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Although some molecular differences between flat-depressed neoplasias (FDNs) and protruding neoplasias (PNs) have been
reported, it is uncertain if the BRAF mutations or the status of phosphorylated mitogen-activated protein kinase (p-MAPK) are
different between theses two groups. We evaluated the incidence of BRAF and KRAS mutations, high-frequency microsatellite
instability (MSI-H), and the immunohistochemical status of p-MAPK in the nonserrated neoplasias (46 FDNs and 57 PNs). BRAF
mutations were detected in four FDNs (9%) and none of PNs (P¼ 0.0369 by Fisher’s exact test). KRAS mutations were observed in
none of FDNs and in 14 PNs (25%; P¼ 0.0002 by Fisher’s exact test). MSI-H was detected in seven out of 44 FDNs (16%) and in one
out of 52 of PNs (2%) (P¼ 0.022 by Fisher’s exact test). Type B and C immunostaining for p-MAPK was observed in 34 out of 46
FDNs (72%), compared with 24 out of 55 PNs (44%; P¼ 0.0022 by w2 test). There was no significant difference in the type B and C
immunostaining of p-MAPK between FDNs with and without BRAF mutations. BRAF and KRAS mutations are mutually exclusive in the
morphological characteristics of colorectal nonserrated neoplasia. Abnormal accumulation of p-MAPK protein is more likely to be
implicated in the tumorigenesis of FDNs than of PNs. However, this abnormality in FDNs might occur via the genetic alteration other
than BRAF or KRAS mutation.
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The adenoma– carcinoma sequence is well accepted as a major
pathway for the development of colorectal cancers (CRCs)
(Morson, 1968). Most CRCs are thus believed to arise from pre-
existing adenomatous polyps. Most of these benign precursor
lesions are of polypoid, protruding origin (Muto et al, 1975);
however, many investigators have reported flat and depressed
neoplasias (FDNs) as a new type of precursors of CRC and propose
that these tumours develop through a de novo pathway, as they are
not associated with adenoma components (Bedenne et al, 1992;
Iishi et al, 1992; Kudo, 1993; Minamoto et al, 1994b; Konishi et al,
1999; Rembacken et al, 2000; Saitoh et al, 2001). Flat-depressed
neoplasias are characterised by a higher potential of malignancy
than protruding neoplasias (PNs) (Kudo, 1993). Small nonpoly-
poid cancers have particularly greater aggressiveness than poly-
poid cancers of equivalent size (Minamoto et al, 1994b).

Genetic alterations in the adenoma–carcinoma sequence com-
prise two groups (Kinzler and Vogelstein, 1996). The major group is

characterised by a mechanism associated with loss of heterozygosity
(LOH), which accounts for a significant proportion of tumour
suppressor gene (adenomatous polyposis coli (APC) or p53)
inactivation (Baker et al, 1989; Powell et al, 1992). Additionally,
mutational activation of KRAS has been found in about 40% of
colorectal neoplasias (Bos et al, 1987; Forrester et al, 1987). This
group accounts for at least two thirds of all CRCs. Another group of
cancers exhibits a high frequency of DNA microsatellite instability
(MSI) caused by inactivation of DNA mismatch repair (MMR) genes
such as hMLH1 (Bronner et al, 1994). Inactivation of this gene,
which resulted from bialleleic hypermethylation of the promoter,
leads to destabilisation of simple DNA repeat sequence in colorectal
tumours (Cunningham et al, 1998; Herman et al, 1998). Tumour
suppressor gene inactivation occurs as a consequence of the state of
microsatellite instability.

Some molecular differences between FDNs and PNs have been
reported. Mutational activation of KRAS is a rare event in FDNs,
compared with PNs (Fujimori et al, 1994; Minamoto et al, 1994a;
Yamagata et al, 1994; Yashiro et al, 2001). There are also distinct
differences in chromosomal changes between FDNs and PNs
(Richter et al, 2003). However, no significant difference in
incidence has been observed for somatic mutations in APC and
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p53 (Olschwang et al, 1998; van Wyk et al, 2000). Thus, molecular
analysis of FDNs is important for achieving a better understanding
of the mechanism in the development of CRCs.

