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Abstract
The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War.
The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report,
the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic,
and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus
outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and
affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively.
Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study,
Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia,
and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class
oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs
on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan
model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class
classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained
models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall
and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian
Patient chest X-ray dataset with good accuracy.
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1 Introduction

The outbreak of coronavirus occurred in December 2019,
where China reported a cluster of unknown causes of
pneumonia cases in the city ofWuhan, Hubei province to the
World Health Organisation(WHO) [14, 30, 38]. This SARS-
CoV-2 or COVID-19 disease spread rapidly around the
world [30, 33] and considering severity, WHO announced
COVID-19 as a pandemic. Till date (5th June 2020), a
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total of 6,675,011 cases of COVID-19 have been reported,
including total 391,848 deaths worldwide [10]. Inhaling
infected droplets may spread the disease, with an incubation
period of between two and fourteen days [29]. People
with cough, shortness of breath or difficulty breathing,
fever, chills, muscle pain, loss of taste or smell, and sore
throat symptoms may have COVID-19 [9, 29]. Other less
common symptoms have been reported, such as nausea,
vomiting, or diarrhea etc. [9]. Dr. Mike Ryan, Executive
Director, WHO Health emergencies said, ”It is important
to put this on the table: this virus may become just another
endemic virus in our communities, and this virus may never
go away” on 14th May 2020 at the Geneva Virtual Press
Conference [3]. WHO suggested that rapid testing is one of
the effective measures to control the spread of SARS-CoV-2
infection [37]. Currently, Real-time reverse transcription-
polymerase chain reaction (RT-PCR) testing technique is
used for laboratory diagnosis of COVID-19 [6, 34]; however
it suffers with following three issues:
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1. Shortage of RT-PCR kits.
2. Non-urban community hospitals lack the PCR infras-

tructure to support high sample throughput.
3. RT-PCR depends on the existence of detectable SARS-

CoV-2 in the collected samples. [34].

Alternatively, it is found that Chest radiography exami-
nation can also be used for COVID-19 screening; where
X-ray images or computed tomography (CT) images are
examined by radiologists to search for visual markers
linked with SARS-CoV-2 infection. The major hallmarks of
SARS-CoV-2 infection on chest radiography imaging are
consolidative pulmonary opacities with more tendency to
involve lower lobe(s); bilateral and peripheral ground glass
appearance [5]. Pleural effusion is rare in case of COVID
infections. Due to low RT-PCR sensitivity (60%-70%), even
though negative results found, symptoms can be identified
by an analysis of CT images [16]. Use of CT images as a
diagnostic modality has following issues:

1. CT imaging devices are costly and require high level of
expertise in handling.

2. CT imaging devices are not portable; thus, there are
higher chances of human to human transmission during
patient transport due to lack of personal protective
equipment (PPE) kits available with medical staffs [26].

3. CT imaging takes more time for processing than that of
X-ray imaging.

4. High-quality CT imaging devices may not be available
in many hospitals or clinics in non-urban areas, making
timely screening of COVID-19 infections difficult.

X-rays, on the other hand, are the most common and
easily accessible radiographic examination techniques in the
clinical practices and is of great use for low cost and faster
screening of COVID-19 infections in the current epidemic
situation [25, 36].

In response to the growing coronavirus pandemic
situation and the shortage of expert radiologists, an artificial
intelligence (AI) based COVID-19 diagnostic system with
high sensitivity and specificity; without human intervention
is highly desirable for the analysis of radiography imaging
features. These AI-powered COVID-19 diagnostic systems
can make COVID-19 screening tests cheaper and real-time
mass testing effectively. Also, the chances of transmission to
the involved technicians will be reduced and the burden on
the existing limited health experts or radiologists will also
be reduced.

Considering the limitations of the existing RT-PCR
and CT based COVID-19 diagnostic techniques, in this
work, we propose a low cost, realtime, faster, scalable
DCNN model, called Corona-Nidaan for COVID-19 patient
screening using chest X-ray samples. The proposed
model is end-to-end trained with 20,907 chest X-ray

images (including synthetic images) which are collected
from the three different open-source datasets [7, 8, 20].
In our proposed model, we use Depth-wise separable
convolutional layers instead of traditional 2D convolutional
layers in order to make our model lightweight and to
reduce the computational complexity. In case of embedded
and mobile vision applications with the constrained
computational resource requirements, light-weight deep
learning models with fewer parameters plays an important
role. Our proposed model consists of total of 4.022 million
parameters, which is lower than that of 1.0 MobileNet-
224 (4.2 million parameters) [13]. This makes our model
suitable in case of on-device DNN implementation for
COVID-19 screening.

