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� Multi-dimensional analysis of clinical inputs used to generate mortality risk scores.
� AutoTriage 12 h mortality prediction achieves an AUROC of 0.88.
� Sensitivity of 80% at a specificity of 81% with diagnostic odds ratio of 16.
� Outperforms MEWS, SOFA and SAPS II for mortality prediction, with an accuracy of 80%.
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Background: Clinical decision support systems are used to help predict patient stability and mortality in
the Intensive Care Unit (ICU). Accurate patient information can assist clinicians with patient management
and in allocating finite resources. However, systems currently in common use have limited predictive
value in the clinical setting. The increasing availability of Electronic Health Records (EHR) provides an
opportunity to use medical information for more accurate patient stability and mortality prediction in
the ICU.
Objective: Develop and evaluate an algorithm which more accurately predicts patient mortality in the
ICU, using the correlations between widely available clinical variables from the EHR.
Methods: We have developed an algorithm, AutoTriage, which uses eight common clinical variables from
the EHR to assign patient mortality risk scores. Each clinical variable produces a subscore, and combi-
nations of two or three discretized clinical variables also produce subscores. A combination of weighted
subscores produces the overall score. We validated the performance of this algorithm in a retrospective
study on the MIMIC III medical ICU dataset.
Results: AutoTriage 12 h mortality prediction yields an Area Under Receiver Operating Characteristic
value of 0.88 (95% confidence interval 0.86 to 0.88). At a sensitivity of 80%, AutoTriage maintains a
specificity of 81% with a diagnostic odds ratio of 16.26.
Conclusions: Through the multidimensional analysis of the correlations between eight common clinical
variables, AutoTriage provides an improvement in the specificity and sensitivity of patient mortality
prediction over existing prediction methods.

© 2016 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There is a need for accurate prediction of mortality risk and
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patient deterioration in the Intensive Care Unit (ICU) [1]. Advanced
warning of patient deterioration is crucial for timely medical
intervention and patient management, and accurate risk assess-
ment aids in the allocation of limited ICU resources. Clinical Deci-
sion Support Systems (CDSS) have been used in the ICU for
predicting patient outcome and to score the severity of patient
condition [2e4]. The vastmajority of predictionmodels currently in
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use are based on aggregate baseline patient characteristics. These
systems usually rely on a weighted linear combination of features,
such as age, type of admission, and vital sign measurements.
However, the most commonly used CDSS such as the Modified
Early Warning Score (MEWS) [5], the Sequential Organ Failure
Assessment (SOFA) [6], and the Simplified Acute Physiology Score
(SAPS II) [7], have suboptimal specificity and sensitivity when
applied to patient mortality prediction [2]. These CDSS assessments
assume that risk factors are independent from one another, and,
therefore, they are not sensitive to the underlying complex ho-
meostatic physiologies of patients. Additionally, they do not ac-
count for variations in individual patient physiologies and trends in
Fig. 1. Patient inclusion flowchart.

Table 1
Demographics of patient population over 18 years of age in the MICU of the MIMIC

Demographic overview Characteristic

Gender Female
Male

Age
Median 64, IQR (51e78)

18e29
30e39
40e49
50e59
60e69
70þ

Length of Stay (days)
Median 2.1, IQR (1.2e4.1)

0e2
3e5
6e8
9e11
12þ

Death During Hospital Stay Yes
No
patient information.
The increasing prevalence of Electronic Health Records (EHR)

provides an opportunity to extract clinically relevant patient vital
signs and laboratory results for increased predictive value in pa-
tient outcome [8]. In the ICU, a variety of relevant clinical mea-
surements are available with high frequency and present a wealth
of information regarding patient status and trends. Some recent
studies have attempted to use these EHR data and trends to
improve patient mortality predictions with computational algo-
rithms, with some success [9e11]. In particular, analyses of time
interval motifs have led to accurate predictions, and we build on
this previous work in this study [12]. We present here a compu-
tational approach called AutoTriage, which not only utilizes patient
clinical variables including vital signs, but also analyzes the corre-
lations and trends between these measurements to provide infor-
mation about patient stability. Using correlations among clinical
variables allows us to achieve improved accuracy of patient sta-
bility prediction, using only eight very common measurements.
AutoTriage provides an all-cause mortality prediction score 12 h in
advance for ICU patients.