The Ras/Raf/MEK/mitogen-activated protein kinase (MAPK)
(MEK is the MAPK or extracellular signal-related kinase (ERK)
kinase) cascade mediates cellular response to growth signals
(Peyssonnaux and Eychene, 2001). Somatic mutations of the Ras
gene, leading to activation of this signalling pathway and malignant
transformation, are frequently observed in protruding tumours
(Fujimori et al, 1994; Minamoto et al, 1994a; Yamagata et al, 1994;
Yashiro et al, 2001; Chan et al, 2003). Davies et al (2002) have
reported the presence of BRAF mutations in human cancers such
as melanomas, colorectal, and ovarian cancers. BRAF mutations in
these cancers are oncogenic. BRAF proteins, Ras-regulated kinase,
phosphorylate MEK1 and MEK2, which in turn phosphorylate
MAPK-ERK 1/2. The activated version of BRAF, at least in part,
promotes cell proliferation by signalling through MEK and ERK
(Davies et al, 2002). Moreover, BRAF mutations occur in a mutually
exclusive relationship with KRAS mutations, and are closely related
to the carcinogenesis of sporadic CRCs with high-frequency MSI
(MSI-H) (Rajagopalan et al, 2002; Wang et al, 2003).

Recently, molecular characteristics of serrated adenomas (SAs)
are reported to be different from those of nonserrated neoplasia.
BRAF mutations are frequently observed in SAs or hyperplastic
polyps (Chan et al, 2003; Kambara et al, 2004; Konishi et al, 2004).
However, it remains unknown whether BRAF mutations or the
status of phosphorylated MAPK (p-MAPK) are the contributors to
the tumorigenesis of FDNs, a new type of precursors of CRC. Thus,
we evaluated these statuses between flat-depressed and protruding
nonserrated neoplasia.

The aim of this study was to investigate the incidence of BRAF
mutations in a sizable number of FDNs and its implication for
KRAS mutations, for MSI, and for the immunohistochemical status
of p-MAPK, and to compare these genetic and immunohisto-
chemical characteristics of FDNs with PNs as controls.

MATERIALS AND METHODS

Subjects

A total of 46 FDNs from 44 patients who underwent endoscopic
(N¼ 33) or surgical resection (N¼ 13) at Showa University
Hospital between April 1998 and January 2004 were used for this
study. A series of 57 endoscopically or surgically resected PNs
were used as controls. We excluded patients who had familial
adenomatous polyposis, hereditary nonpolyposis colorectal can-
cers, or hyperplastic polyposis, and patients with sporadic SAs.
Specimen collection procedures and genetic analysis were approved
by the ethical committee of Showa University School of Medicine.

Macroscopic criteria

Macroscopically, each neoplastic lesion was classified as an FDN or
a PN, according to the modified criteria described previously
(Konishi et al, 2003). Briefly, FDNs were defined as slightly
mucosal elevations with a flat or slightly rounded surface and a
height of less than half of the diameter of the lesions, usually
consisting of dysplastic mucosal thickness less than twice that of
the adjacent nondysplastic mucosa by histology. Flat-depressed
neoplasias were subclassified into flat or depressed neoplasias,
depending on whether a depressed component was present.
Protruding neoplasias were defined as protruding lesions with or
without stalks (sessile, semipedunclated, or pedunculated lesions).

Histological evaluation

Serial sections (3 mm) were cut from paraffin blocks, and prepared
for hematoxylin –eosin (HE) staining and immunostaining. All

HE-stained sections were reviewed by a single pathologist (YH),
who was blinded to the colonoscopic findings. Dysplastic mucosal
lesions were classified as adenomas. When tumour cells had spread
through the muscularis mucosa into the submucosa, the lesion
was defined as a carcinoma. According to the criteria described
previously (Konishi et al, 1999), tumour location was classified
into three groups: rectum, left-colon (left-c), and right-colon
(right-c). Other histopathological features were determined
according to the general rules of the Japanese Research Society
for Cancer of the Colon and Rectum (Japanese Research Society for
Cancer of the Colon and Rectum, 1997).