In this research, we also want to answer the following
questions: 1) How effective is the transfer-learning with
existing pre-trained DCNNmodels for detecting COVID-19
infection?; 2) Given the X-Ray image of the chest, what is
the best way to extract features related to the hallmarks of
COVID-19 disease? To find the answers to these questions,
we evaluate the performance of five different well-known
pre-trained CNN models along with the proposed Corona-
Nidaan model. It is found that Corona-Nidaan model
outperforms over the transfer-learning models and other
state of art works mentioned in recent literature. Proposed
Corona-Nidaan model and other implemented transfer-
learning based pre-trained models are publicly available at
https://github.com/mainak15/Corona-Nidaan.

To summarize, this work has four major contributions:

1. A novel light weight DCNN model titled Corona-
Nidaan is proposed that can learn the hallmarks of
SARS-CoV-2 infection from chest X-ray samples and
then detect COVID-19 cases within a second, without
human intervention.

2. The efficacy of transfer learning using pre-trained
CNNs is investigated on the chest X-ray images for
COVID-19 infection detection.

3. A simple oversampling technique is suggested to
overcome the imbalance classification problem.

4. The efficacy of the Corona-Nidaan model is also
validated against the screening of COVID-19 infected
Indian Patient chest X-ray dataset.

The remaining paper organized as follows: In Section 2, we
review the related work on chest X-Ray based COVID-19
infection detection. In Section 3, we introduce the proposed
Corona-Nidaan deep neural network architecture and its
design principles along with new minority class oversam-
pling approach. In Section 4, we present the experimental
setup, the formation of the ChestX dataset, implementation
details, detailed analysis of implemented models, compar-
ison of Corona-Nidaan with other approaches, along with
the performance of Corona-Nidaan against Indian COVID-19
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patients dataset. Section 5 states the conclusions of this
work along with the future work to be established in these
directions.

2 Related work

Recent advancements in the deep learning techniques and
the availability of large open-source medical image datasets
has enabled creation of deep neural networks to deliver
promising results without human intervention in a wide
range of medical imaging tasks, such as lung diseases
diagnosis from chest X-ray images [25, 36], breast cancer
detection [4], pulmonary tuberculosis classification [18],
diabetic retinopathy detection [11] and arrhythmia detection
[24]. Wang et al. [36] released a new front-view chest
X-ray dataset consisting of 108,948 images of 32,717
patients with 8 disease labels. The authors used transfer
learning with ImageNet pre-trained CNNs (ResNet-50,
GoogLeNet, AlexNet, and VGGNet-16) to detect 8 lung
diseases, including pneumonia. Rajpurkar et al. [25] utilized
CheXNet for pneumonia detection using the ChestX-ray14
dataset. The dataset contains 112,120 frontal chest X-ray
images. The authors achieved the F1 score of value 0.435
which is slightly more than the F1 score value (0.387) which
is achieved by using radiologist’s consultation.

Recently, several deep learning approaches are suggested
by researchers to screen and diagnose coronavirus-infected
patients using chest X-ray images. Wang and Lin et al.
[35] proposed COVID-Net, a deep learning model, and
trained the model with the COVIDx dataset consisting of
13,800 frontal-view chest X-ray images, extracted from
total 13,725 patient cases. The dataset consists of 183
COVID-19 samples, 8,066 normal samples, and 5,538
pneumonia samples are obtained from the three different
open-access datasets. Although the authors achieved 92.6%
test accuracy in three-class classification, it is found that
the model exhibits high false negative rate for COVID-19
class and large number of trainable parameters. Hemdan
et al. [12] employed transfer learning with ImageNet
pre-trained CNNs for COVID-19 detection and reported
good performance of VGG19 and DenseNet121 compared
to other pre-trained CNN models. However, we found
that these CNN models are fine-tuned with only 25
COVID-19 and 25 normal X-ray samples. Ozturk et al.
[22] proposed DarkCovidNet model based on DarkNet
architecture, and achieved 87.02% test accuracy in the three-
class classification. DarkCovidNet model consists of 17
convolutional layers, and the model is trained on minimal
COVID-19 samples. Due to the use of under-sampling
techniques, it is quite possible that the DarkCovidNet model
miss the important signatures of normal and pneumonia

