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Abstract

Background

Tuberculosis (TB) disease reactivates from distant latent infection or recent (re)infection.

Progression risks increase with age. Across the World Health Organisation Western Pacific

region, many populations are ageing and have the highest per capita TB incidence rates in

older age groups. However, methods for analysing age-specific TB incidence and forecast-

ing epidemic trends while accounting for demographic change remain limited.

Methods

We applied the Lee-Carter models, which were originally developed for mortality modelling,

to model the temporal trends in age-specific TB incidence data from 2005 to 2018 in Taiwan.

Females and males were modelled separately. We combined our demographic forecasts,

and age-specific TB incidence forecasts to project TB incidence until 2035. We compared

TB incidence projections with demography fixed in 2018 to projections accounting for demo-

graphic change.

Results

Our models quantified increasing incidence rates with age and declining temporal trends.

By 2035, the forecast suggests that the TB incidence rate in Taiwan will decrease by 54%

(95% Prediction Interval (PI): 45%-59%) compared to 2015, while most age-specific inci-

dence rates will reduce by more than 60%. In 2035, adults aged 65 and above will make up

78% of incident TB cases. Forecast TB incidence in 2035 accounting for demographic

change will be 39% (95% PI: 36%-42%) higher than without population ageing.

Conclusions

Age-specific incidence forecasts coupled with demographic forecasts can inform the impact

of population ageing on TB epidemics. The TB control programme in Taiwan should develop

plans specific to older age groups and their care needs.
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Introduction

In 2018, tuberculosis (TB) was still the top infectious killer in the world [1]. The End TB strategy

aims at a 90% reduction in TB incidence rate by 2035 compared with 2015, but the current global

rate of decline of around 2% per year is not on track to achieve this [2]. Latent TB infection risk

accumulates over lifetimes while TB transmission is ongoing. The prevalence of latent TB infection

is highest in older age groups [3], who not only have had the longest exposure, but were often

exposed to higher TB transmission rates in the past. ageing, with associated higher rates of pro-

gression [4], thus acts as a demographic driver towards higher per capita TB incidence [5]. In the

Western Pacific region, many countries have their highest per capita TB incidence rates among

older age groups [1]. Among Western Pacific region countries, China, Hong Kong (China), Japan,

Korean, Singapore, and Taiwan are facing both high TB burden and population ageing[6,7].

The age profile of future TB incidence is critical for forecasting public health needs and

rational policy design [8]. First, older populations will have higher TB (and background) mor-

tality rates [9,10], which implies added difficulty in meeting treatment success targets. Sec-

ondly, older adults have more comorbidities and more complex health care needs, which may

lead to a longer care-seeking process and higher healthcare expenditure per case. For instance,

patients with chronic lung diseases may have signs or symptoms overlapping with TB, making

correctly diagnosing their TB slower and more costly [11]. Thirdly, the proportion of TB cases

in older age groups should inform policy making, for example suggesting integrating TB care

entry points into long-term care programmes, or through clinician training highlighting older

people as a TB risk group with their own diagnostic and management challenges [11].

Quantitatively forecasting the TB incidence age profile needs combined models forecasting

demographic change and statistical forecasts of age-specific TB incidence. However, a time

series analysis producing age-specific forecasts of the TB incidence has not been published to

our knowledge. Use of autoregressive integrated moving average models, often including the

seasonality of TB incidence is more common [12], and comoving time series analysis has been

applied [13] without age-specific information. Age-specific TB incidence modelling, including

the use of age-period-cohort models, has been undertaken but without producing epidemic

forecasts (e.g. Iqbal et al. [14] and Wu et al. [15]). Mechanistic mathematical modelling, with

age structure, also has the potential to generate forecasts [5,16–18]. Indeed, Arregui et al. [18]

developed forecasts for the effects of demographic change on TB epidemics, focussing on four

relatively young countries; our interests are in developing statistically rigorous time-series

approaches and in focusing on an example of a much older population.

In many settings, the demographic transition and population ageing are outpacing declines

in TB incidence, so methods to understand and forecast the impact of changing demography

on TB epidemics are needed. We, therefore, developed a statistical method capturing age-spe-

cific incidence trends and forecasting future epidemics while accounting for demographic

change so more methods to understand and forecast the impact of changing demography on

TB epidemics are needed.

Materials and methods

Setting and data sources

TB incidence in Taiwan has steadily declined from 64 confirmed TB cases per 100,000 in 2007

to 41 per 100,000 in 2017. Since 2005, the proportion of TB cases in Taiwan over 65 years of

age has been over 50% and increasing. Between 2007 and 2017, the average age in Taiwan

increased from 36 to 40, and the proportions of adults above 65 rose from 10% to 14% [7].

