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Adiponectin (APN) is a multi-functional adipokine which sensitizes the insulin signals,

stimulates mitochondria biogenesis, and suppresses inflammation. By virtue of

these beneficial properties, APN may protect against metabolic syndrome, including

obesity and type II diabetes mellitus. Since these diseases are associated with

hypoadiponectinemia, it is suggested that loss of function of APN might be involved.

In contrast, despite beneficial properties for cardiovascular cells, APN is detrimental in

circulatory diseases, including chronic heart failure (CHF) and chronic kidney disease

(CKD). Notably, such an APN paradox might also be applicable to neurodegeneration.

Although APN is neuroprotective in various experimental systems, APN was shown

to be associated with the severity of amyloid accumulation and cognitive decline in a

recent prospective cohort study in elderly. Furthermore, Alzheimer’s disease (AD) was

associated with hyperadiponectinemia in many studies. Moreover, APNwas sequestered

by phospho-tau into the neurofibrillary tangle in the postmortem AD brains. These

results collectively indicate that APN might increase the risk of AD. In this context,

the objective of the present study is to elucidate the mechanism of the APN paradox

in AD. Hypothetically, APN might be involved in the stimulation of the amyloidogenic

evolvability in reproductive stage, which may later manifest as AD by the antagonistic

pleiotropy mechanism during aging. Given the accumulating evidence that AD and CHF

are mechanistically overlapped, it is further proposed that the APN paradox of AD might

be converged with those of other diseases, such as CHF and CKD.

Keywords: adiponectin, adiponectin paradox, chronic heart failure (CHF), Alzheimer’s disease (AD), evolvability,

antagonistic pleiotropy

INTRODUCTION

Adiponectin (APN) is a multifunctional adipocytokine that is involved in diverse biological
functions, including sensitization of the insulin receptor signaling pathway, mitochondria
biogenesis, oxidative metabolism, neurogenesis, and suppression of inflammation (Figure 1A)
(1). APN is produced mainly in adipose tissues (2). Multiple oligomerization of the 28 kDa
monomer of APN exhibits different biological properties (2). The effects of APN are mediated
through APN receptors; Adipo-R1 and -R2, and their downstream the signaling molecules, such as
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AMP-activated protein kinase, p38-MAPK and GSK-3β , sirtuin
1 and PGC-α (3), leading to modification of transcription.

Accumulating evidence suggests that APN may be beneficial
for the metabolic disorders, including obesity and type II diabetes
mellitus (T2DM). Because these diseases are characterized by
hypoadiponectinemia, it is predicted that decreased function
of APN might be attributed to the metabolic disorders. In
contrast, APN is detrimental in other chronic disorders, such as
chronic heart failure (CHF) and chronic kidney disease (CKD),
in which the increased APN in plasma has been characterized
(4). Although APN is protective for cardiovascular cell function
(5), hyperadiponectinemia is well-correlated with the severity
of circulatory diseases, including CHF and CKD (4). Such a
phenomenon is called APN paradox, the mechanism of which is
poorly understood.

Similarly, APN has also been characterized by protective and
toxic dual functions in the nervous system. Despite of cell-
and animal-based studies showing that APN was protective,
APN was correlated with the severity of amyloid accumulation
and cognitive decline in the elder population (6). Furthermore,
hyperadiponectinemia was observed in Alzheimer’s disease (AD)
similar to CHF and CKD (7). Moreover, APN was sequestered by
phospho-tau into the neurofibrillary tangle in the postmortem
AD brains (8). Thus, these results indicate that the risk of AD
might be enhanced by APN. Therefore, better understanding
of the APN paradox in AD might be important from both
mechanistic and therapeutic viewpoints.

In this paper, we discuss our hypothetical view that APN
might have a critical role in stimulation of amyloidogenic
evolvability in the reproductive stage, which may later manifest
as APN-stimulation of AD by the antagonistic pleiotropy
mechanism during aging. Given the accumulating evidence
that AD and CHF might be considerably overlapped in their
pathologies, it is further predicted that APN paradoxes in both
disease might be interactive.