class. Mangal et al. [19] presented the CovidAID model that
achieves 90.5% accuracy with a 100% recall for COVID-
19 screening. To tackle the imbalanced classification
problem due to limited COVID samples, the authors
considered a random subset of pneumonia data in each
batch, while training the model. However, the model suffers
with many false negative cases for the normal class.
Apostolopoulos et al. [1] analyzed the performance of
the transfer learning with pre-trained CNNs. The authors
achieved 93.48% and 98.75% classification accuracy in
three and two class classifications, respectively, against
a dataset consisting of 700 pneumonia, 224 Covid-19,
and 504 normal chest X-ray samples. Basu et al. [2]
introduced the domain extension transfer learning with a 12
layered CNN model to achieve 95.3% accuracy supporting
four-class classification into categories, Covid-19, normal,
other diseases, and pneumonia using limited number of
samples from each class. Using fixed size filter may not
capture multilevel features from the X-ray images; which is
essential for generalization capability of any CNN model.
Also, detecting COVID-19 becomes a complex learning
problem as in many cases COVID patterns may mimic non-
COVID pneumonia cases; and hence, end to end training
systems can solve such complex problems better than
suggested Domain Extension Transfer Learning (DETL)
in their paper. Oh et al. [21] employed FC-DenseNet103
to extract the lung segments from the pre-processed X-
ray images. From the extracted lung contour, the authors
generated random patches. Each patch is fed into ResNet-
18 CNN (which is pre-trained on ImageNet) to train
and classify Tuberculosis, Normal, Bacterial Pneumonia,
Viral Pneumonia, and COVID-19 infections. This model
with 11.6 million trainable parameters has achieved 91.9%
accuracy. However, the authors trained the model with a
minimal number of samples. Khan et al. [17] used 284
COVID-19, 310 Normal, 330 Bacterial Pneumonia, 327
Viral Pneumonia X-ray samples to train the model namely
CoroNet (Xception) and achieved 89.6% accuracy for three-
class classification. The computational complexity of the
model is high, and it is found that the model some times
mis-classifies Pneumonia cases as Normal. Perumal et al.
[23] utilized the extracted Haralick features from both X-ray
and CT images to trained VGG-16 CNN, and obtained 93%
accuracy. The model sometimes mis-classifies COVID-
19 as viral pneumonia, viral pneumonia as COVID-19,
and Normal as Bacterial Pneumonia. Although the authors
claimed it easy to use pre-defined CNN models to solve
COVID-19 detection problem, such predefined model
suffers with large number of trainable parameters. Also,
the suggested model by the authors requires manual pre-
processing and feature generation from input X-ray images
before feeding it to the CNN model.
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Many of these works achieved promising results in the
detection of COVID-19 infected patients using chest X-ray
images. However, most of these models are trained with
a limited number of samples (pneumonia and normal X-
ray images) to overcome the class balancing problem of
the dataset, which results in loss of essential information of
the majority classes (pneumonia and normal X-ray images).
Also, the total number of trainable parameters of the stated
models is too large to use in the embedded and mobile
vision applications. On-device DNN implementation for
COVID-19 screening may reduce diagnosis cost and
time.

In this work, we propose Corona-Nidaan DNN model
for COVID-19 patient screening using chest X-ray image
analysis along with a new minority class oversampling
approach to deal with imbalance classification problem. A
detailed experiment with five different pre-trained CNNs
is carried out to compare the performance of our model.
We analysed that both approaches can achieve comparable
performance, but the performance of the Corona-Nidaan
model is better in terms of accuracy and model complexity.
We trained and tested our model with 245 COVID-19,
8,066 Normal, 5,551 Pneumonia Chest X-ray images,
and validated our findings by medical experts of Sardar
Vallabhbhai Patel COVID Hospital, New Delhi, India.

Corona-Nidaan model can be used as an on-device DNN
for COVID-19 screening due to it’s lower complexity than
that of 1.0 MobileNet-224. Through the empirical study, we
found that our model does not suffer from too many false
positive and false negative results.

3 Proposed approach

In this section, we explain the architecture of proposed
Corona-Nidaan Model along with the Minority Class
Oversampling Approach.

3.1 Proposed Corona-Nidaanmodel architecture

Here, we propose Corona-Nidaan, a novel lightweight
deep neural network architecture, mainly inspired by the
architectural designs of InceptionV3, InceptionResNetV2,
and MobileNetV2. The overall architecture of the model
shown in Fig. 1.

The following design principles are taken into account in
designing proposed model.

1. DP1: In a CNN model, the application of multiple
different sized convolution filters to the same input can

Fig. 1 The overall architecture of the proposed model
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extract multi-level feature representations at the same
time and hence, improves the overall performance of
the model, minimizing over-fitting and computational
costs.

2. DP2: The introduction of residual connection in the
model reduces the Vanishing Gradient effect and
accelerates the model’s training speed.

3. DP3: Introduction of Depth-wise separable convolu-
tions significantly reduces model parameters and extra
computation overhead.

