
disorder that develops in approximately 16% of youth exposed to 
traumatic events (Alisic et al., 2014). Youth with PTSD are troubled by 
frequent re-experiencing of the traumatic event, persistent avoidance, 

hyperarousal and negative alterations in cognition and mood (American 
Psychiatric Association, 2013). These symptoms can interfere with so
cial functioning and school performance, have a negative effect on 
quality of life (Carrion et al., 2002) and are a crucial factor in shaping 
the vulnerability to depression and suicidality later in life (Molnar et al., 
2001). Randomized controlled trials (RCTs) have demonstrated the 
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efficacy of trauma-focused psychotherapies in youth with PTSD (Morina 
et al., 2016), but response varies considerably among individuals, with 
30–50% of youth not benefiting sufficiently (Diehle et al., 2015; Morina 
et al., 2016). Different pre-treatment clinical and demographic factors 
have been associated with trauma-focused psychotherapy outcome, but 
none have shown to reliably predict treatment response (Goldbeck et al., 
2016). This underlines the need for the identification of reliable (bio) 
markers of treatment response which could assist clinicians to optimize 
treatment allocation and improve clinical outcome. 

Previous studies have shown that adult PTSD is characterized by 
functional alterations in brain regions which are key nodes in multiple 
large-scale brain networks, including the insula and medial prefrontal 
cortex (Wang et al., 2016). The insula is part of the salience network 
(SN) that is responsible for detecting and orienting to salient stimuli 
(Menon, 2011), and the medial prefrontal cortex is part of the default 
mode network (DMN) that is associated with internally focused thought 
as well as autobiographical memory (Menon, 2011). Results from 
studies examining large-scale network connectivity in youth with PTSD 
have not always corresponded with results obtained in adults (Weems 
et al., 2019). Patriat and colleagues, for instance, found that pediatric 
PTSD is characterized by increased connectivity within the DMN, con
trasting the finding of decreased connectivity within the DMN in adults 
(Patriat et al., 2016). This could be related to considerable reorganiza
tion of large-scale brain networks throughout childhood and adoles
cence (Weems et al., 2019). Developmental change in large-scale brain 
organization is characterized by stronger within-network connectivity 
and more efficient between-network connectivity, with a trend towards 
segregation (decrease in connectivity strength) between regions in close 
proximity and integration (increase in connectivity strength) between 
anatomically distant regions (Menon, 2013). These developmental 
processes provide a potential explanation for the contrasting findings 
between youth and adults with PTSD and emphasize the need for studies 
on large-scale brain networks specifically performed in youth with 
PTSD. 

Few studies have investigated the relationship between large-scale 
brain network connectivity and treatment-response. In adults, neuro
imaging studies have observed pre-treatment differences between re
sponders and non-responders to trauma-focused psychotherapy (Duval 
et al., 2020; Fonzo et al., 2017a; Fonzo et al., 2021; Korgaonkar et al., 
2020; Zantvoord et al., 2013; Zhutovsky et al., 2019). Findings from 
these studies suggest that activity and connectivity within regions and 
networks involved in working memory as well as emotional processing 
and modulation differed between responders and non-responders at 
baseline (Duval et al., 2020; Zhutovsky et al., 2019) and could be 
adaptively attenuated with successful trauma-focused psychotherapy 
(Fonzo et al., 2021). A study in adolescent girls reported greater pre- 
treatment bilateral amygdala activation during emotion processing in 
treatment responders and differences in large-scale brain network con
nectivity (Cisler et al., 2016). These studies provide initial evidence for 
group-differences in pre-treatment brain activity and connectivity be
tween treatment responders and non-responders. 

The studies reported above used univariate analysis to detect group- 
differences. However, this does not provide information for individual 
patients and may not generalize to new data (Arbabshirani et al., 2017), 
which is necessary to allow clinicians to inform patients and to assist in 
clinical decision making. Predictions for individual patients can be made 
using multivariate supervised machine learning (ML) analysis which 
directly assesses generalization to new patients by means of cross- 
validation. Several studies have utilized ML methods and resting-state 
functional magnetic resonance imaging (rs-fMRI) to predict treatment- 
response in adults with PTSD, with accuracies ranging between 71 and 
90% (Etkin et al., 2019; Korgaonkar et al., 2020; Zhutovsky et al., 2019). 
However, no studies are available that have investigated the utility of 
ML and rs-fMRI to predict treatment-response in youth with PTSD. 
Therefore, we collected pre-treatment rs-fMRI data of 40 youth with 
PTSD/partial-PTSD (age 8–17) to predict treatment response on the 

group- and individual-level. 