NEUROPROTECTIVE AND
ANTI-NEURODEGENERATIVE ACTIVITIES
OF APN IN EXPERIMENTAL MODELS

Diverse APN Actions in the Nervous
System
Expression of the receptors of APN; Adipo-R1 and -R2,
are both abundant in the hypothalamus, particularly in
the paraventricular hypothalamus and the arcuate nucleus
(9). Consistent with these results, intracerebroventricular
administration of APN decreased body weight, mostly through
stimulating energy expenditure in a mouse model of T2DM (10).
Thus, APN might regulate energy balance and metabolism (11).

Beyond energy regulation, APN might be involved in other
functions in the nervous system. For example, APN was
neuroprotective against cytotoxicities caused by amyloid β (Aβ)
and MPP+ in vitro (12, 13). In vivo, APN protected against
kainic acid-induced excitotoxicity in hippocampus inmice brains
(14). Notably, APN might regulate neurogenesis. In support of
this notion, APN was shown to stimulate proliferation of adult

hippocampal neural stem/progenitor cells through signaling
cascades such as p38 mitogen-activated protein kinase/glycogen
synthase kinase 3β/β-catenin (15). Furthermore, it was shown
that physical exercise-induced hippocampal neurogenesis was
mediated by APN (16). Moreover, APN was neurotrophic for
dendritic arborization and spinogenesis in the dentate gyrus in
mice brains (17).

In addition to the effects of APN on
neuroprotection/neurogenesis, APN may be critical in
suppression of neuroinflammation. It has been shown that
APN might normalize the imbalance between M1 and M2
microglia (18), whereas globular APN was shown to induce
a pro-inflammatory response in astrocytes (19). Collectively,
further investigations are warranted to evaluate the in vivo effects
of APN on microglia and astrocytes.

Neurodegeneration Is Ameliorated by APN
in Mice
Given that the APN functions is diverse in the nervous
system, it is curious to know if APN might be therapeutic for
neurodegenerative disorders. Indeed, various neuropathological
features, such as protein aggregation and impaired motor activity
were ameliorated by treatment of APN in a mouse model of
α-synucleinopathies (Figure 1B) (20). Subsequently, osmotin, a
plant homolog of APN, was shown to attenuate Aβ42-induced
neurotoxicity and tau hyperphosphorylation in the hippocampus
in mice brains (21). Moreover, a recent study showed that aged
APN-knockout mice had developed characteristics of an AD-
like pathology associated with dysregulation of insulin receptor
signaling (22).

APN STIMULATES NEURODEGENERATION
IN HUMAN BRAIN

Recent cohort study of Mayo clinic showed that upregulation
of plasma APN was significantly correlated with the severities
of amyloid accumulation and cognitive decline in the elder
population (6), indicating that APN might enhance the risk
of AD. The results are surprising since the risk for AD and
vascular dementia is increased by metabolic syndrome, such as
T2DM, obesity, and atherosclerosis, and hypoadiponectinemia
is a well-characterized feature of these metabolic
diseases (4).

Increased Level of Plasma APN in AD
To date, many clinical studies in AD have shown that there
might be a positive correlation between APN and AD disease
progression. A pilot study by Une and colleagues showed
that the levels of plasma APN were significantly higher in
both mild cognitive impairment (MCI) and AD compared
to those in normal controls, and that the plasma levels of
APN were correlated with cerebrospinal-fluid levels of APN
(7). Similarly, the Framingham Heart prospective study (840
dementia-free elderly participants 299 men and 541 womes)
showed that elevated APN was a predictor for AD and other
types of dementia (23), whereby it was noted that the increase
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FIGURE 1 | Neuroprotective and neurodegenerative effects of APN. (A) Schematic of APN signaling pathway. AMPK regulates various intracellular signaling

molecules, such as sirtuin and PGC-1α, leading to stimulation of insulin sensitivity, mitochondrial biogenesis, and oxidative metabolism. APN also activates

p38-MAPK, inhibiting GSK-3β activity, leading to stimulation of neurogenesis and suppression of neurodegeneration. Modified from Waragai et al. (1) with permission.

(B) APN ameliorates neurodegeneration in a mouse model of α-synucleinopathies. Globular APN [gAPN, 0.1 mg/ml in 10 µl phosphate buffered saline (PBS)] or PBS

alone (10 µl) was given intranasally to αS tg mice (male, 3 months old) or wild-type littermates every 3 days for 2 months. Brains were analyzed

immunohistochemically (anti-phospho-αS). Representative images of the cortex and olfactory bulb are shown. Insets show a higher magnification of the cortex.