2. Methods

2.1. Data set

We used a dataset of 9683 patient records from the Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMIC) III data-
base [13], which were selected according to the patient exclusion
process depicted in Fig. 1. This subset consisted of anonymized
clinical documentation of adult patients admitted to the Beth Israel
Deaconess Medical Center (BIDMC) Medical Intensive Care Unit
(MICU), with a variety of chief complaints (Table 1). The Institu-
tional Review Boards of BIDMC and the Massachusetts Institute of
Technology waived the requirement for individual patient consent,
as the study did not impact clinical care and all data were de-
identified.

Inclusion criteria for this study were:

I. Adult (i.e. age �18 years) admitted to the MICU.
II. Documented length-of-stay and survival for at least 17 h and

fewer than 500 h following admission. The cutoff of 17-h
observation was chosen to allow 12-h advance prediction
based on at least 5 h of data. The limit of 500 h was chosen to
reduce memory usage and the time cost of computations.

We utilized dynamic physiological measurements with a one
hour timeresolution. Specifically, we used heart rate, pH, pulse
III database (20,108 total hospital admissions).

Number of ICU stays Percentage

10,176 48.29%
10,896 51.71%
984 4.67%
1328 6.30%
2421 11.49%
3717 17.64%
4147 19.68%
8475 40.22%
13,646 64.76%
4057 19.25%
1301 6.17%
685 3.25%
1383 6.56%
18,821 89.32%
2251 10.68%
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pressure, respiration rate, blood oxygen saturation, systolic blood
pressure, temperature, and white blood cell count. These eight
measurements were chosen due to the practical considerations of
implementing a stability recommendation tool in a clinical setting
and to facilitate comparison of our results with MEWS, SAPS II, and
SOFA, which also rely on similar inputs. In particular, these mea-
surements were chosen because they are commonly available in
the ICU, ensuring that our predictions are up-to-date and less
susceptible to missing data. We selected the variables used here
because of their frequency (measured often) and their prevalence
(measured for most of the patients in the population), as well as
their relevance to patient stability and outcome.

2.2. Gold standard

Our gold standard was in-hospital mortality. This gold standard
definition classified 1574 patients as having in-hospital deaths and
8109 patients as survivors, resulting in a prevalence of 16.26% in-
hospital mortality.

The partitioning was done with a built-in MATLAB (MathWorks,
Natick, MA, R2014a) function, which randomized the patient ICU
stays being placed in each group based on their ICU stay identifi-
cation number (ID). In the MIMIC-III database, ICU stay IDs were
assigned to patients with randomized medical record numbers to
meet the HIPAA Privacy Rule in de-identified clinical data.

2.3. Binning, feature construction, and score assignment

We allocated individual measurements into bins - categories
based on ranges of numerical values. For example, one bin would
contain heart rate values between 80 and 90, a second bin would
contain values between 90 and 100, and so on. By grouping mea-
surements into bins, we were able to estimate the likelihood of in-
hospital death associated with measurement ranges and consider
the likelihood of death associated with multiple kinds of mea-
surements together. The effect of two- and three-variable combi-
nations of these binned measurements on mortality risk was
assessed. Each variable and each combination of binned measure-
ments thus produces a subscore indicating a contribution to the
risk of in-hospital death, and the subscores were combined to
produce the overall score.

The time-parameterized sequences of measurements were used
to calculate the corresponding trends for themeasurements of each
patient. Trends were considered to be features in the same way as
the measurements from which they were calculated. In other
words, for each pair of adjacent hours with a blood pressure mea-
surement, we calculated a corresponding change in blood pressure,
and both the measurements and changes were correlated with in-
hospital death. For hours without an updated value of a given
measurement, the value was taken to be the most recent value
available, and trends were calculated from this imputed value.