4. DP4: Addition of batch normalization layers to the
network has benefits, such as speed up network training,
reduce the difficulty of initial starting weights, and
introduce additional network regularization.

5. DP5: The use of Global Average Pooling before the
softmax layer is better than the fully connected layer as
it reduces the number of trainable parameters from the
network.

The proposed model consists of total 91 layers, with
forty-one depth-wise separable convolutional layers, thirty-
two batch normalization layers, five max-pooling layers,
three concatenate layers, three add layers, three activation
layers, one global average pooling layer, one dropout
layer, one input, and one softmax layer. Instead of the
traditional 2D convolutional layer, we used the deep-
wise separable convolutional layer in our network, driven
by the MobileNetV2 philosophy (refer design principle:
DP3). We used ReLU activation and the same padding
in all depth-wise separable convolutional layers. Batch
normalization is used after activation in the depth-wise
separable convolutional layer to accelerate training and
improve the generalization error of our model as opposed
to the InceptionResNetV2, which use batch normalization
before activation in each convolutional layer. The first
convolutional layer applies 64 kernels of size (7 × 7) with
stride 2 to the input image of dimension (256×256×3). The
output of this convolutional layer is given to the first batch
normalization layer and the first max pooling layer with
pool size (3×3) and stride 2. The second convolutional layer
consists of 192 kernels of size (3×3) and stride 1 connected
to the first max-pooling layer’s output. The second batch
normalization layer and the second max pooling layer with
pool size (3 × 3) and stride 2 take the second convolutional
layer’s output. The output of the second max-pooling layer
is given to the next stage of network, which is made up
of three consecutive I-blocks, as in Fig. 1. Each I-block
follows the five design principles stated earlier in order
to improve performance of the final model. The detailed
architectural design of a single I-block is as shown in
Fig. 2.

The I-block consists of thirteen depth-wise separable
convolutional layers, ten batch normalization layers, one
max-pooling layer, one concatenate layer, one add layer,
and one activation layer. This block has five parallel
paths, acting as multiple convolution kernels applied with
some pooling to the output of the previous layer or
activation at the same time (refer design principle: DP1,
DP2 and DP4). Third and fourth paths perform (1 × 1)
convolution at the initial stage to reduce dimension and
computational costs, before some costly convolutions. The
initial (1×1) convolution in the second path and the (3×3)
convolutions in the third and fourth paths extract multi-
level representations of features (as in design principle:
DP1). All paths, except the first path, use the last (1 × 1)
convolution for dimension expansion. As a result, we get
the same feature map dimension as the output dimension of
the previous layer or the activation. The max-pooling layer
of the fifth layer helps to extract low-level features from the
input. The output feature maps of the second, third, fourth,
and fifth paths are then concatenated. The concatenate layer
output is then fed to a convolutional layer with kernel size
(1 × 1) for feature dimension reduction. The path one acts
as a shortcut connection in the I-block, i.e., the output of the
previous layer added to the stacked layers’ output, which
enables residual learning (refer design principle: DP2). We
use a (1 × 1) convolutional layer in path one to match with
the output dimension of the convolutional layer after the
concatenate layer. Finally, the path one convolutional layer
output added to the output of the convolutional layer after

Fig. 2 I-blocks of the proposed model
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Fig. 3 Distribution of means of original and over-sampled COVID-19
images

the concatenate layer. ReLU activation is used in the final
activation layer of our I-block. The architecture of each
I-block can be represented as in (1).

I-block(x) = σ(f A(f P1 (x) ⊕ f Ci+12 (x)))

f P1 (x) = σ(f Ci (x ∗ wi + bi ))

f Ci+12 (x) = σ(f Ci+12 (f Con(x) ∗ wi+12 + bi+12))

f Con(x) = f P2 (x) ⊗ f P3 (x) ⊗ f P4 (x) ⊗ f P5 (x)

f P2 (x) = f b(σ (f Ci+2 (σ (f Ci+1 (x ∗ wi+1 + bi+1)) ∗ wi+2 + bi+2)))

f P3 (x) = f b(σ (f Ci+5 (f bn(σ (f Ci+4 (f b(σ (f Ci+3 (x ∗ wi+3 + bi+3))) ∗ wi+4 + bi+4)))

∗ wi+5 + bi+5)))

f P4 (x) = f b(σ (f Ci+9 (f b(σ (f Ci+8 (f b(σ (f Ci+7 (f b(σ (f Ci+6 (x ∗ wi+6 + bi+6))) ∗ wi+7 + bi+7)))

∗ wi+8 + bi+8))) ∗ wi+9 + bi+9)))

f P5 (x) = f b(σ (f Ci+11 (f b(σ (f Ci+10 (f m(x) ∗ wi+10 + bi+10))) ∗ wi+11 + bi+11))) (1)