Reprinted from Sekiyama et al. (20) with permission. (C) Involvement of APN in the pathogenesis of neurodegenerative diseases, including AD and

α-synucleinopathies, including Parkinson’s disease and dementia with Lewy bodies. Immunohistochemical staining using a polyclonal anti-APN C-terminal antibody

showed strong immunoreactivity of APN in inclusion bodies; neurofibrillary tangles of frontal, parietal and temporal cortex in AD brain (upper 3 panels) and Lewy

bodies of α-synucleinopathies (lower 3 panels). Modified from Waragai et al. (8) (upper 3 panels), and Sekiyama et al. (20) (lower 3 panels) with permission. The lower

figures; HE (left) and histochemistry (middle and right), were prepared from the consecutive sections.

of plasma APN in AD was significant in women, but not
in men (23). Increased levels of plasma APN in AD were
confirmed by other studies (8, 24), whereas the lower plasma
APN was also found (25). Although the reasons for the different
results are elusive, it is possible that the APN level might be
affected by various factors, including concurrent diseases or
states that also affect APN levels. Furthermore, given that the
function of the dissociated APN may be distinct from that
of trimeric APN because of the different conformation (3),
the discrepancy of different results from population studies
might be affected by the handling of the samples or the
antibody (3).

Association of Altered Plasma APN With
Neurodegenerative Pathology
Of a particular interest, the result of large cohort study of
aging and dementia (n = 535, aged ≥ 70 years without
dementia) conducted by the Mayo Clinic Study of Aging showed
that higher plasma APN levels were correlated with imaging
data for hippocampal and cortical volumes, positron emission
tomography and cognitive deficits. Thus, the results suggest that
higher APN predicts neurodegeneration and cognitive decline in
aging (6). Notably, these results were significant in women but
not in men, consistent with the results of the Framingham Heart
Study (23). Considering that plasma APN in women is higher
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compared to that in men and the risk of AD is higher in women
than in men, it is predicted that the gender difference of APN
might in some parts contribute to the risk of AD.

Accumulation of APN in Inclusion Bodies in
Neurodegeneration
Consistent with the view that APN might be involved in the
neurodegenerative pathogenesis, histopathological analyses of
the autopsy brain of AD revealed that APN was sequestered
by tau into the neurofibrillary tangles (Figure 1C upper) (8).
Similarly, APN co-localized with Levy bodies in the brain of
dementia with Lewy bodies (Figure 1C lower) (20). Together
with the plasma data regarding APN, it is likely that increase
of APN expression may be correlated with the development
of neurodegenerative diseases, including AD and Parkinson’s
disease (PD).

MECHANISM OF THE APN PARADOX IN
AD

Currently, the mechanism of hyperadiponectinemia in
AD is unclear. In this regard, evolutionary biology might
provide an effective viewpoint. We previously discussed that
hyperadiponectinemia in AD might be a compensatory feedback
to the decreased activity of insulin/IGF-1 receptor signaling
pathway during the neurodegenerative conditions (1). As the
disease progresses, APN might be increased and sequestered by
tau, leading to neurotoxic protein aggregation in the brain of
AD (1, 8). An alternative and non-exclusive possibility is that
misfolding of APN might downregulate the insulin/APN signal
transduction network, resulting in the decrease of neurotrophic
and neuroprotective activities. Thus, it is predicted that alteration
of APN may lead to synaptic loss and neuronal cell death in AD.
Considering, however, that the sensitization insulin receptor
signaling by APN may be evolutionally beneficial, such a
compensatory mechanism may be only effective during the
reproductive stage a viewpoint of evolutional biology.