2. Materials and methods 

2.1. Participants 

Our initial sample consisted of 61 participants (39 girls/22 boys) 
diagnosed with PTSD or partial PTSD. Participants entered trauma- 
focused psychotherapy as part of an RCT comparing trauma-focused 
cognitive behavioral therapy (TF-CBT) and eye movement desensitiza
tion and reprocessing (EMDR) (Diehle et al., 2015). Of these, 50 
completed treatment as well as pre- and post-treatment assessment (see 
flow diagram in Figure S1). After data quality control 40 participants (26 
girls/14 boys) were included in the final analysis. All participants were 
Dutch speaking, and 8–17 years old. Gender categories were based on 
the personal identification of participants’ own gender. Participants 
were recruited between June 2011 and September 2018 at the outpa
tient child psycho-trauma center of the department of child and 
adolescent psychiatry, de Bascule in Amsterdam, The Netherlands. 
Youth were referred by child welfare services, physicians or general 
practitioners. Diagnoses for PTSD or partial PTSD were established 
clinically by an experienced child and adolescent psychiatrist or psy
chologists according to the DSM-IV-TR criteria using joint child and 
caregiver reports on individual symptoms on the Clinician-Administered 
PTSD Scale for Children and Adolescents (CAPS-CA) semi-structured 
interview (Nader et al., 1996) and the caregiver reports from the 
PTSD scale of the Anxiety Disorders Interview Schedule – Parent Version 
(ADIS-P) (Verlinden et al., 2014). A symptom was established as present, 
if either child or caregiver reported its presence. Partial PTSD was 
defined as either fulfilling two of the three PTSD symptom clusters or 
having one symptom present in each of the three symptom clusters 
(Stein et al., 1997). Furthermore, participants were required to have a 
CAPS-CA total score indicating at least mild PTSD symptom severity 
(>20 points). Exclusion criteria were: acute suicidality, IQ < 70, preg
nancy, neurological disorders or serious medical illnesses or meeting the 
criteria of the following diagnosis: psychotic disorders, substance-use 
disorder or pervasive developmental disorder. If participants were tak
ing psychotropic or central nervous-active medication, medication was 
required to be stable for at least three weeks before and during trauma- 
focused psychotherapy. In our sample one participant was taking ser
traline and two methylphenidate. In accordance with procedures 
approved by the Institutional Review Board of the Amsterdam Univer
sity Medical Center and the declaration of Helsinki, written informed 
consent was obtained from all parents or legal guardians. Written 
informed consent from youth aged 12 years and older and assent from 
youth aged 11 and younger, was also obtained from the youth them
selves. All participants received a monetary incentive for participation 
(€5 for each assessments). 

2.2. Trauma-focused psychotherapy 

Participants were randomly assigned to weekly protocolized sessions 
for a total of 8 weeks of either TF-CBT or EMDR. The data reported here 
were obtained as part of a larger study on the efficacy of TF-CBT and 
EMDR. Treatment was delivered by experienced trauma therapists who 
were trained in TF-CBT and EMDR before study initiation. Supervision 
by TF-CBT and EMDR experts was provided throughout the study. 
Treatment protocols, training and supervision of therapists, as well as 
treatment fidelity have been described in detail previously (Zantvoord 
et al., 2019). 

Trained psychologists administered the CAPS-CA and the PTSD scale 
of the ADIS-P to measure PTSD symptoms before and after treatment. 
Caregiver reports on the ADIS-P were used to complement child reports 
and clinical observation. The Dutch Revised Child Anxiety and Depres
sion Scale (RCADS(-P)) questionnaires was administered to assess 
depressive and anxiety symptoms (Chorpita et al., 2000). Symptom 

P. Zhutovsky et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 32 (2021) 102898

3

change was calculated by subtracting the pre-treatment from the post- 
treatment CAPS-CA total score. We used ≥30% reduction of CAPS-CA 
total score as response criterion for clinically meaningful improvement 
(Zantvoord et al., 2021). 

The distribution of baseline clinical, trauma and demographic 
characteristics across responders and non-responders was examined 
using X2-tests, independent sample t-tests or Mann-Whitney tests as 
appropriate. Paired sample t-test were used to examine pre- to post- 
treatment symptom change. Statistical analyses were performed using 
SPSS version 26 (SPSS Inc., Chicago IL, USA). 

2.3. Imaging data acquisition 

High-resolution T1 and rs-fMRI data were acquired using a 3T Philips 
Achieva scanner (Philips Healthcare, Best, The Netherlands) equipped 
with a SENSE eight-channel receiver head coil. For each participant, a 
T1-weighted structural MRI image was acquired with the following 
parameters: TE: 3.527 ms, TR: 9 ms, slice thickness: 1 mm, 170 slices, 
flip angle: 8◦ and image matrix 256 × 256 that covert the entire brain. 
200 blood oxygen level dependent rs-fMRI scans were acquired with a 
repetition time of 2.3s and a voxel size of 2.3x2.3x3mm3. For rs-fMRI, 
participants were instructed to remain still with their eyes closed. 

2.4. Imaging data preprocessing 

All (f)MRI preprocessing was performed utilizing a singularity image 
container running fMRIPrep (v1.5.33). 

2.4.1. Structural data preprocessing 
Structural MR images were corrected for intensity non-uniformity 

and brain-extracted using the ANTs toolbox (v2.2.04). Brain tissue seg
mentation of cerebrospinal fluid (CSF), white-matter (WM), and gray- 
matter (GM) was performed on the brain-extracted T1w images using 
FSL FAST (v5.0.9). Volume-based spatial normalization to MNI space 
(MNI152NLin6Asym) was performed through nonlinear symmetric 
normalization with ANTs. 