DNA preparation

To extract genomic DNA, five adjacent sections (5-mm thick) were
obtained from an archival block of formalin-fixed, paraffin-
embedded tumour tissue for each macroscopic type. One section
was stained with HE, and the percentage of tumour cells was
estimated microscopically. The extraction of genomic DNA was
described previously (Yamamoto et al, 2003). If representative
tumour samples contained less than 80% tumour cells, separate
samples were obtained from the histological slide for tumourous
or adjacent normal tissue using laser-capture microdissection,
as described previously (Yamamoto et al, 2003). DNA samples
from normal colonic mucosa (frozen or formalin-fixed tissue) or
peripheral blood were used as normal controls for molecular
analysis.

Mutations in BRAF and KRAS

Primers for exons 11 and 15 were used to evaluate BRAF mutations
(Davies et al, 2002; Chan et al, 2003). These primers included the
region of mutation ‘hot spots’ previously identified in this gene.
PCR amplification of exon of a KRAS-containing codon 12 or 13
was performed using previously described primers (Brose et al,
2002). Mutational screening of the BRAF and KRAS genes was
performed by direct sequencing methods, as previously reported
(Makino et al, 2000). The PCR products were separated by
electrophoresis on 2% agarose gels and eluted with GenElutet
Minus EtBr Spin Columns (Sigma, Saint Louis, MO, USA). The
purified sample was sequenced using an automated sequencer. All
mutations were reconfirmed by independent PCR reactions and
sequencing.

Analysis of MSI

PCR was performed to amplify DNA samples from the tumours
and the adjacent normal tissues using an established PCR protocol
(Konishi et al, 2004). Five microsatellite loci analysed in this study
were BAT25, BAT26, D2S123, D5S346, and D17S250 (Boland et al,
1998). Tumours showing novel peak patterns were evaluated as
MSI positive. A single observer (HN) performed the MSI analysis,
and positive or equivocal samples were re-evaluated by a second
observer (KN). A tumour sample was considered to contain high-
frequency MSI (MSI-H) if two or more of the five informative
markers demonstrated instability, and was considered to have
low-frequency MSI (MSI-L) when only one marker was unstable
(Boland et al, 1998). All PCR reactions were repeated on the same
sample and only consistent changes in the duplicate reactions were
scored as abnormalities.

Immunohistochemical staining and evaluation of p-MAPK

Deparaffinised and rehydrated sections were heated in a micro-
wave oven in sodium citrate buffer (pH 6.0) for 30 min to retrieve
antigens. Endogenous peroxidase activity was inhibited by
incubation with 3% hydrogen peroxide for 5 min. Sections were
incubated overnight with polyclonal anti-phospho-p44/42 MAPK
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antibody (Anti-ACTIVE MAPK pAb; Promega, Madison, WI, USA)
at 41C. This specifically recognises the dually phosphorylated,
active form of MAPK (p44/ERK1 and p42/ERK2). The working
dilution was 1 : 300. Sections were then incubated with horseradish
peroxidase-binding amino-acid polymer for 30 min (Histofine
Simplestain MAX-PO kit, Nichirei, Tokyo, Japan). Colour was
developed by staining with a diaminobenzidine solution. Sections
were lightly counterstained with haematoxylin.

Each immunostained section was examined under a light
microscope and evaluated for the nuclear staining (Figure 1A)
twice by a senior pathologist (MT) who did not have any
knowledge of the clinical and molecular analysis of those samples.
At the present, there are no validated criteria for evaluating
immunohistochemical staining for p-MAPK; therefore, we used a
grading system for evaluating p-MAPK staining based on staining
distribution. The dysplastic or normal mucosa glands were divided
into three equal areas (upper, middle, and lower). P-MAPK-
positive cells were classified into three types (Figure 1): type A,
localised within the upper area only; type B, localised in the upper
and middle; type C, localised in the upper through lower. We
analysed the immunostaining of p-MAPK separately in tumour
and adjacent normal tissue. Unfortunately, two paired PNs and
adjacent normal mucosa, and five samples of adjacent normal
mucosa were not informative for p-MAPK immunostaining,
because of the small amounts of tissue in the blocks.