APN Stimulates Amyloidgenic Evolvabiliy?
As insulin resistance leads to hyperinsulinemia in metabolic
disorders, it is probable that APN resistance could in some parts
play a role for the hyperadiponectinemia in AD. If the APN
resistance is an only pathological phenomenon, it should have
been selected out during evolution. In fact, it has been shown
that insulin resistance is not only pathological, but may provide
evolutionary advantages through physiological functions. For
instance, insulin resistance may play an important role in
various pathophysiological states such as starvation, immune
activation, growth and cancer (26). In the similar context,
one may wonder if there might be some beneficial actions of
APN during developmental/reproductive stages, which might
manifest as AD and related diseases through the antagonistic
pleiotropy mechanism in aging. In this regard, evolvability
could be related. Based on the analogy with evolvability of
yeast prion (27–29), we recently proposed that evolvability of
amyloidogenic proteins (APs), including Aβ and α-synuclein

(αS), might be physiologically important in human brain
exposed to multiple stressors, such as hyperthermia, physical
stress, kindling and oxidative stress (30). More precisely, the
diverse β-sheet structures of the protofibrillar forms of APs
might confer the stress-resistance, namely hormesis, against the
diverse stresses in parental brains, which may be transmitted
to offspring through germ cells (30, 31). Mechanistically, we
speculate that αS, a monomer of which is unstable due to its
intrinsically disordered nature (32), might become more stable
through oligomerization, leading to formation of diverse strains
of protofibrils. Such stable αS protofibrils may be feasible for
transgenerational transmission to the offspring. By virtue of the
stress information derived from parental brains, offspring’s brain
can cope with forth-coming stresses, otherwise leading to onset
of neurodevelopmental diseases, such as schizophrenia (33).
Thus, evolvability of APs might be interpreted as the inheritance
of acquired characteristics against environmental stresses. On
the other hand, neurodegenerative diseases including AD may
manifest in parent’s brain through the antagonistic pleiotropy
mechanism in aging (31). Although the regulation of evolvabiliy
is unclear, it is assumed that stimulation of evolvability
would be beneficial. We therefore hypothesize that APN might
be critical as a stimulator of amyloidogenic evolvability in
developmental/reproductive stages, which may later manifest as
AD through the antagonistic pleiotropy mechanism in aging
(Figure 2). Thus, dual actions of APN may be attributed to the
antagonistic pleiotropy of the APN-stimulation of evolvability.

Modification of APN Stimulation on
Amyloidgenic Evolvabiliy
Notably, globular APN is structurally similarity with tumor
necrosis factor-α (TNF-α) (34). Accumulating evidence suggests
that neuroinflammation might be a double-edged sword (35).
On one hand, neuroinflammation might help to protect against
various neuronal injuries, such as infection, physical insults
and toxic chemicals during the reproduction period (35). On
the other hand, dysregulated neuroinflammation may result in
production of increased levels of pro-inflammatory cytotokines,
such as TNF-α, leading to exacerbation of neurodegenerative
diseases (36). Thus, it is possible that TNF-α and its receptors
could cooperate with APN in both evolvability in reproduction
and neurodegeneration in aging.

It is also possible that the effect of APN on evolvability might
be modulated by various factors, including steroid hormones and
cytokines. In support of this view, APN actions were stimulated
through a cross-talk with estrogen receptor signaling pathway
in breast cancer cells (37). Conversely, TNF-α was shown to
impair APN signaling, mitochondrial biogenesis, andmyogenesis
in primary myotubes cultures (38).

Experimental Approach
The effect of APN on evolvability could be evaluated using
transgenic (tg) mice model of neurodegenerative diseases. For
instance, it was recently shown that Aβ42 expression increases
host survival in a Herpes simplex virus type-1 encephalitis in AD
tg mouse model (39). It is possible that this infection model could
be a good model to evaluate this issue. According to our theory,
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FIGURE 2 | Schematic; stimulation of evolvability by APN and manifestation as diseases. APs protofibrils might be involved in the stress resistance, namely hormesis,

in parental brain. Furthermore, by virtue of the information carried by the transmission of APs protofibrils in reproduction, offspring can cope with the forth-coming

stresses in the brain to escape from neurodevelopmental diseases such as schizophrenia. Thus, the APs protofibrils may confer evolvability which is evolutionally

beneficial. However, the evolvability of APs protofibrils may increase the risk of AD through the antagonistic pleiotropy. Amyloid protofibrils/evolvability may be

stimulated by missense mutations of genes in familial AD, and by APN in sporadic AD, but suppressed by non-amyloidogenic homologous proteins such as