2.4.2. Functional data preprocessing 
Preprocessing of rs-fMRI data followed the standard procedure 

implemented in fMRIPrep involving generation of a reference volume, 
co-registration to the T1w scan, motion correction (before any spatio
temporal filtering) and normalization to MNI space in one step using a 
combination of all spatial transformations (see Supplementary Materials 
for details). Normalizations and co-registrations were assessed visually 
and four PTSD patients were excluded due to poor normalization qual
ity. We excluded five additional participants with high spikes of motion 
identified from visual inspection of plots of the realignment parameters 
(volume-to-volume changes >2mm). Therefore, after quality control of 
the structural MRI and rs-fMRI data the final sample included 40 pa
tients. These remaining participants did not differ in overall motion 
levels according to their framewise displacement (Power et al., 2014) 
(see Table 1). Data were spatially smoothed with an isotropic, Gaussian 
kernel of 6mm3 full-width-at-half-maximum. To further address motion 
contamination, we applied ICA-AROMA (Pruim et al., 2015) (in MNI 
space) to remove additional motion sources from the data. Data was 
then resampled to 4mm3 to speed-up additional procedures. We 
addressed further structured noise present in the data by regressing out 
average WM and CSF signals using masks calculated in T1w space, 
transformed to rs-fMRI space. We combined this regression step with 
highpass filtering by a discrete cosine set with 128s cut-off. To avoid 
reintroducing already removed nuisance signal into the data by applying 
a sequential pipeline, both WM/CSF and cosine regressors were 

Table 1 
Subject characteristics.   

Overall 
(n = 40) 

Responders 
(n = 21) 
≥30% CAPS- 
CA 

Non- 
responders (n 
= 19)  
<30% CAPS- 
CA 

p- 
valuea 

Sociodemographic characteristics (pre-treatment) 
Girls (%) 65.0 57.1 73.7 0.273 
Age (years; mean, SD) 12.6 

(2.91) 
12.5 (2.64) 12.7 (3.25) 0.820 

West European 
Ethnicity (%) 

47.5 52.4 42.1 0.413 

Current educational 
level (%)    

0.557 

Elementary school 47.5 52.4 42.1  
Middle/High school 
lower level 

7.5 9.5 5.3  

Middle/High school 
middle level 

27.5 28.6 26.3  

Middle/High school 
higher level 

12.5 9.5 15.8  

Vocational school 5.0 0 10.5  
Household Income (€; 

%)    
0.622 

<25000 27.5 28.6 26.3  
25000–35000 12.5 19.0 5.3  
>35000 20.0 23.8 15.8  

Weight (kg; mean, SD) 51.1 
(10.94) 

51.3 (12.67) 50.7 (8.46) 0.875 

Current psychotropic 
medication (%) 
Smoking (%) 
Alcohol > 1 
consumption/day 
(%) 

7.5 
7.5 
0 

9.5 
9.5 
0 

5.3 
5.3 
0 

0.609 
0.702 
N/A 

Imaging Data (pre-treatment) 
Framewise 

displacement (mean, 
SD) 

0.20 
(0.11) 

0.21 (0.11) 0.20 (0.12) 0.820 

Trauma characteristics (pre-treatment) 
Index trauma (%) 

Sexual abuse 
Domestic violence 
Community 

violence 
Accidents/ 

Medical 
Other  

32.5 
12.5 
25.0 
12.5 
17.5  

28.6 
14.3 
23.8 
14.3 
19.0  

36.8 
10.5 
26.3 
10.5 
15.8 

0.971 

Repeated trauma 
exposure (%) 

57.5 61.9 52.6 0.554 

Age at index trauma 
(years; mean, SD) 

9.9 (3.89) 10.0 (3.43) 9.9 (4.42) 0.824 

Time since index 
trauma (years; 
mean, SD) 

2.8 (2.52) 2.7 (2.00) 2.9 (3.03) 0.773 

Clinical characteristics (pre-treatment) 
CAPS-CA (mean, SD)b 

Total 
Re-experiencing 
Avoidance 
Hyperarousal  

56.1 
(23.25)  
17.8 
(10.37)  
21.5 
(10.02)  
17.8 
(8.96)  

55.5 (23.95)  
16.7 (10.04)  
22.8 (9.62)  
16.8 (9.49)  

56.8 (23.09)  
18.9 (10.92)  
20.1 (10.54)  
18.8 (8.48)  

0.856 
0.532 
0.422 
0.515 

Full PTSD diagnosis 
(%) 

82.5 85.7 78.9 0.574 

RCADS (mean, SD)b 

MDD 
GAD 
OCD 
PD 
SAD 
SP  

12.0 
(6.08)  
7.2 (4.30)  
6.8 (3.35)  
8.4 (6.25)  
6.1 (4.24)  
12.2 
(6.76)  

11.7 (6.11)  
8.4 (4.56)  
7.3 (3.84)  
9.2 (6.65)  
7.4 (3.91)  
13.3 (7.28)  

12.5 (6.29)  
5.6 (3.48)  
6.2 (2.59)  
7.4 (5.81)  
4.3 (4.12)  
10.8 (6.00)  

0.729 
0.089 
0.407 
0.469 
0.048 
0.339 

(continued on next page) 
3 https://fmriprep.org/en/1.5.3/  
4 https://stnava.github.io/ANTs 
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denoised with the previously identified ICA-AROMA regressors (Lind
quist et al., 2019). As a final step the rs-fMRI data were grand-mean 
scaled with a factor of 10000. 