At any time, we use 5 h of data to calculate our mortality score.
For this retrospective study, we chose to make predictions at a time
12 h prior to the patient's discharge or death. These parameters can
be easily adjusted, and in prospective implementation the param-
eters for the initial data calculation window and subsequent alert
windows can be set to the clinician's preference. For this imple-
mentation, we required 17 h of patient data to be able to generate
an alert at 12 h prior to patient death or discharge, after the 5-h
data gathering window.

Custom MATLAB scripts were used to correlate measurements
and their trends with the in-hospital death gold standard out-
comes. For example, we calculated the correlations between bins of
blood pressure, heart rate, and respiration rate individually with in-
hospital death, as well as for pairs (one bin from eachmeasurement
in the pair) and triplets (one bin from each measurement in the
triplet). Each individual, pair, and triplet of measurements or trends
was then weighted with a numerical value from 0 to 1, with higher
weights given to groups of measurements or trends that were more
highly correlated with in-hospital death. After this step, weights
were fixed.

In order to scale and combine the weights of features from in-
dividual, pairs, and triplets of measurements or trends to best
predict patient outcomes, we performed a logistic regression. First
the weights of individual measurements were summed and, like-
wise, the weights of individual trends, pairs of trends, and triplets
of trends were summed. These sums were then scaled and com-
bined according to the following equation to form AutoTriage scores
which best reflected the patient outcomes from a training set.

Mortality score ¼
X

i2G

aiPi

The coefficients ai were chosen by an algorithm tomaximize the
area under the training set receiver operating characteristic curve,
and the Pi represent the correlations between measurement
groupings and mortality [14,15]. The index, i, runs through all
possible groupings of singlets, pairs, and triplets of measurements
and trends.

2.4. Generating MEWS, SAPS II, and SOFA scores for comparison

MEWS scores were calculated over time for each patient by
referencing theMEWS heuristic table, similar to the binning step of
AutoTriage score generation. SAPS II and SOFA scores were generated
using open source severity score calculation code accompanying
the MIMIC III database [16]. We chose to compare our algorithm's
performance with just three disease severity scores for clarity of
presentation. The most commonly used disease severity scores
employ tabulations of vital signs and physiological measurements
to achieve patient mortality predictions. There are many potential
comparators, such as APACHE II, the Mortality Probability Model
(MPM), the Multiple Organ Dysfunction Score (MODS), Logistic
Organ Dysfunction System (LODS), the National Early Warning
Score (NEWS), and Rapid EmergencyMedicine Score (REMS).While
differing in the exact clinical measurements used, each of these
scoring systems tabulates vital signs and clinical measurements
independently of one another and without calculating the time-
based trajectories of these variables. Despite the differences in
the precise measurements utilized, these linear scoring systems are
broadly similar in their results [17,18].

3. Results

AutoTriage 12 h mortality prediction on the test set is shown in
Fig. 2, yielding an Area Under Receiver Operating Characteristic
(AUROC) value of 0.88 (95% confidence interval 0.86 to 0.88). Four-
fold cross validation results in similar AUROCs. In comparison,
MEWS, SAPS II and SOFA calculations on the same data set yield an
AUROC of 0.75, 0.71, and 0.72, respectively.

Table 2 shows a comparison of the sensitivity and specificity for
AutoTriage and the most commonly used disease severity scores.
For a MEWS � 3, a range often used to indicate patient distress, the
sensitivity is only 66% with a specificity of 74%, whereas an AutoT-
riage score threshold of�2 demonstrates an improved sensitivity of
80% while maintaining a higher specificity of 81%. If all scores are
measured at a comparable sensitivity above 75%, AutoTriage shows
marked improvement in specificity as well as all other measures for
accuracy and predictive value.

In Fig. 3 we represent the distribution of patients across the



Table 2
Comparison of AutoTriage performance with commonly used disease severity scores
for the prediction of 12 hmortality in theMedical Intensive Care Unit. PPV¼ positive
predictive value, NPV¼ negative predictive value, DOR¼ diagnostic odds ratio. SAPS
II¼ Simplified Acute Physiology Score, SOFA ¼ Sequential Organ Failure Assessment,
MEWS ¼ Modified Early Warning Score.