β-synuclein. Given the effects of CHF and CKD to increase the risk of AD in aging, these phenomena might be attributed to the stimulatory effect of APN on

amyloidogenic evolvability through cardiovascular system in the reproductive stages. APN, adiponectin; CHF, chronic heart failure; CKD, chronic kidney disease; AD,

Alzheimer’s disease; SCZ, schizophrenia.

it is predicted that the offspring derived from the AD tg mice
crossed with tg mice overexpressing APN in the brain, might
be more resistant compared to those derived from the single
tg of AD. In contrast, the offspring born from the AD tg mice
crossed with APN-knock-out mice may be vulnerable. Distinct
from evolvabilty that is a phenomenon in the reproduction stage,
an antagonistic pleiotropy is in the post-reproductive senescence,
which is specific to human (31). Therefore, mice may be not
appropriate to investigate the post-reproductive senescence.

Aβ and APN; Evolutionally Beneficial?
Finally, if Aβ and APN stimulate neurodegeneration, why these
phenomena have not been selected out during evolution? It is
unlikely that low evolutionary selection pressure in senescence
may be attributed to the persistence of Aβ in the vertebrate
genome (40). Thus, one may predict that there might be some
beneficial functions for Aβ and other APs. Since the cooperation
of APN with Aβ in evolvability is supposed to be beneficial,
this could explain why the deteriorative actions of Aβ and APN
paradox in aged brain have been persistent in evolution.

APN PARADOX IN OTHER CHRONIC
DISEASES; RELEVANCE TO
EVOLVABILITY?

APN paradox was primarily described for aging-associated
chronic diseases, such as CHF and CKD. Notwithstanding its
salutary effects on glucosemetabolism, inflammation, and several
atherosclerotic processes shown by experimental results, APN

exhibits a deleterious role on both all-cause and cardiovascular
mortality in CHF (41). Furthermore, patients with CKD are
subjected to an increased cardiovascular risk associated with
the APN paradox (42). So far, little has been known about the
mechanism of APN paradox in these diseases.

Considering that the average onsets of CHF and CKD
are in 60s (43, 44), the view of the natural selection would
not support the idea that APN might be upregulated as a
compensatory feedback to the reduced activity of insulin/IGF-1
receptor signaling pathways under the pathological conditions.
As discussed earlier, it is naturally predicted that there
might be some important physiological effects of APN during
reproductive stage, which might manifest as diseases through
antagonistic pleiotropy in the post-reproductive senescence.
Although amyloid pathology is not associated, it is intriguing
to speculate that a similar concept regarding the antagonistic
pleiotropy of APN-action in the reproductive stage could be
applicable to other chronic diseases with APN paradox, including
CHF and CKD (Figure 2).

Then, what is the physiological effects of APN in
reproduction, which later manifest as chronic diseases through
the antagonistic pleiotropy in aging? In relation to this issue,
it is worth noting that CHF and AD may be pathologically
overlapped. Indeed, it has been proposed that CHF might be
a risk factor for AD (45). Mechanistically, decreased cerebral
blood flow due to CHF may result in the dysfunction of the
neurovascular unit and an energy crisis in neurons. This may
cause the impaired clearance of Aβ and hyperphosphorylation of
tau, resulting in neurodegeneration featured with the formation
of senile plaques and neurofibrillary tangles. Furthermore,
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antihypertensive drugs targeting renin-angiotensin systemmight
attenuate incidence of AD and slow down cognitive decline in
patients with AD (46).

The overlapping pathology was also described for CHF and
PD (47). Thus, further prospective studies are warranted to
confirm these intriguing findings. One possible mechanism
accounted for the overlapping pathology of CHF and CKD
with AD in aging might be the antagonistic pleiotropy of the
stimulation of amyloidgenic evolvability by the circulating system
in reproduction (Figure 2). Such a speculationmay be reasonable
providing that the circulation may be critical for transmission
of amyloid protofibrils, especially transgenerational transmission
from parent to offspring via germ cells (30). Taken together, it
is predicted that the APN paradoxes of CHF and CKD might
be attributed to the stimulation of amyloidogenic evolvability
(Figure 2).