2.4.3. Identification of intrinsic connectivity networks 
To identify a set of robust intrinsic connectivity networks (ICNs) we 

employed a meta-independent component analysis (ICA) (Biswal et al., 
2010) utilizing FSL MELODIC (v3.15) (Beckmann and Smith, 2004). To 
ensure that the identification of ICNs was independent from their use in 
the analysis, which may introduce a positive bias (Poldrack et al., 2019), 
we included rs-fMRI data of 17 trauma-exposed controls (TEC) who did 
not differ in age, gender, or motion from the included patients (see 
Supplementary Materials for further details). The number of compo
nents was fixed to 70 as it has been successful in the identification of 
treatment-related PTSD biomarkers for veterans in our previous study 
and in addition has been shown to be repeatable able to well separate 
signal sources and be optimal in detecting disease-related group-level 
differences (Abou-Elseoud et al., 2010; Abou Elseoud et al., 2011; 
Zhutovsky et al., 2019). To identify ICNs, we employed a semi- 
automatic approach (Cerliani et al., 2015) which led to the inclusion 
of 48 ICNs (see Supplementary Materials). Both ICNs and excluded 
components are shown in Figures S2 and S3, respectively. 

To reconstruct individual-level representations of the group-level 
ICNs and their time-courses we applied group-information guided ICA 
(GIG-ICA) to the preprocessed data of the PTSD patients (Du and Fan, 
2013). GIG-ICA computes a spatially constrained individual-level ICA 
which estimates individual ICNs which are maximally spatially corre
lated with a group-map. This procedure is repeated for each group ICN 
and each participant, generating a set of individual-level ICN repre
sentations and their corresponding time-courses. GIG-ICA has been 
shown to outperform conventional reconstruction methods like dual 
regression in identifying reliable biomarkers for psychiatric disorders 
and to produce spatially independent components (Du and Fan, 2013; 
Salman et al., 2019). GIG-ICA was applied utilizing MATLAB code 
(R2018b, The Mathworks, Natick, MA) distributed with the GroupICA 
toolbox (v4.0b5). 

To investigate between-ICN connectivity we applied the FSLnets 
toolbox (v0.6.36) to the individual-level ICN time-courses estimated via 
GIG-ICA. We estimated full- and partial correlation matrices between all 
identified ICNs and converted all correlation coefficients to z-scores for 
further analyses. Full-correlation matrices were estimated using Pearson 
correlation while partial-correlation matrices were calculated from 
regularized Ridge regressions (rho = 0.1) as is the default in the FSLnets 
package. 

2.5. Group-level analyses 

We tested for group-differences across ICNs (within-ICN connectiv
ity) between responders and non-responders using permutation testing 
implemented in PALM (a1177). We included demeaned age, gender and 
pre-treatment CAPS-CA total scores as covariates-of-no-interest into a 
general linear model (GLM). Familywise error (FWE) correction of p- 
values across the whole-brain, 48 ICNs and two-sided tests of the 
threshold-free-cluster-enhancement (TFCE) statistic (Smith and Nichols, 
2009) was performed using synchronized permutations (n = 10000) of 
the maximum statistic. 

The same procedure, involving permutation testing (n = 10000), and 
the same covariates-of-no-interest was utilized to investigate group- 
difference in between-ICN connectivity across responders and non- 
responders. The FWE-correction of p-values of the t-statistic was per
formed across all connections, two-sided contrasts and the full- and 
partial correlation matrices utilizing the maximum statistic. Alpha was 
set to 0.05 in both analyses. 

2.6. Individual-level analyses 

To investigate whether within- or between-ICN connectivity could 
predict treatment-response for the individual patient, we applied 
multivariate, cross-validated linear-kernel support vector classifiers 
(SVM) (Cortes and Vapnik, 1995) to our data. For that we considered 
every ICN (n = 48) and their connectivity profiles (full- and partial 
correlation matrices, n = 2) separately, resulting in 50 separate multi
variate classification analyses. We divided our data into 5-folds (each 
fold containing 20% of the data) ensuring (approximate) balance of 
responders and non-responders per fold. Data of 4-folds was used as 
training set for rescaling all features to =1 to 1 range and fitting the 
SVM. The fifth fold served as the test set and we calculated balanced 
accuracy (average between sensitivity and specificity), area-under-the- 
receiver-operator-curve (AUC), sensitivity (of identifying responders), 
specificity (of identifying non-responders) and negative/positive pre
dictive value (NPV/PPV) as performance measures of the trained SVM 
classifier. We repeated the procedure five times, each time retraining the 
classifier and utilizing a different fold as the test set. Finally, to ensure a 
reliable average measure of classification performance we repeated the 
random division of the data across the five folds 50 times and repeated 
the entire analysis, yielding a 50-times-repeated-5-fold cross-validation 
procedure (Varoquaux et al., 2017). In the end, we averaged the per
formance measures across the 250 test set evaluations, providing a set of 
measures estimating the generalizability of our classifier to new data. 