AutoTriage
(�-2)

SAPS II
(�21)

SOFA
(�6)

MEWS
(�2)

MEWS
(�3)

AUROC 0.88 0.71 0.72 0.75 0.75
Sensitivity 0.80 0.76 0.76 0.78 0.66
Specificity 0.81 0.51 0.53 0.59 0.74
PPV 0.44 0.23 0.24 0.27 0.33
NPV 0.95 0.92 0.92 0.93 0.92
DOR 16.26 3.35 3.59 5.01 5.41
Accuracy 0.80 0.55 0.57 0.62 0.73

Fig. 3. Patient distribution across AutoTriage score for survivors and non-survivors. The
vertical line represents an AutoTriage score of �2.

Fig. 2. Receiver Operating Characteristic (ROC) curves for 12-h mortality prediction in
the Medical Intensive Care Unit for AutoTriage, Modified Early Warning Score (MEWS),
Sequential Organ Failure Assessment (SOFA), and Simplified Acute Physiology Score
(SAPS II). A MEWS of at least 3 has a specificity of 74% and a sensitivity of 66%, whereas
an AutoTriage threshold of �2 at a similar specificity of 81% has a sensitivity of 80%.
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AutoTriage score for survivors and non-survivors. The vertical line
represents the threshold of AutoTriage ¼ �2, which represents a
sensitivity of 80% and a specificity of 81%. Adjusting the threshold
to a lower value will flag additional patients at risk but increase the
number of false positive alarms.

Additional information about patient stability is provided by the
duration of their time above a distress threshold. Setting an
AutoTriage threshold above �2 identifies patients in distress for
longer consecutive periods of time prior to death than MEWS � 3.
The distribution of continuous hours above threshold shows more
at-risk patients identified, and for longer periods, than standard
disease severity scores (Fig. 4). The increased duration between the
AutoTriage threshold crossover and the eventual patient decom-
pensation provides earlier warning and greater intervention op-
portunity for a significant fraction of patients.

Fig. 5 shows the increase in AUROC as a function of time,
Fig. 4. Distribution of consecutive hours of threshold breach prior to death for
AutoTriage � �2 in black, and Modified Early Warning Score (MEWS) � 3 in red.(For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Area under receiver operating characteristic for AutoTriage as a function of time
preceding in-hospital death in the Medical Intensive Care Unit.
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calculated over the time distribution of patient data. The predictive
power of the algorithm increases as the patients' vital signs
continue to destabilize. As expected, models trained for prediction
of in-hospital death nearer the time of death are increasingly
informative.

4. Discussion

We have previously applied multidimensional analysis of pa-
tient measurements and trends to predict stability and recommend
discharge [14], and for early detection of sepsis [19] and septic
shock [20]. Here, we have shown that a similar framework can also
identify patients at risk for in-hospital death. AutoTriage is designed
to detect imbalances in homeostasis through the analysis of cor-
relations between patient vital signs and clinical measurements
over time. These correlations are used to flag irregularities which
are indicative of the loss of feedback mechanisms designed to keep
the individual in homeostasis. While these correlations and trends
are meaningful and accurate at identifying impending patient
distress, it does not provide relevant clinical information to
deconstruct thesemeasurements to single values of the component
vital signs. The score provided by AutoTriage is an all-factor mor-
tality risk score incorporating available information into an early
warning of patient decompensation.

AutoTriage represents an improvement on the accuracy of
mortality prediction in the ICU over current severity scoring mea-
sures in use. Using only eight commonly available clinical variables
we analyze the correlations between pairs and triplets of mea-
surements over time to produce an accurate assessment of
impending patient deterioration 12 h before death. This provides
the opportunity for appropriate medical intervention or patient
management in a timely manner. AutoTriage can accommodate the
types and frequencies of measurements available in any given
setting. The eight measurements we have used in this study could
be substituted or observed less frequently without producing
substantial changes in performance. This is because the features
used in AutoTriage incorporate the natural redundancy amongst
clinical variables and their correlations, and so are relatively robust
to variations in the types and frequencies of measurements. Of
course, the quality of mortality prediction will degrade if sufficient
information about patient condition is not provided.