Statistical analysis

Mann– Whitney U-test, w2 test, and Fisher’s exact test were used
for statistical analysis. A value of Po0.05 was considered
significant.

RESULTS

There were no significant differences in gender, age, family history
of CRC, location, size, or histology between the two macroscopic
types. The incidence of accompanying adenoma in the Duke’s type
A carcinomas was lower in the FDNs than in the PNs (four out of
17 and 12 out of 13, respectively; P¼ 0.0002 by Fisher’s exact test)
(Table 1).

BRAF mutations were detected in four out of 46 of FDNs
(9%) and none of the 57 PNs. This difference was statistically
significant (P¼ 0.0369 by Fisher’s exact test). Three BRAF
mutations were found in exon 15 and two were in exon 11
(Table 2). One tumour had BRAF mutations in both exons. Two
exon 15 mutations observed in depressed neoplasias were the
conversion of valine to glutamic acid at codon 599. The remaining
findings were novel mutations, P452T (exon 11) in two tumours
and T588I (exon 15) in one tumour. Of the four FDNs with BRAF
mutations, no BRAF mutation was detected in the adjacent normal
mucosa.

KRAS mutations were observed in none of 46 FDNs and 14 out
of 57 of PNs (25%). There was significant difference in the
incidence of KRAS mutations between FDNs and PNs (P¼ 0.0002
by Fisher’s exact test). All but one KRAS mutation was detected in
codon 12 of the KRAS gene (Table 2).

For the MSI analysis, MSI-H was shown in seven out of 44 FDNs
(16%) and in one out of 52 PNs (2%). This incidence of MSI-H
differed significantly between FDNs and PNs (P¼ 0.022 by Fisher’s
exact test). MSI-L was shown in 16 out of 44 FDNs (36%) and in six
out of 52 PNs (12%: P¼ 0.0066 by Fisher’s exact test). Of the seven
FDNs with MSI-H, four were adenomas and three were Duke’s type
A carcinomas, whereas one PN with MSI-H were adenomas. BRAF
mutations were found in one out of seven FDNs with MSI-H (14%)
and in three out of 37 FDNs without MSI-H (8%). However, these
differences were not statistically significant. No KRAS mutation
was observed in any PN with MSI-H.

The p-MAPK protein was detected immunohistochemically in
all samples to a variable extent. Type B and C immunostaining for
p-MAPK was observed in 34 out of 46 FDNs (72%), compared with
24 out of 55 PNs (44%). This difference was statistically significant

Figure 1 Immunohistochemical staining of phosphorylated mitogen-
activated protein kinase (p-MAPK). (A) Nuclear expression in a colonic
neoplasia. (B) In type A, p-MAPK-positive cells were localised within the
upper area of the adjacent normal mucosa (� 10). (C) In type C, p-MAPK-
positive cells were localised in the upper, middle through lower area of the
tumour (� 10).
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(P¼ 0.0022 by w2 test). However, about 80% of the adjacent normal
mucosa showed type A p-MAPK expression. There was no
significant difference in the incidence of type A p-MAPK

expression in the adjacent normal mucosa between FDNs and
PNs (34 out of 46 and 42 out of 50, respectively; P¼ 0.2241 by w2

test).
We compared the clinicopathological and molecular character-

istics between neoplasia with type A and with type B/C
immunostaining of p-MAPK (Table 3). In the FDNs, type B/C
expression of p-MAPK was observed significantly more frequently
in Duke’s A carcinomas than in the adenomas (P¼ 0.0338 by
Fisher’s exact test). We observed no significant difference in the
incidence of type B/C immunostaining of p-MAPK between FDNs
with and without BRAF mutations. In contrast, type B/C
immunostaining for p-MAPK was detected more frequently in
large (X10 mm) than small (o10 mm) PNs. This size-related
difference was statistically significant (P¼ 0.0265 by Fisher’s exact
test). Type B/C immunostaining of p-MAPK was demonstrated
more frequently in PNs with KRAS mutations than without KRAS
mutations (P¼ 0.0272 by Fisher’s exact test).