To assess statistically whether the estimated average accuracies 
provided better-than-chance performance and to correct for the total 
number of classifications performed (48 ICNs + 2 correlations matrices 
= 50), we used synchronized permutation tests (n = 2000, see Supple
mentary Materials). Alpha was set to 0.05. 

We also assessed which features were important for the classification 
by calculating p-values for each weight of the SVM using a novel 
permutation-based procedure (Gaonkar et al., 2015) (see Supplemen
tary Materials). The p-values were computed after the classifier was 

Table 1 (continued )  

Overall 
(n = 40) 

Responders 
(n = 21) 
≥30% CAPS- 
CA 

Non- 
responders (n 
= 19)  
<30% CAPS- 
CA 

p- 
valuea 

Administered Psychotherapies 
TF-CBT/EMDR 24/16 11/10 13/6 0.301 
Clinical characteristics (post-treatment) 
CAPS-CA (mean, SD)b 

Total 
Re-experiencing 
Avoidance 
Hyperarousal  

38.0 
(25.70)  
10.6 
(10.17)  
12.1 
(9.14)  
12.2 
(9.14)  

22.3 (19.58)  
5.4 (16.93)  
9.4 (15.27)  
6.4 (6.38)  

55.2 (20.14)  
16.9 (10.66)  
15.3 (7.52)  
19.2 (6.81)  

<0.001 
0.001 
0.062 
<0.001 

Abbreviations: CAPS-CA, Clinician-Administered PTSD Scale for Children and 
Adolescents; RCADS, Revised Child Anxiety and Depression Scale; MDD, major 
depressive disorder; GAD, general anxiety disorder; OCD, obsessive compulsive 
disorder; PD, panic disorder; SAD, separation anxiety disorder; SP, social phobia; 
SD, standard deviation; TF-CBT, trauma-focused cognitive behavioral therapy; 
EMDR, eye movement desensitization and reprocessing. 

a p-values < 0.05 shown in bold. Independent samples t-test for continuous 
and Х2 tests for categorical variables between responders and non-responders. 

b Ranges: CAPS-CA total, 0–139; RCADS MDD, 0–30; RCADS GAD, 0–18; 
RCADS OCD, 0–18; RCADS PD, 0–27; RCADS SAD, 0–21; RCADS SP, 0–27. 

5 https://trendscenter.org/software/gift 

6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets  
7 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM 
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applied to the entire data set and are intended for visualization purposes 
only. 

All individual-level analyses were implemented in the Python pro
gramming language (v3.8.2) utilizing the scikit-learn ML toolbox 
(v0.22.1). 

3. Results 

3.1. Demographic and clinical characteristics 

A summary of participant characteristics is shown in Table 1. 
Treatment responders and non-responders did not differ in de
mographic, trauma and clinical characteristics at baseline apart from 
separation anxiety symptoms which were (marginally significantly) 
higher in responders (p = 0.048). Based on joint child (CAPS-CA) and 
caregiver (ADIS-P) reports 82.5% of all participants met the full DSM-IV 
diagnostic criteria for PTSD at baseline, the remaining 17.5% met 
criteria for partial PTSD. The average baseline CAPS-CA score was 56.13 
(SD = 23.25), which is indicative of moderately severe PTSD. The most 
common index trauma was sexual abuse, followed by community 
violence, accidents and domestic violence. 57.5% of participants were 
exposed to multiple-event trauma. Average age at trauma exposure was 
M = 9.95 years, SD = 3.89 (range 2–16) and average time since trauma 
was M = 2.82 years, SD = 2.52 (range 0–10). 

3.2. Changes in psychopathology 

Treatment completers and non-completers did not differ in baseline 
sociodemographic, trauma or clinical characteristics. Across the 
completer sample, we found significant reductions in CAPS-CA total 
score (t(39) = 5.65, p < 0.001, Cohen’s effect size (d) = 0.89), re- 
experiencing (t(39) = 4.39, p < 0.001, d = 0.71), avoidance (t(39) =
4.10, p < 0.001, d = 0.68) and hyperarousal clusters (t(39) = 2.935, p =
0.006, d = 0.55. Twenty-one fulfilled the criterion for treatment 
response (≥30% PTSD symptom reduction on CAPS-CA), and nineteen 

were non-responders. 