Notification data of culture-confirmed TB cases, excluding foreigners, were obtained from

the Taiwan Center for Disease Control surveillance system. Counts were reported by age
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group, sex, month, and county. Ages were reported as (0–4, 5–9, . . ., 65–69, 70+) years. The

demographic data were obtained from the Department of Statistics, the Ministry of the Inte-

rior, Taiwan. These data included the mid-year population estimators, deaths, migration in

single-year ages, and fertility in five-year age groups (15–19, . . ., 45–49). We used data in

2005–2018 as a training set. The demographic data from 2005 to 2017 were collected for the

population demographic modelling (a shorter period because of the release schedule). All the

training data in this article were published by the Taiwan officials and free access on the inter-

net; the usage is licensed by the Open Government Data License: [https://data.gov.tw/license].

Importantly, we assumed no case detection gaps existed during the time frame covered by

this article. We, therefore, regard “TB notification” and “TB incidence” as synonymous with

the number culture-confirmed tuberculosis cases notified during a specific period.

Age-specific incidence modelling and forecasting

We considered annual incidence rates by age and sex. The incidence rates by age groups and sex

were calculated as the yearly notification counts divided by corresponding mid-year population

estimates. Females and males were analysed separately with the same parameterisation. We mod-

elled the incidence rates using Lee-Carter Models (LCMs) [19] formulated with age and time-

varying terms. The LCMs were initially designed for mortality rate modelling, where they now

predominate. Estimation, forecasting, bootstrapping methods for LCMs are well-developed.

We performed a likelihood-based LCM estimation, and also the comparable Poisson

regression [20]:

logðEðincident casesage;yearÞÞ ¼ aage þ bagekyear þ logðpopulationage;yearÞ

, where E(.) is expectation function, year 2 {2005,. . .,2018} is the calendar year, αage is age effect

term, κyear is period effect term, and βage is coefficients adjusting period effects for different

age groups, and age 2 {0−4,5−9,. . .,70+} represents the age categories. To maintain identifia-

bility, we imposed the constraints Syearκyear = 0 and Sageβage = 1. We followed the fitting proce-

dure provided by Brouhns et al. [20] for likelihood maximisation.

Two nested Poisson models, one using an age-profile and a discrete period effect, i.e αage +

κyear, and another using an age-profile and a linear effect, i.e. αage + year × κ, were used as com-

parators. Akaike information criterion (AIC), Bayesian information criterion (BIC), and log-

likelihood were considered as goodness of fit metrics. The definitions of these metrics were

identical to the ordinary Poisson regression model [21]. See S1 Appendix for the details of the

LCM specification in our approach.

For forecasting, inspired by the Lee-Carter demographic forecasting, we used Autoregressive

Integrated Moving Average models with drift [22], constructed from the LCM period effects. In

forecasting, the death and birth processes applied semiparametric bootstrap sampling [23].

Population modelling and forecasting

We constructed a synthetic population with birth, death and migration processes. The demo-

graphic methods adapted from those used in the Taiwan National Development Council’s popula-

tion projection report [7]. The demography was modelled by single age (0–100 years old) and sex.

Mortality forecasting used the Lee-Carter model [19] below 84 years of age; and we used the

Coale-Kisker method [24] for those aged over 85 years in death rate modelling as it was found to

have a better reliability for small sample sizes in inferring of death rates. The birth forecasting used

the fertility rates of women in childbearing ages, from 15 to 49, with a modified LCM [25]. For

consistency with incidence forecasting, semiparametric bootstrap sampling was used for deaths

and births [23]. The Migration process was modelled by linear regression with age effects and a
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linear trend; the forecasting applied residual bootstrap sampling with the age-specific parameters

seen in 2017. The forecasts were used for the next step by aggregating to the age groups as that of

the incidence data. See S2 Appendix for the detailed methodology of the synthetic population.

Forecasting overall TB incidence

The TB incidence model and the demographic model were built independently. Forecasts of age-

specific TB incidence were weighted by forecasted population demography to obtain forecasts of

per capita TB incidence for the whole population. TB incidence was calculated as per 100,000

rates by given strata. TB incidence rate reductions were calculated with respect to the incidence

in 2015 and presented as percentages. For simplicity, some results were presented with age groups

of 0–14, 15–34, 35–64, and above 65. In forecasting, the 95% prediction intervals and mean values

were computed from 10,000 bootstrap samples. Uncertainty was propagated from every submo-

del. To compare with the global reduction target of the End TB strategy [2], we forecasted the

incidence until 2035. The milestones of 2020, 2030 and 2035 of the End TB strategy of percentage

reductions in per capita TB incidence from 2015 were used as intermediate outcomes.