DISCUSSION

BRAF status has been examined in a variety of human
malignancies. BRAF mutations have been reported in approxi-
mately 10% of CRCs (Davies et al, 2002; Rajagopalan et al, 2002;
Fransen et al, 2004). However, the status of the BRAF gene in the
precursor lesions of CRCs has not been thoroughly explored, and
there is morphological heterogeneity in the oncogenesis (Shimoda
et al, 1989). Flat-depressed and protruding adenomas may be the
precursors to cancers arising de novo and to polypoid cancers,
respectively. To our knowledge, this is the first study of the
mutational status of BRAF in terms of the morphological
characteristics of colorectal nonserrated neoplasias. Protruding
neoplasias have a significantly higher frequency of KRAS mutation
than flat neoplasias, despite the similarity of the tumour size
(Fujimori et al, 1994; Minamoto et al, 1994a; Yamagata et al, 1994;
Yashiro et al, 2001). We identified four FDNs (9%) with mutations
in BRAF, but no PNs with the mutations. By contrast, KRAS
mutations were observed in none of FDNs and in 25% of PNs.
BRAF and KRAS mutations were mutually exclusive in the

Table 1 Clinicopathological characteristics of patients with flat and
depressed neoplasias, and protruding neoplasia

FDNs (N¼ 46) PNs (N¼ 57) P-value

Gender
Male/female 34/10 34/16 0.3159*
Mean age (year) 66.1 65.4 0.7001**
(Range) (41–85) (32–82)

Family history of CRC
Present 4 3 0.3158*
Absent 35 45
Unknown 5 2

Location
Left-c and rectum 17 26 0.3575*
Right-c 29 31

Size
o10 mm 14 23 0.2970*
X10 mm 32 34

Macroscopic type
Flat 27 NA
Depressed 19

Histology
Adenoma 29 44 0.1161*
Dukes’ A carcinoma 17 13

Accompanying adenoma in Dukes’ A carcinoma
Present 4 12 0.0002***
Absent 13 1

FDNs¼ flat and depressed neoplasias; PNs¼ protruding neoplasias; CRC¼ colo-
rectal cancers; NA¼ not applicable. *P-value calculated by w2 test; **P-value
calculated by Mann–Whitney U-test; ***P-value calculated by Fisher’s exact test.

Table 2 Characteristics of colorectal neoplasias with BRAF or KRAS mutations

Sample Location Size (mm) Histology Sequence change Codon Amino-acid substitution p-MAPKa

BRAF mutations
DN A 25 Dukes’ A 1796 T-A 599 V-E B
FN D 10 Adenoma 1354 C-A 452 P-T A
FN T 11 Adenoma 1763 C-T 588 T-I C
DN T 8 Adenoma 1354 C-A 452 P-T A

1796 T-A 599 V-E

KRAS mutations
PN A 12 Adenoma 35 G-T 12 G-V B
PN A 3 Adenoma 35 G-C 12 G-A A
PN D 9 Adenoma 35 G-A 12 G-D B
PN S 8 Adenoma 35 G-C 12 G-A C
PN A 32 Adenoma 35 G-T 12 G-V B
PN S 35 Adenoma 35 G-A 12 G-D A
PN A 50 Adenoma 35 G-T 12 G-V B
PN C 40 Dukes’ A 34 G-T 12 G-C A
PN R 30 Dukes’ A 35 G-A 12 G-D B
PN A 7 Adenoma 35 G-C 12 G-A B
PN T 40 Dukes’ A 35 G-A 12 G-D A
PN T 12 Adenoma 35 G-A 12 G-D B
PN T 30 Adenoma 35 G-A 12 G-D B
PN R 35 Adenoma 38 G-A 13 G-D B

aEvaluating systems for immunohistochemical staining for p-MAPK are described in Materials and Methods. P¼ positive immunostaining; N¼ negative immunostaining; FN¼ flat
neoplasia; DN¼ depressed neoplasia; PN¼ protruding neoplasia; R¼ rectum; S¼ sigmoid; D¼ descending; T¼ transverse; A¼ ascending colon; C¼ cecum; Dukes’ A¼Dukes’
A carcinoma; p-MAPK¼ phosporylated mitogen-activated protein kinase.
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morphologically distinct nonserrated neoplasias (FDNs and PNs,
respectively).