3.3. Resting-state fMRI 

3.3.1. Group-level analyses 

3.3.1.1. Within-network analyses. There were no group-differences sur
viving FWE-correction between responders and non-responders for any 
of the 48 ICNs. Because the number of investigated components was 
large, requiring stringent correction for multiple comparisons, we also 
provide the results of the analyses when FWE-correction was only 
applied for each network separately (see Figure S4. Within-network 
connectivity of two ICNs (left frotoparietal network (FPN) and a visual 
ICN) was increased in responders over non-responders in this explor
atory analysis. 

3.3.1.2. Between-network analyses. Between-network analyses showed a 
significantly larger Pearson correlation between the (predominantly) 
left FPN and a sensorimotor network in non-responders over responders 
(t = 5.35, pFWE = 0.012, Fig. 1. 

3.3.2. Individual-level analyses 
SVMs trained on data from an ICN centered on the bilateral superior 

temporal gyrus (STG) provided an average cross-validated accuracy of 
76.17% (SD = 12.58%, pFWE = 0.018, Fig. 2A and Fig. 3). The network 
achieved an AUC of 0.82 (SD = 0.16), with a sensitivity of 87.14% (SD =
16.56%) and a specificity of 65.20% (SD = 21.44%). The PPV/NPV was 
0.75/0.85 (SD = 0.14/0.19). To explore whether the test accuracy was 
comparable for TF-CBT and EMDR, we also tested the same model for 
this ICN for the different treatments separately. The cross-validated 
performance for the TF-CBT subgroup showed a balanced accuracy of 
76.16% (AUC: 0.82, sensitivity: 85.97%, specificity: 64.3%). For the 
EMDR subgroup a balanced accuracy of 78.56% (AUC: 0.83, sensitivity: 
83.43, specificity: 52.0%) was observed. We also investigated how the 
usage of a different validation approach (leave-one-out cross-validation) 

Fig. 1. Stronger Fisher r-to-z transformed Pearson correlation between a sensorimotor network and the (predominantly) left frontoparietal network was observed for 
non-responders over responders. Boxplots show median and interquartile range of the distribution of responders/non-responders. The dots show the individual z- 
transformed correlation values of the individual patients. It is important to note that the individual correlation values shown in the boxplot cannot be directly used to 
infer the performance in the classification analysis as this would constitute ‘double dipping’ (Kriegeskorte et al., 2009). 
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would influence the performance estimates of the best performing 
network: we observed an accuracy of 69.42%, AUC of 0.77, sensitivity of 
80.95%, and specificity of 57.89%. However, given that there are 
theoretical and empirical reasons for why leave-one-out cross-validation 
is not recommended – especially in the case of small sample sizes – the 

reported results from this validation scheme should not be the focus of 
this study (Flint et al., 2021; Poldrack et al., 2019). To illustrate that 
there is a significant advantage in utilizing multivariate instead of uni
variate models we performed an experiment in which we selected the 
best separating voxel (according to a t-test performed on the training set) 

Fig. 2. A. A network centered on the bilateral superior temporal gyrus which provided the best performance during the multivariate classification of responders and 
non-responders. The network was part of the 70 networks computed by means of meta-ICA on the (independent) HC sample. B. p-values of the individual voxel 
weights of the SVM estimated using the margin-aware statistic and analytical approximation of the null-distribution (Gaonkar et al., 2015) for classification using the 
individual-level representation of the group network in A. p-values are shown unthresholded as the analysis is multivariate and therefore all voxels – and not only the 
most significant ones – always contribute to the classification task. 
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of the above network and trained and tested our linear SVM models 
using only this one voxel. The obtained performance dropped signifi
cantly to an averaged accuracy of 50.99%, AUC of 0.54, sensitivity of 
53.12% and specificity of 48.87%. No other network showed classifi
cation accuracies exceeding chance-level when FWE-correction was 
applied. 

P-values corresponding to the voxel-weights of the SVM classifier 
when trained on data of all patients of the STG ICN can be seen in Fig. 2 
(B), showing a diffuse whole-brain pattern required to successfully 
perform the classification. 

4. Discussion 

In this study we investigated the possibility of using pre-treatment rs- 
fMRI data as a biomarker to predict trauma-focused psychotherapy 
response in youth with (partial) PTSD. We examined prediction both on 
the group- and individual-level. In our study, a network centered on the 
bilateral STG could distinguish between responders and non-responders 
on the individual-level, with an accuracy of 76.2%. We further found 
increased connectivity between the left FPN and a sensorimotor network 
in non-responders on the group-level. To our knowledge this is the first 
study to examine the prediction of individual treatment-response using 
rs-fMRI data in youth with PTSD. Together our results provide a first 
proof-of-concept for the utility of rs-fMRI as a biomarker for treatment- 

response in youth with PTSD. 
Our findings indicate increased pre-treatment connectivity between 