Incidence attributable to demographic change

We performed a scenario analysis to clarify the potential impact of demographic change.

While forecasting the age-specific TB incidence to 2035, we kept the population size and age

structure fixed as it was in 2018. This TB incidence was compared against values including

projected changes in population structure by computing the fraction of total TB incidence

attributable to demographic change in each year as (I1,year−I0,year)/I1,year, where I1,year and I0,year

are the incident cases with and without demographic change respectively and is the calendar

year. This corresponds to the definition of population attributable fraction [26].

All the analyses were performed using R 3.5 [27] and analysed/visualised by R package

StMoMo, TSA, ggplot2 [28–30]. All analysis code is available at [https://github.com/

TimeWz667/AgeingTB].

Results

Incidence modelling

Fig 1 shows the estimators of the Lee-Carter models of the incidence data. The age effect esti-

mators (αage) suggested the baseline incidence rates increase with age. In both sexes, the higher

levels in age groups older than fifteen years correspond to higher TB incidence rates. The

point estimators of age-period adjustments (βage) showed no specific trend. However, there are

large uncertainties for all estimates pertaining to under 15-year age groups due to the small

numbers of notifications observed. The period effect estimators (κyear) had nearly constant

slopes with calendar years. Fig 1 also demonstrates the forecasting of period effects with 95%

prediction intervals: prediction intervals of both sexes grew at a constant rate with calendar

time. Table 1 shows the goodness of fit of the LCMs, the nested age-period Poisson models,

and age-trend Poisson models. In AIC, BIC and log-likelihood on the training data, the LCM

result is preferred over the other two although it costs a higher degree of freedom. See S3

Appendix for the details of the goodness of fit, and residuals plots.

Population forecasting

Fig 2 shows the demographic change from 2005 to 2035. In Fig 2A, the population will reach a

maximum of 23.6 million in 2023, and will start shrinking to 23.2 million in 2035. The propor-

tion of the population aged over 65 is increasing across the period and will reach 27% in 2035.
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Fig 1. Lee-Carter model fitting and forecasting of the TB incidence. (Data: 2005–2018, Forecasting: 2019–2035). 95% confidence

intervals of estimators and prediction intervals of forecasts were calculated through bootstrapping with 10,000 sample size.

https://doi.org/10.1371/journal.pone.0222937.g001
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The proportion of the population aged under 15 is declining to around 11%. Fig 2B compares the

age structure of the Taiwanese population in 2018 and 2035, highlighting the population ageing.

Incidence forecasting and age structure

Fig 3 demonstrates the trends of the population TB incidence rate and TB incidence rates by age-

group (<15, 15–34, 35–64,>65). The forecast in Fig 3A suggests that the TB incidence in 2035

will be 22 (95% Prediction Interval (PI): 19–25) per 100,000. The overall incidence reduction will

reach 54% (95% PI: 45%-59%) in 2035, which is 37% short of the reduction in the End TB Strat-

egy. Fig 3B shows the age-specific incidence rates will have 60% to 80% reductions from 2015 to

2035 apart from the 5–9 group. The rate reductions in most age groups will be higher than the

forecast reduction of 44% in the whole population. Fig 3C shows the overall incidence rates by age

group as a stacked histogram. The TB incidence rates from age groups below 65 will be gradually

decreasing whereas the above 65 will nearly stay constant from 2018 to 2035. Fig 3D shows the

proportion of TB incidence in each age group. The proportion among adults aged over 65 years

will reach 68% (95% PI: 67%-69%) and 79% (95% PI: 78%-81%) in 2025 and 2035, respectively. In

2035, more than 97% of incident cases will occur among those aged 35 years or older, indeed the

contribution from cases under 15 years is nearly invisible in Fig 3C and 3D.

Impact of demography on TB incidence

Fig 4 shows the forecast incidence rates with and without demographic change. In the scenario

without demographic change, the forecast suggests that the incidence in 2035 will be around

13 per 100,000 compared to 23 with demographic change and the 90% reduction target of 4.5

per 100,000. The 95% prediction intervals for forecasts with demographic change continuously

expand year by year, whereas without demographic change they converge to a constant width

within five years. Table 2 shows the impact of demographic change. Up to 2020, TB incidence

rates will have 23% and 27% reductions with and without demographic change respectively.

Considering demographic change, the incidence rates are projected to reduce by 54% (95% PI:

45%-59%) from 2015 to 2035; without demographic change, the reduction will be 72% (95%

PI: 67%-76%). In both scenarios, the trends of incidence rates showed diminishing reductions

to the time scale. In both scenarios, the declines in incidence rates slowed over time. Compar-

ing the forecasts with dynamic and fixed demography suggested that 39% (95% PI: 36%-42%)

of incident TB cases in 2035 will be attributable to demographic change.