The mutational spots of BRAF gene cluster within the activation
segment (exon 15) and the G-loop (exon 11) of the kinase domain,
which are highly conserved among serine/threonine kinases
throughout evolution. In our series, all of the mutations in exon
15 of BRAF observed in depressed neoplasias (DNs) involved
conversion of valine to glutamic acid at codon 599 (V599E). This
V599E mutation is a ‘hot spot’ mutation of colorectal cancers, as
well as other human cancers (Davies et al, 2002; Rajagopalan et al,
2002; Wang et al, 2003; Yuen et al, 2003; Domingo et al, 2004;
Fransen et al, 2004; Koinuma et al, 2004). Although we need more
extensive analysis, V599E mutations might contribute to tumor-
igenesis in DNs. The other non-V559 mutations detected here
were the novel mutations, P452T (exon 11) and T588I (exon 15), in
CRCs. This T588I mutation may be associated with increased
MAPK activity because the tumour with this mutation showed a
type B and C expression of p-MAPK protein.

Continuous activation of the MAPK signalling pathway is of
critical importance for the development of CRCs. P-MAPK forms
(phosphorylated ERK1 and ERK2) translocate to the nucleus to
modulate gene expression through the activation of transcriptional

factors (Peyssonnaux and Eychene, 2001). Nuclear staining was
observed here as a positive reaction for p-MAPK protein, and type
B and C immunostaining of p-MAPK was frequently observed in
the FDNs or PNs. The incidence of type B and C immunostaining
of p-MAPK was significantly higher in the FDNs than in the PNs.
Thus, abnormal accumulation of p-MAPK protein is more likely to
be associated with the tumorigenesis of FDNs than of PNs.

Mutational activation of BRAF or KRAS gene signals act through
the classical MAPK cascade to promote proliferation (Davies et al,
2002). We found that type B/C expression of p-MAPK was more
frequently observed in PNs with a KRAS mutation. Therefore, the
mutational type of KRAS might activate the MAPK pathway more
strongly than the wild-type KRAS (Vojtek and Der, 1998). Type B/C
immunostaining of p-MAPK was observed more frequently in the
large PNs than in small PNs. The KRAS gene mutation frequency in
colorectal polyps increases in proportion to their size (Vogelstein
et al, 1988). Of the 14 PNs with KRAS mutations in this series, 11
(79%) were adenomas. Thus, derangement of the MAPK signalling
pathway may be an early, size-dependent event in the tumorigen-
esis of PNs, and correlates to the status of KRAS mutation. On the
other hands, there was no significant difference in the incidence of
type B/C immunostaining of p-MAPK between FDNs with and
without BRAF mutations. Type B/C immunostaining of p-MAPK
was more common in Duke’s A carcinomas than in adenomas of
FDNs. This implies that abnormal accumulation of p-MAPK
protein may be a critical event in the tumour progression of FDNs,
independently of BRAF mutations.

Our immunohistochemical data suggest that alterations of the
MAPK pathway are important for the development of FDNs, but
may also highlight new therapeutic strategies for dealing with
CRCs that arise from FDNs. As more than 70% of FDNs show
positive immunostaining of p-MAPK, this signalling pathway may
play an important role in the tumorigenesis of FDNs. Many have
reported CRCs arising from FDNs or nonpolypoid neoplasias
(Shimoda et al, 1989; Bedenne et al, 1992; Iishi et al, 1992; Kudo,
1993; Minamoto et al, 1994b; Konishi et al, 1999; Rembacken et al,
2000; Kaneko et al, 2004). Therefore, inhibition of either p-MAPK
or related molecule might be a new therapeutic strategy to treat
these CRCs. CI-1040 (PD184352) is highly selective inhibitor of the
MAPK signalling cascade specifically targeting the inhibition of
MEK (Delaney et al, 2002). Antitumour activity was found to
correlate with CI-1040-mediated inhibition of phosphorylated ERK
levels. However, BRAF mutations are infrequent in FDNs. More-
over, no significant mutations in ARAF or RAF-1 have been found
in CRCs (Fransen et al, 2004). However, the Raf-MEK-ERK
pathway is regulated via the interaction with and modulation of
the function of a wide range of signalling proteins (English et al,
1999; Zimmermann and Moelling, 1999; Kolch, 2000). Therefore,
further investigation is required to clarify what leads to the
tumour-specific expression of p-MAPK in FDNs.