Where, f P1 , f P2 , f P3 , f P4 and f P5 denotes five parallel
paths of the I-block; whereas i, x, b, w represents convolu-
tional layer’s index, input feature map, biases and weights
respectively. The depth-wise separable convolutional layer,
max-pooling layer, concatenate layer, add layer, batch nor-
malization, feature map addition, feature map concatenation

Table 1 Chest X-ray image’s distribution for training and testing

COVID-19 Normal Pneumonia Total

Train 7,490 7,966 5,451 20,907

Test 31 100 100 231

and ReLU are indicated using f C , f m, f Con, f A, f b, ⊕, ⊗
and σ respectively.

The global average pooling layer takes the output of
the third I-block as input (as in design principle: DP5).
After the global average pooling layer, we used a dropout
layer to avoid overfitting. The dropout layer’s output is
then fed to the three-way softmax layer to produce a
probability distribution of three class labels. Our proposed
model consists of a total of 4,021,974 parameters.

3.2 Proposedminority class oversampling approach

In most of the published dataset, it is found that the COVID-
19 class has a deficient number of samples compared
to the other two classes. This type of problem with the
distribution of training data is known as the imbalanced
class distribution. It is difficult for any machine learning
or deep learning model to obtain optimized results using
imbalanced training data. The model will not be capable
of learning the characteristics of the minority class because
the number of observations is deficient. Three of the
most popular approaches to address this problem are 1)
undersampling, 2) oversampling, and 3) synthetic sampling.
Through experimental analysis using approach one and two,
we observed that the random deletion of samples from the
majority class loses essential information and, on the other
hand, random over-sampling for the minority class (copies
of samples already available) leads to overfitting. Using
synthetic images from existing samples of the minority class
as well as standard image data augmentation techniques did
not improve proposed model’s performance. So, we come
up with a two-phase oversampling approach. In Phase one,

Fig. 4 Examples of Chest X-ray
samples taken from ChestX
dataset.

(a) Chest X ray of confirmed COVID
patient showing bilateral ground
glass opacities with prominent lower
lobe involvement

(b) Chest X ray of Non COVID pa-
tient showing bilateral consolidation
(with involvement of lower and mid
zones)

(c) Normal Chest X ray
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Table 2 Corona-Nidaan DCNN input dimension, optimization algorithm and hyperparameters

Input dimension Epochs Optimizer Initial-learning-rate ReduceLROnPlateau Batch size Early stop

256 × 256 × 3 300 Adam 0.001 Yes(0.5 factor) 8 10 patience

we generated five images (blur, sharp, blue channel, green
channel and red channel) using the Algorithm 1 for each
sample of the minority class (i.e. COVID-19).

Figure 3 shows the distribution and statistical parameters
of original and over-sampled COVID-19 images. It can be
seen that, generated over-sampled images using Algorithm 1
follows the same distribution characteristics as that of

original COVID-19 images and hence capable of handling
dataset imbalance problem effectively.

In phase two, standard data augmentation techniques
applied to each sample generated by the Algorithm 1 to
generate more sample representations for minority class i.e.
COVID cases.

4 Experiments and results

The experiments are carried out on a laptop running
Windows 10 with Intel Core i5-8300HCPU 2.30 GHz, 8 GB
memory, NVIDIA GeForce GTX 1050 Ti, Dedicated GPU
memory 4.0 GB, CUDA v10.0.130 Tool kit and CuDNN
v7.6.5.

4.1 Dataset

We trained, validated, and tested the proposed Corona-
Nidaan model on the ChestX dataset. The dataset is formed
by combining the three different open access chest X-ray
datasets 1) RSNA Pneumonia Detection Challenge dataset
[20], 2) Fig. 1 COVID-19 Chest X-ray Dataset Initiative
[7] and 3) COVID-19 Image Data Collection [8] . There
are currently 218 COVID-19 and 33 pneumonia samples
in the COVID-19 Image Data Collection dataset, and 27
COVID-19 samples are in Fig. 1 COVID-19 Chest X-
ray Dataset Initiative. The RSNA Pneumonia Detection
Challenge dataset comprises 8,066 normal samples and

Fig. 5 The overall architecture of the transfer learning model
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Table 3 Pre-trained CNNs input dimension, non-trainable layers, optimization algorithm and hyperparameters

CNNs Input dimension Non-trainable layers Optimizer Learning-rate ReduceLROnPlateau Batch size

MobileNetV2 224 × 224 × 3 100 Adam 0.001 Yes 32

VGG19 224 × 224 × 3 15 SGD 0.0001 No 32

InceptionResNetV2 299 × 299 × 3 618 SGD 0.0001 No 32

InceptionV3 299 × 299 × 3 249 Adam 0.001 Yes 32

DenseNet-201 224 × 224 × 3 481 Adam 0.001 Yes 8

5,518 pneumonia samples. After combining all the samples
from the three different datasets, our ChestX dataset
consisted of 13,862 samples of which 245 samples belong
to the COVID-19 class, 5,551 samples belong to the
pneumonia class, and 8,066 samples belong to the normal
class (examples of x-ray samples are shown in Fig. 4).