Discussion

A substantial proportion of tuberculosis (TB) incidence in Taiwan is among people aged over

65 years. Social and economic development typically bring reductions in TB incidence but also

Table 1. Summary of model comparison.

Age-Trend Age-Period Lee-Carter Model

Model family Poisson Regression

Period effect Linear Discrete

No. observations 420

No. parameters 32 56 84

Log(Likelihood) -1855 -1819 -1682

AIC 3773 3751 3531

BIC 3902 3977 3871

AIC: Akaike information criterion, BIC: Bayesian information criterion

https://doi.org/10.1371/journal.pone.0222937.t001
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reduced birth and death rates and population ageing. This study provides a novel investigation

into the potential impact on TB incidence from population ageing using statistical modelling

and forecasting. Current trends of TB incidence decline and demographic change suggest TB

incidence rates in Taiwan will decrease to 25 per 100,000 by 2035. This represents a 45% reduc-

tion since 2015, missing the End TB goal of 90% reductions in TB incidence rates. We have

shown that higher age-specific incidence rates in older age groups can mean that population

ageing acts against reductions in TB rates, with TB incidence in 2035 projected to be 39%

higher than without demographic change.

Previous studies have employed statistical methods either to forecast TB incidence,

[12,13,31,32] or to analyse patterns by age using age-period-cohort models, [14,15] but we are

the first study to statistically forecast age-specific TB incidence. Some transmission modelling

studies [16,18] have explored issues related to age-structure, and Arregui et al. [18] generated

forecasts. However, the fitting in Arregui et al. was not likelihood-based and did not use age-spe-

cific TB data, and so could not evaluate age-specific goodness of fit for TB projections or com-

pare alternative models with conventional metrics. We made novel use of Lee-Carter models

(LCMs), [19,22] which employ an elegant low-dimensional decomposition of age-specific rates

to model trends and overall shape. LCMs were originally introduced for mortality rate modelling

and are now the dominant approach, but have been applied elsewhere. Within demography,

Hyndman [25] and Rueda-Sabater and Alvarez-Esteban [33] used LCMs to forecast the fertility

rates, and Cowen [34] fitted LCMs to abortion rates. Kainz et al. [35] modelled chronic kidney

disease prevalence as rate data, and Yue et al. [36] modelled cancer incidence and mortality.

However, we are the first to apply LCMs to TB, finding they fitted better than Poisson Age-

Period models. Our approach offers a generalizable and easily-implemented method for fore-

casting age-specific TB incidence and the impact of demographic change on total TB incidence.

In our model fitting results, the age effects (αage) demonstrated the TB incidence rates posi-

tively correlated with age in both females and males. The period effect estimators (κyear) were

Fig 2. Demographic change. (Data: 2005–2017, Forecasting: 2018–2035).

https://doi.org/10.1371/journal.pone.0222937.g002
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almost linear despite not assuming linearity in the LCM formulation. The declines may reflect

improvements in infection control and case detection, and the declining latent TB prevalence

in each age group. Improvements in infection control and case detection both reduce the force

of infection that will induce further TB incidence. Latent TB prevalence depends on cumula-

tive lifetime infection risks, and therefore on the history of active TB prevalence. As TB inci-

dence has been declining, the latent TB prevalence in recent cohorts will be lower than in

historical cohorts at the same age. Lastly, the age-period interaction terms (βage) were used to

demonstrate how the incidence rate reduced differently in each age group, although no overall

pattern was identified. The variance of the estimators in young people was larger because the

only around 1% of incident TB (< 100 cases every year in the recent decade) were from people

below 15 years old.

Fig 3. TB incidence rate forecasting. (A) Overall incidence rate per 100,000. In the forecasting, dashed line features the mean values and the shaded area is 95%

prediction interval. (B) Incidence rate reductions by five-year age groups during 2015–2035 with 95% prediction interval. (C) Incidence rates attributed to age groups.

(D) Proportions of age groups in Incidence cases.

https://doi.org/10.1371/journal.pone.0222937.g003
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For Taiwan and many other high-income settings, TB notifications are thought to parallel

TB incidence with only a small gap. Taiwan lacks survey data (e.g. capture-recapture studies)

to directly inform on the magnitude of this gap. In settings where this gap is larger and chang-

ing over time, interpretation of TB notification data is more problematic, and notifications

may not be a good proxy for incidence. Even in a declining TB epidemic with evolving case-

mix, it is possible that case detection may change differently over time in different age-groups;

we have not attempted to include such effects. Taiwan does not have United Nations Popula-

tion Division demographic forecasts, hence our bespoke demographic modelling. For most

nations, these forecasts could be used ‘off the shelf’. We have presented results on percentage

reductions in both per capita TB incidence rates and in total TB incidence (e.g. Table 2), which

are similar because of Taiwan’s small projected population change over the period considered;

this may not be true in all settings.