In this retrospective study, AutoTriage demonstrates improved
accuracy, specificity and sensitivity over the commonly usedMEWS,
SAPS II, and SOFA scores in the prediction of patient mortality (Fig. 2
and Table 2). The increase in PPV for AutoTriage to 44% from 23 to
33% for other methods means fewer false alarms, and thus could be
useful in reducing alarm fatigue and increasing the confidence in
the need for intervention for patients determined to be at risk. PPV
is skewed to be relatively low for all scores because it depends on
the prevalence of the condition being measured in the population
and mortality is a rare event. However, AutoTriage does result in a
substantial improvement of the PPV over commonly used predic-
tion methods and the quality of AutoTriage predictions are further
vetted by the strong diagnostic odds ratio (DOR). The DOR – the
ratio of the probability that a patient is predicted positive when
they are positive to the probability that a patient is predicted
positive when they are not – increases to 16.26 for AutoTriage. The
DOR is particularly important when evaluating prediction quality
for mortality prediction, since it is not affected by the low preva-
lence of mortality, unlike the PPV. The accuracy of AutoTriage
significantly improves over other methods, indicating overall
improved metrics for mortality prediction 12 h in advance of
mortality. In addition, compared to MEWS, AutoTriage is able to
continuously maintain an alarm for patients in distress for sub-
stantially longer (Fig. 4).
The cutoff threshold for AutoTriage scores that was used to
generate the tabulated performance metrics was chosen to main-
tain high sensitivity without inducing a high false alarm rate [21].
This was illustrated in Fig. 3 by comparing the score distribution of
all patients with that of at-risk patients. To maximize specificity, a
relatively small fraction of at-risk patients will go undetected 12-h
pre-onset. However, for each hour that passes, these patients are
increasingly detectable in our framework (Fig. 5).

Because AutoTriage utilizes only common, frequently measured
patient clinical variables, we anticipate a more seamless real-time
integration of the AutoTriage algorithm into a hospital's existing
EHR system. This retrospective study has shown the efficacy of the
predictive algorithm on banked patient data. However, in future
work, we intend to test AutoTriage in a prospective validation study
at multiple clinical sites. AutoTriage is designed to continuously
sample and analyze patient measurement correlations automati-
cally, and be able to alert clinicians to a deteriorating patient's state.
In implementation, the algorithm can be trained on each unit's
population for maximum accuracy, and the thresholds of alerts can
be set to clinician's preferences in order to reduce alarm fatigue
while maintaining meaningful vigilance over each patient's sta-
bility. This additional, automatically generated information of the
correlations of clinical variables is intended to be a valuable
contribution to the understanding of the patient's ongoing health
trajectory.

Limitations of our study include a retrospective design and the
use of a single center cohort. Our performance may be over-
estimated because the training and testing were executed on par-
titions of the same data set. In the future we would like to test the
performance of the algorithm on data from different medical cen-
ters. Also in future studies we would like to validate the AutoTriage
algorithm prospectively in multiple hospitals. Demographic and
institutional differences could result in AutoTriage performance
variability. Different measurements or missing data may affect
performance. However, these differences can be handled by
retraining the algorithm on a retrospective data set from each
center prior to implementation in order to increase the effective-
ness of predictions. Additionally, while this study required that
patients have at least one observation of each measurement, pre-
liminary tests indicate that our results are robust when faced with
several of the measurements missing entirely, indicating potential
flexibility in the data requirements. Together, these limitations call
for future validation studies against demographically varied patient
populations from different institutions.

AutoTriage leverages multidimensional analysis across diverse
time-series inputs to provide earlier and more reliable warning of
patient deterioration than existing scoring systems. These pre-
dictions are made using a sparse set of frequently measured and
widely available patient measurements. While AutoTriagewas used
to identify at-risk patients, we believe that its underlying frame-
work could be applied to the prediction of other patient outcomes
and empower clinicians to respond more effectively to patients
with impending critical conditions.
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