The sample distribution shows that the COVID-19 class
has a deficient number of samples compared to the other
two classes. Hence, two-phase oversampling approach is
used. In Phase one, we generated five images (blur, sharp,
blue channel, green channel and red channel) using the
Algorithm 1 for each sample of the minority class (i.e.
COVID-19).

In phase two, standard data augmentation techniques
applied to each sample generated by the Algorithm 1
with parameters set as: horizontal flip=True, rotation
range=10, zoom range=0.2, height shift range=0.1, bright-
ness range=(0.9, 1.1) and width shift range=0.1. The total
number of training samples for the minority class (COVID-
19) become 7,490 after the two-phase oversampling, in
which 1,070 and 6,420 (214× 5× 6) samples are produced
by phase one and two respectively. The distribution of the
final chest X-ray image for training and testing summarized
in Table 1.

4.2 Implementation details

Proposed Corona-Nidaan DNN is trained end to end
using the ChestX dataset. We conducted a detailed
experiment with five different pre-trained CNNs to ensure
the usefulness of transfer learning for COVID-19 cases

Table 4 Performance of the model (Fig. 5) on the ChestX test dataset
using pre-trained MobileNetV2

Precision Recall F1-Score

COVID-19 1.00 0.32 0.49

Normal 0.84 0.99 0.91

Pneumonia 0.84 0.87 0.86

Accuracy 0.85

Macro avg 0.89 0.73 0.75

Weighted avg 0.86 0.85 0.83

detection from the chest X-ray images. We implemented
Corona-Nidaan model and other transfer learning models
using Python 3.7.7, OpenCV 4.1.1, and the Keras 2.2.4
API, TensorFlow-GPU v1.14.0 backend. We have set the
weights for equally penalized under or over-represented
classes in training sets in order to overcome the imbalanced
classification problem. The implementation details of both
Corona-Nidaan model as well as other transfer learning
models (based on five different pre-trained CNNs) are
explained as:

4.2.1 Corona-Nidaanmodel

The proposed Corona-Nidaan model is end to end trained
on the ChestX dataset and optimized using Adam opti-
mizer. The X-ray images of the ChestX dataset are resized
to (256×256×3). Each pixel value of the images is rescaled
with a 1./255 factor. We used depth-wise separable con-
volutional instead of traditional 2D convolutional to reduce
the number of multiplications. In our proposed model,
all the convolutional layers activated by ReLU activa-
tion, and the final prediction layer activated by softmax acti-
vation. We employed glorot uniform kernel initializer, same
padding, and bias initialized with a constant value of 0.2 for
all depth-wise separable convolutional layers.

Fig. 6 Confusion matrix of the model (Fig. 5) using pre-trained
MobileNetV2
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Fig. 7 Line plots of categorical
cross-entropy loss and accuracy
over training epochs of the
model (Fig. 5) using pre-trained
MobileNetV2

In this study, the hyperparameters (shown in Table 2) of
the model are tuned using a manual search technique. We
performed experimental analysis using different optimiza-
tion algorithms such as Adam, AdaGrad, Stochastic Gra-
dient Descent with Momentum, and RMSProp. We found
that our proposed model with Adam Optimizer performs
well on the train and test sets. We used 0.001 as an ini-
tial learning rate, 300 epochs, and eight batch size during
training. If no improvement is observed in validation accu-
racy for two consecutive epochs, then the learning rate is
reduced by 0.5 factors by our algorithm. To reduce overfit-
ting, 40% dropout is applied to the dropout layer after the
global average pooling layer, and we adopted an early stop.
For multi-class classification, the categorical cross-entropy
loss function enhanced during training.

4.2.2 Transfer learning basedmodels

The implemented transfer learning models, are divided into
two parts 1) Convolutional base and 2) Classifier. The
convolutional base is used as a spatial feature extractor and
classifier predicts the class label based on features extracted
by CNN. The overall architecture of these models is shown
as in Fig. 5.