the left FPN and sensorimotor network in trauma-focused psychother
apy non-responders. The FPN is highly integrated with other brain 
networks and has a comprehensive role in attention, working memory 
and decision making by flexibly interacting with other brain networks 
(Menon, 2011). Abnormal recruitment of other brain networks into the 
FPN is linked with deficits in these cognitive processes and has been 
associated with multiple psychiatric disorders (Menon, 2011). More 
specifically, increased connectivity between the FPN and a sensorimotor 
network has been found in youth with autism (ASD) and attention- 
deficit/hyperactivity disorder (ADHD) (Cerliani et al., 2015). While 
speculative at this point, abnormal recruitment of the sensorimotor 
network into the FPN in non-responders might be related to deficient 
cognitive processes resulting in suboptimal engagement in trauma- 
focused psychotherapy and poor treatment response. To test this hy
pothesis, future research could address functional connectivity patterns 
of the FPN together with neurocognitive tests before and after treatment 
and use repeated transcranial magnetic stimulation to directly influence 
FPN connectivity (Etkin et al., 2019). Such an approach could eventually 
delineate clinical relevance and might identify promising targets for 
non-invasive stimulation-based interventions (Fonzo et al., 2017b). 

Our group-level analysis did not identify networks which were pre
viously found to distinguish between trauma-focused psychotherapy 
responders and non-responders in adult PTSD. More specifically, we did 
not find group differences in connectivity between the SN and DMN 
which was found to differentiate veterans who responded to prolonged 
exposure (PE) therapy compared to non-responders (Sheynin et al., 
2020). Additionally, previous findings of lower ventral attention 
network (VAN) connectivity and increased connectivity in the frontal 
pole in adults with poor trauma-focused psychotherapy response were 
also not replicated (Etkin et al., 2019) (Zhutovsky et al., 2019). One 
possible explanation for these divergent findings could be that most 
previous studies used a region of interest approach focusing on pre
defined networks contrary to our whole-brain analysis. In addition, 
different types of psychotherapies and clinical as well as trauma char
acteristics could have accounted for these differences. And finally, 
developmental processes could have contributed as large-scale brain 
networks undergo considerable reorganization throughout childhood 
and adolescence (Menon, 2013). 

The ICN yielding significant classification performance was centered 
on the STG. A growing number of studies have shown structural and 
functional abnormalities in the STG in PTSD patients (Engdahl et al., 
2010; Lanius et al., 2002; Lindauer et al., 2008). Based on electrical 
stimulation of the area, Engdahl and colleagues (Engdahl et al., 2010) 
have suggested that STG abnormalities may be associated with re- 
experiencing symptoms. Others have suggested a relationship between 
STG abnormalities and dissociative symptoms in PTSD patients (Lanius 
et al., 2002). Interestingly, we have previously shown a positive corre
lation between STG activation and trauma-focused psychotherapy 
response in adults with PTSD (Lindauer et al., 2008). 

Previous studies utilizing ML methods, however, did not identify 
network connectivity of the STG as an accurate predictor of treatment 
response. In adults treated with PE, Etkin and colleagues, found a clas
sification accuracy of >85%, using a combination of pre-treatment rs- 
fMRI connectivity within the VAN and delayed recall performance in a 
verbal memory task (Etkin et al., 2019). In another study, pre-treatment 
functional connectivity within- and between- the default mode, dorsal 
attention, cingulo-opercular, salience, and central executive network 
during task-free fMRI predicted response to TF-CBT with an accuracy of 
71.4% (Korgaonkar et al., 2020). Finally, we have previously shown the 
feasibility of the same approach as outlined here to predict response to 
trauma-focused therapy in veterans with PTSD with 81.4% accuracy 
(Zhutovsky et al., 2019), with an ICN centered on the pre-supplementary 
motor area providing the best predictive accuracy. 

At present, it remains unclear why our findings on classification 

Fig. 3. Cross-validated performance estimates of the best performing network 
during classification (Fig. 2). Boxplots show the mean and interquartile range 
(IQR) of the individual performance distributions. The mean instead of the 
median is shown because it was also used and reported as final performance 
measure of the network. The red dotted line indicates approximate chance- 
level. However, statistically, deviation from chance-level and FWE-correction 
were estimated through synchronized permutations. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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accuracy differ from findings in adult PTSD. Studies in adults have re
ported different networks/functional connectivity estimates than iden
tified here and have found classification accuracies which mostly 
exceeded accuracy found in the current study. One possibility is that, 
with inclusion of both PTSD and partial PTSD patients, clinical hetero
geneity increased, resulting in lower classification accuracy. Another 
possibility is that neurodevelopmental trajectories add to heterogeneity 
and might reduce classification accuracy, as previous studies in youth 
with PTSD using rs-fMRI have shown neurodevelopmental effects on 
network connectivity and we included youth with a relatively wide age 
range. These hypotheses require further investigation, including longi
tudinal studies of youth with PTSD which develop into adulthood. While 
the current individual-level classification findings differ from adults, it is 
reassuring that the application of the same approach to treatment- 
response classification as reported here has been associated with sig
nificant classification accuracies in adults multiple times, even for a 
different psychiatric disorder (van Waarde et al., 2015; Zhutovsky et al., 
2019). 