We found MSI-H in seven of 44 FDNs (16%) but in only one of
52 PNs (2%). Of the seven FDNs with MSI-H, four were adenomas
and three were Duke’s A carcinomas. Olschwang et al (1998)
reported that eight out of 36 flat colorectal neoplasias showed
MSI-H (22%). The frequency of MSI-H in that series did not differ
with regard to the histological type. However, Yashiro et al (2001)
observed no significant difference in the incidence of MSI-H
between flat-type and polypoid-type cancers (four out of 25 and
zero out of 25, respectively). Selection of tumour samples may
explain this difference. In our series, 41% of FDNs showed
depressed type morphology and about two-thirds of FDNs were
10 mm or more in diameter. However, they also suggested that
some flat neoplasias may progress to de novo cancers with LOH at
chromosome 3p, the location of hMLH1, and this could explain the
onset of MSI-H as an alternative mechanism to hypermethylation
of the promoter of hMLH1. Previous studies (Rajagopalan et al,
2002; Wang et al, 2003; Domingo et al, 2004; Koinuma et al, 2004)
have reported that BRAF mutations occur more frequently in

Table 3 Expression of phosphorylated MAPK in flat-depressed and
protruding neoplasias compared with clinicopathological and molecular
characteristics

Expression of p-MAPK

FDNs (N¼ 46) PNs (N¼ 55)

Type
A

Type
B/C P-value

Type
A

Type
B/C P-value

Location
Left-c and rectum 3 14 0.4893* 13 12 0.5514**
Right-c 9 20 18 12

Size
o10 mm 3 11 0.7294* 16 5 0.0265*
X10 mm 9 23 15 19

Macroscopic type
Flat 9 18 0.3071* NA
Depressed 3 16

Histology
Adenoma 11 18 0.0338* 23 19 0.7561*
Dukes’ A carcinoma 1 16 8 5

BRAF mutation
Mut+ 2 2 0.2758* 0 0 NA
Mut� 10 32 31 24

KRAS mutation
Mut+ 0 0 NA 4 10 0.0272*
Mut� 12 34 27 14

MSIa

MSS/MSI-L 11 26 0.6532* 30 19 40.999*
MSI-H 1 6 1 0

Evaluating systems for immunohistochemical staining for p-MAPK are described in
Materials and Methods. aThe numbers for MSI reflect the numbers of cases among
the informative cases. p-MAPK¼ phosphorylated mitogen-activated protein kinase;
FDNs¼ flat and depressed neoplasias; PNs¼ protruding neoplasias; Left-c¼ sigmoid
and descending colon; Right-c¼ transverse, ascending colon, and cecum; Mut+¼
presence of mutation; Mut�¼ absence of mutation; MSI¼microsatellite instability;
MSS¼microsatellite stable; MSI-L¼ low-frequency MSI; MSI-H¼ high-frequency MSI;
NA¼ not applicable. *P-value calculated by Fisher’s exact test; **P-value calculated
by w2 test.
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microsatellite-unstable than in microsatellite-stable CRCs. How-
ever, we observed no significant difference in the incidence of
BRAF mutations between FDNs with and without MSI-H.

In summary, BRAF and KRAS mutations were mutually
exclusive in the morphological characteristics of colorectal
nonserrated neoplasias. High-frequency microsatellite instability
was significantly more frequently seen in FDNs than in PNs.
Therefore, it is possible that some FDNs with BRAF mutation or
MSI-H progress to de novo type cancers (ie, flat or depressed
cancers without accompanying adenoma). Abnormal accumula-
tion of p-MAPK protein seems to be more frequently implicated in
the tumorigenesis of FDNs than that of PNs. However, this
accumulation was significantly correlated with the incidence of
KRAS mutations in PNs, but not to that of BRAF mutations in

FDNs. Derangement of the MAPK pathway in FDNs might occur
via the genetic alteration other than BRAF or KRAS mutation.
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