In this experiment, DenseNet201 [15], InceptionRes-
NetV2 [32], MobileNetV2 [27], VGG19 [28] and Incep-
tionV3 [31] are employed as convolutional base of the
model. All the CNNs are pre-trained on ImageNet. The final

Table 5 Performance of the model (Fig. 5) on the ChestX test dataset
using pre-trained VGG19

Precision Recall F1-Score

COVID-19 0.93 0.87 0.90

Normal 0.91 0.96 0.93

Pneumonia 0.95 0.91 0.93

Accuracy 0.93

Macro avg 0.93 0.91 0.92

Weighted avg 0.93 0.93 0.93

softmax layer is removed from all the pre-trained CNNs as
we want to extract features, and not predictions. The ChestX
dataset is small and different from the pre-trained model’s
dataset; in this scenario, freezing the lower level layers and
training the higher-level layer technique works well. The
non-trainable layers and the input X-ray image dimensions
of the respective pre-trained CNNs shown in Table 3.

The classifier consists of a global average pooling and
a fully connected layer with the ReLU activation function,
followed by a softmax layer. The manual search method
is employed to find the model’s hyperparameters and the
most efficient optimization algorithm. Table 3 illustrates
the model’s hyperparameter and optimization algorithm
based on the pre-trained CNNs. The fully connected layer
and the softmax layer consists of 1024 and 3 neurons,
respectively. We adopted he-uniform kernel initializer at the
fully connected layer. We set the learning rate to 0.0001
value and the batch size to the value of 32 during the training
phase of the pre-trained VGG19 and InceptionResNetV2
model. In case of other pre-trained CNNs, we set an initial
learning rate to 0.001 value and then reduced it by 0.5
factor, if the validation accuracy does not improve after two

Fig. 8 Confusion matrix of the model (Fig. 5) using pre-trained
VGG19
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Fig. 9 Line plots of categorical cross-entropy loss and accuracy over training epochs of the model (Fig. 5) using pre-trained VGG19

epochs. The batch size of the model is set to 8 in case
of pre-trained DenseNet201 model, otherwise it is set to
32 for pre-trained MobileNetV2 and InceptionV3 models.
The maximum epoch set at 300 for training the model. To
overcome overfitting problem, 1) A dropout layer with a
dropout rate of 0.4 is added after the global average pooling
layer; 2) An early stop with 10 epochs; and 3) The L2 kernel
and the bias regularizer is applied in a fully connected layer
with a weight decay of 0.001. For disease prediction from
X-ray samples, the categorical cross-entropy loss function is
enhanced. The model is optimized by using SGD Optimizer
in case of pre-trained VGG19 and InceptionResNetV2
models. Adam Optimizer is used in case of other pre-trained
CNNs during training.

4.3 Detailed analysis of implementedmodels

In this section, we present results and analysis of the both
methods, 1) transfer learning with pre-trained CNNs and;
2) End to end trained Corona-Nidaan model on the ChestX
dataset. To investigate the performance of any model, we
computed the f1-score, recall (sensitivity), and precision
(positive predictive value) for each class on the test dataset.
In the case of an imbalanced dataset, only the accuracy metric
does not reflect the model’s performance. For example, if
the majority class has 98 samples, then the model achieves
98% accuracy. However, the model is not able to detect 2%

Table 6 Performance of the model (Fig. 5) on the ChestX test dataset
using pre-trained InceptionResNetV2

Precision Recall F1-Score

COVID-19 0.55 0.39 0.45

Normal 0.82 0.94 0.88

Pneumonia 0.83 0.79 0.81

Accuracy 0.80

Macro avg 0.73 0.71 0.71

Weighted avg 0.79 0.80 0.79

of minority class samples. To evaluate the overall efficiency
of any model, we calculated the accuracy, the macro
average, and the weighted average. To visualize the perfor-
mance of these models, we plotted the confusion matrix.

4.3.1 Transfer learning basedmodels

In this section, we present our results and analysis for the
implemented transfer learning based pre-trained models on
the ChestX test dataset.

MobileNetV2: The performance of pre-trained
MobileNetV2 (Fig. 5) on the ChestX test dataset is shown
in Table 4 and the confusion matrix in Fig. 6. It can be
observed that the model achieved 85% on the test dataset,
but the recall value for COVID-19 class is only 32%,
which means that the model is very picky. The model mis-
classifies many COVID-19 cases as normal or pneumonia
cases. The line plots of categorical cross-entropy loss and
accuracy over training epochs of the model have shown in
Fig. 7. The loss plot shows that the training loss remains
flat after the 10th epoch, regardless of training, means

Fig. 10 Confusion matrix of the model (Fig. 5) using pre-trained
InceptionResNetV2
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Fig. 11 Line plots of categorical cross-entropy loss and accuracy over training epochs of the model (Fig. 5) using pre-trained InceptionResNetV2

under-fitting condition, and the model is unable to learn the
training dataset well.