There is a difference between the findings observed on the group- 
and on the individual-level. While there was no difference in within- 
network connectivity for any ICN between responders and non- 
responders on the group-level, there was a network significantly pre
dictive on the individual-level. The opposite was true for the between- 
network connectivity. These discrepancies can be explained by the 
fact that a significant p-value in group-comparisons does not have to 
imply the ability to distinguish between patients on the individual-level 
because of low effect sizes of the difference (Arbabshirani et al., 2017). 
In addition, both analyses have different goals and therefore can identify 
different ICNs: group-level analyses focus on determining localized 
average differences between groups while individual-level analyses 
utilize all multivariate data to determine a model which provides the 
highest prediction (Bzdok and Ioannidis, 2019). This clearly marks the 
importance of performing individual-level prediction studies as these 
may improve clinical decision making in the future and may lead to 
independent results from group-level studies. 

Although classification accuracy exceeded chance-level perfor
mance, it still falls below the APA proposed threshold for clinical 
applicability of biomarkers (First et al., 2018). The suggested combi
nation of >80% sensitivity, specificity, and PPV is useful as guidance for 
research, but clinical utility should preferably be based on cost-benefit 
analyses (Pepe et al., 2016). As the current clinical standard is to offer 
trauma-focused psychotherapy to all youth with PTSD, a biomarker 
which reliably identifies non-responders could aid clinical decision 
making. This would correspond to a classifier with high specificity, but 
also reasonably high sensitivity to prevent classifying all patients as non- 
responders. If a-priory chances of treatment non-response are high, cli
nicians together with patients and their caregivers, could decide to 
abstain from initiating trauma-focused psychotherapy and search for 
alternative treatments with higher chances of success. This may help to 
prevent the unnecessary burden of failed treatment trials. 

Several limitations of this study should be noted. First, the sample 
size in the current study is low. This has an impact on the certainty of the 
estimated performance of the individual-level analysis. Cross-validation 
can lead to high variance in performance estimates if applied to studies 
with low sample sizes (Varoquaux, 2018). To increase the confidence in 
the presented results, we followed best-practices for the field (Poldrack 
et al., 2019), utilizing a permutation test corrected for multiple com
parisons to provide a valid statistical control of the observed perfor
mance (Varoquaux, 2018). However, only with larger sample sizes can 
these problems be fully addressed and therefore the current study can 
only be regarded as a first step for further individual-level prediction 
studies in youth with PTSD. Larger sample sizes at the same time may 
increase clinical heterogeneity, limiting classification performance as 
well (Arbabshirani et al., 2017). Second, although the majority (82.5%) 
of included youth had a full PTSD diagnosis, the remaining 17.5% had a 
partial PTSD diagnosis. Including youth with partial PTSD increased 

clinical heterogeneity. Increased clinical heterogeneity might have 
lowered overall treatment response due to a floor effect and might have 
lowered prediction accuracy. However, by including youth with partial 
PTSD, our sample better reflects the real-life clinical setting, which adds 
to the ecological validity of our findings. Third, youth were randomized 
to receive either TF-CBT or EMDR, and both treatment conditions were 
collapsed for the current analysis. Due to limited power it was not 
feasible to examine differences between treatment responders and non- 
responders separately for both treatments or examine specific predictors 
for each treatment separately. However, we exploratively investigated 
the selective performance of the STG ICN for the different treatment 
groups in our sample which showed a similar performance to the clas
sifier applied to the combined group. This indicates that the network is 
predictive of treatment-response in both treatment groups. Importantly, 
efficacy of both treatments has been shown to be comparable in an RCT 
with considerable sample overlap with the current study (Diehle et al., 
2015). In addition, three of the 40 included patients were taking psy
chotropic medication. While one of the inclusion criteria of the study 
was that medication usage had to be stable for at least three weeks 
before and during trauma-focused psychotherapy, this could have 
influenced our results. However, excluding more patients would have 
limited our sample size even more which is why we chose not to do it. 
Furthermore, the relatively wide age range (8–17) of the included pa
tients might have influenced the results of the current study as func
tional networks may be represented differently across development of 
youth (Menon, 2013). Finally, our study had substantial drop-out, as 
18% of randomized patients were lost to follow-up. Although such 
dropout rates reflect routine clinical practice and treatment completers 
and non-completers did not differ on baseline characteristics, there is a 
possibility that drop-out could have influenced our findings through 
attrition bias. 

4.1. Conclusions 

The present study demonstrates that increased resting-state con
nectivity between the FPN and a sensorimotor network can distinguish 
trauma-focused psychotherapy responders from non-responders on the 
group-level. Future studies could examine if these network patterns are 
potential targets for (non-invasive) neuromodulation interventions to 
reduce PTSD symptoms in afflicted youth. We further show that resting- 
state connectivity patterns in a network centered on the bilateral STG 
are capable of predicting trauma-focused psychotherapy response in 
youth with PTSD. These proof-of-concept findings emphasize the feasi
bility of combining ML analysis and rs-fMRI to identify predictive bio
markers for treatment response. However, before translation to clinical 
practice can commence, future research should aim to test the robust
ness and generalizability of these findings in larger independent cohorts. 
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