The decline in TB incidence in Taiwan probably has multiple contributory causes, includ-

ing improvements in TB control, socio-economic development, and the reductions in the

prevalence of latent TB as a result of declining transmission. For an infectious disease like TB,

reduced transmission can amplify and sustain over time changes in underlying causative fac-

tors, complicating their analysis. The low TB rates in children aged under fifteen may reflect

Fig 4. TB incidence with and without demographic change. Ribbons show 95% prediction intervals.

https://doi.org/10.1371/journal.pone.0222937.g004

Table 2. Summary of reductions in TB incidence with and without demographic change.

Year Percentage reduction in per capita TB incidence from 2015: Percentage of total TB incidence attributable to demographic change

with demographic change without demographic change after 2018

2020 23.1% (18.2%, 27.2%) 26.6% (22.2%, 30.8%) 4.6% (1.6%, 7.5%)

2025 35.2% (27.2%, 40.7%) 47.0% (41.0%, 52.2%) 18.3% (15.5%, 21.2%)

2030 45.0% (35.9%, 50.5%) 61.6% (56.0%, 66.4%) 30.0% (27.3%, 33.0%)

2035 53.7% (44.5%, 58.9%) 72.1% (67.1%, 76.1%) 38.8% (36.1%, 41.7%)

https://doi.org/10.1371/journal.pone.0222937.t002
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low exposure to TB in this group or potentially lower rates of case detection. Our assessment

of the impact of population ageing on TB incidence and case-mix has particular current rele-

vance to many WHO Western Pacific region countries [1] and will be relevant to many more

countries and regions in the future. Our analysis could provide a template for analysts who

wish to explore issues related to future TB incidence and demography where age-specific data

are available.

Our analysis accounted for cohort propagation of latent tuberculosis infection (LTBI) in a

phenomenological way. LTBI represents accumulated lifetime risk of infection by exposure to

active tuberculosis disease. Older individuals in most settings have higher LTBI prevalence due

both to longer cumulative exposure and (in declining epidemics) exposure to a higher mean

infection rate over their lifetime. The ageing through of these LTBI positive cohorts thus gen-

erates a secular time trend in reactivation disease rates at a particular age. Our approach does

not explicitly model LTBI prevalence, because this would introduce additional parameters

and, without LTBI data, identifiability issues. However, LTBI cohort effects are accounted for

in our current approach indirectly by modelling the secular trends in age-specific incidence

rates.

Another limitation of our approach is that it would fail to account for non-linear threshold

behaviour, such as during outbreaks. However, in many high-income settings (including Taiwan),

the steadily declining tuberculosis incidence implies the net reproduction number is below one.

Extending the model by adding exogenous variables is possible. Our analysis did not

address the impact of other variables for simplicity and clarity. Important predictors could

include socioeconomic status and comorbidities such as diabetes mellitus [37]. However, pro-

jections would require additional time-series analysis to forecast these explanatory variables. It

is worth noting that according to Taiwan CDC surveillance, in 2005, 0.72% of TB cases in Tai-

wan were coded as HIV; neglecting HIV is unlikely to have impacted our results.

Older age as a risk factor for TB disease has perhaps been under-explored since age is not a

modifiable risk factor, and since in most current high-burden settings populations and the typ-

ical age of TB cases are fairly young. Our result that population ageing will act to slow declines

in TB incidence tallies with that of Arregui et al [18], obtained for different settings using very

different methods, and quantifies the magnitude of this effect. However, the importance of

older age groups to TB control is already evident in many Asian populations, [16] and this will

be an increasingly widespread facet of global TB control if reductions in incidence continue

and accelerate in the future. Older populations will also have their own particular challenges in

terms of access, diagnosis and comorbidities complicating their care. Public health planning to

develop adapted strategies for care and control to meet these changing population needs is

essential.

In conclusion, the Lee-Carter model provides a tool to project age-specific tuberculosis

incidence and hence forecast overall TB incidence while accounting for demographic change.

In Taiwan, population ageing may slow the decline of TB incidence by 39% over the period

2015–2035. TB care and control programmes will increasingly need to address the needs of

older adults, who will comprise a growing majority of the TB epidemic.

Supporting information
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