THERAPEUTIC IMPLICATION

Given the overlapping pathologies, including impairment of
the insulin signaling, between T2DM and AD, several T2DM-
approved drugs have been or are now tested in preclinical and
clinical settings for AD (48–54). However, the APNparadox, such
a unique phenomenon of APN action in AD, may require a novel
therapeutic strategy that is distinct from previous therapy for
metabolic synmdrome.

Differential Therapy Strategy of APN
Given that the metabolic diseases are risk factors of AD,
expression and activity of APN might be decreased in the
pre-symptomatic stage of AD. Therefore, either APN receptor
agonist or restoration of the APN expression may be effective for
protection of AD. If APN stimulates amyloidogenic evolvability,
then increased APN would be beneficial for offspring.

As for the APN receptor agonist, synthetic small-molecule
AdipoRon was isolated by screening the compound library (55).
Subsequently, AdipoRon was shown to improve metabolism in
various tissues, including liver, skeletal muscle and adipose tissue,
and to exert anti-diabetic effects at the organism level, while it
normalizes a shortened lifespan associated with obesity. Thus, it
is of interest to determine whether AdipoRon may be useful in
the pre-symptomatic stage of AD.

On the other hand, up-regulation of APN may be detrimental
in the symptomatic stage. Therefore, either APN antagonist or
reduction of APN mRNA (e.g., antisense mRNA and miRNA)
may be a differential therapy strategy. Since the trade-off effects
may be concerned, it is predicted that the switching timing of the
differential therapy strategy might be critical. If alteration of APN
is obscure, combination of other biomarkers such as dipeptidyl
peptidase 4 might be effective (56).

Antagonistic Pleiotropy May Be a Therapy
Target
Supposing that evolvability stimulated by APNmight be manifest
as AD through the antagonistic pleiotropy in aging, it is predicted

that an attractive alternate therapy strategy might focus on the
antagonistic pleiotropymechanism (Figure 2). In this regard, it is
of note that the result of genome wide association study revealed
that 2q22.3, corresponding to the genes of TGFβ/activin receptor,
linked with risks of coronary heart disease, CHF, stroke, T2DM,
cancer, neurodegenerative diseases, and mortality, suggesting
that these serine/threonine receptor signaling pathways might
be relevant to the antagonistic pleiotropy (57). Therefore, it is
predicted that modifying the TGFβ/activin receptor-signaling
pathways could be therapeutically effective for aging-associated
neurodegenerative diseases (58).

CONCLUSION

In summary, it is intriguing to note that the APN paradox
is commonly observed in aging-associated chronic diseases,
including neurodegenerative diseases and circulating diseases.
Thus, APN may be regarded as a major player in the
new field of geroscience. At present, the mechanism of
the APN paradox is elusive. Given that amyloidogenic
evolvability in the reproduction may be manifested as
AD through the antagonistic pleiotropy mechanism in
aging, it is speculated that APN paradoxes in other chronic
diseases, including CHF and CKD, might be attributed
to the stimulation of the amyloidogenic evolvability
(Figure 2).

Since APN actions are complicated, depending on the
life-stages, it is not easy to conceive that APN might
become a therapeutic target. Instead, APN could be useful
as a biomarker of AD as well as other aging-associated
chronic diseases. For this, it is possible that APN may
be combined with other disease-specific molecules in aging.
However, considering that the APN paradox occurs in the post-
reproduction senescence that is a human-specific phenomenon,
it is unlikely that rodents are appropriate as a model system
to investigate this issue of the APN paradox. Thus, there being
certain difficulties involved, further investigations are definitely
warranted for better understanding of the role of APN in
human aging.
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GLOSSARY STYLE BOX

Evolvability; Evolvability is the ability of a population of
organisms to not merely generate genetic diversity, but to
generate adaptive genetic diversity, and thereby evolve through
natural selection (59). Namely, evolvability is defined as the
capacity of a system for adaptive evolution.

Antagonistic pleiotropy; In 1957, George Williams proposed
that animals possess genes that enhance fitness early in life but
diminish it in later life and that such genes can be favored
by natural selection because selection is stronger early in life
even as they cause the aging phenotype to emerge (60). Thus,
antagonistic pleiotropy of aging is the genetic trade-off between
early life fitness and late life mortality.
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