VGG19: Table 5 shows the performance of pre-trained
VGG19 model (Fig. 5) on the ChestX dataset and Fig. 8
represents the confusion matrix of the model. It is clear from
the experimental results that the overall performance of the
model is good. The model obtained a test accuracy of 93%,
and the train and validation loss and accuracy are very close
to each other, showing that the model is not over-fitted (see
Fig. 9). The recall and precision values of all three classes
are quite impressive, which means low false negative, and
positive prediction rates. In this model, the COVID-19 class
achieves a precision and recall value of 93% and 87%,
respectively. From the confusion matrix, it is clear that the
model mis-classifies very few samples. The model correctly
predicts 27 samples as COVID-19, 96 as Normal, and 91 as
Pneumonia.

InceptionResNetV2 The pre-trained InceptionResNetV2
model (Fig. 5) achieved 80% test accuracy with 39% and
55% recall and precision, respectively, for the COVID-19
class, as shown in Table 6 along with low recall (79%)
rate for Pneumonia class. The model predicts around 10
false-positive and 19 false-negative cases for the COVID-19
class (Refer: Fig.10). It can be observed from the loss and

Table 7 Performance of the model (Fig. 5) on the ChestX test dataset
using pre-trained InceptionV3

Precision Recall F1-Score

COVID-19 0.48 0.94 0.63

Normal 0.83 0.85 0.84

Pneumonia 0.96 0.65 0.77

Accuracy 0.77

Macro avg 0.75 0.81 0.75

Weighted avg 0.84 0.77 0.78

accuracy plots of the model as in Fig. 11, that there is no
indication of over-fitting or under-fitting.

InceptionV3 Model performance (Fig. 5) using pre-trained
InceptionV3 is summarized in Table 7. This model achieves
an accuracy of 77% on the test dataset. From Table 7,
it can be seen that the model mis-classifies almost 35%
of Pneumonia cases during testing. The precision value
of the COVID-19 class is only 48%. The confusion
matrix (Fig. 12) shows that Pneumonia and the COVID-19
classifications suffer from high false-negative and false-
positive results. The loss and accuracy plots of the model
is shown in Fig. 13. The loss plot tells that the validation
accuracy curve is decreased to the 2nd epoch and then start
to increase again, which means that the model is over-fitted
on the training data.

DenseNet201 Pretrained DenseNet201 model (Fig. 5)
achieved an overall test accuracy of 84% as shown in
Table 8.The recall value of the COVID-19 class is very
low, i.e., only 42%. We can notice that a lot of COVID-19

Fig. 12 Confusion matrix of the model (Fig. 5) using pre-trained
InceptionV3
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Fig. 13 Line plots of categorical cross-entropy loss and accuracy over training epochs of the model (Fig. 5) using pre-trained InceptionV3

cases are misclassified as Normal or Pneumonia, as shown
in the confusion matrix in Fig. 14. The model exhibits large
false-negative results in case of COVID-19 class. The loss
and accuracy plots shown in Fig. 15 reflects the overfitting
condition against training data.

4.3.2 Corona-Nidaanmodel

Here, we present the results and analysis of the Corona-
Nidaan model on the ChestX test dataset. The f1-score,
precision, and recall for each class and the overall test
accuracy is shown in Table 9. Corona-Nidaan achieved 1)
95% overall test accuracy; 2) 94% precision and recall value
for the COVID-19 class classification; 3) 93% precision
and 98% recall for the Normal class classification; and
4) 97% precision and 92% recall for the Pneumonia class
classification. The confusion matrix in Fig. 16 shows that
the model does not suffer from too many false-negative and
false-positive results. That is an excellent indication because
high false-negative and false-positive results increase the
burden on public health services due to the requirement
for additional PCR testing. The loss and accuracy plots
indicate that the training process converged well as in
Fig. 17.

Table 8 Performance of the model (Fig. 5) on the ChestX test dataset
using pre-trained DenseNet201

Precision Recall F1-Score

COVID-19 0.81 0.42 0.55

Normal 0.85 0.96 0.90

Pneumonia 0.84 0.86 0.85

Accuracy 0.84

Macro avg 0.84 0.75 0.77

Weighted avg 0.84 0.84 0.83

4.4 Comparison of Corona-Nidaan with the transfer
learningmodels

It can be seen from the results (Refer Table 10) that the
performance of the Corona-Nidaan is always better than that
of other pre-trained models. During experimentation, it is
found that pre-trained VGG19 model outperformed other
pre-trained CNNs. Hence, in case if the dataset is small,
pre-trained VGG19 model can be used instead of other
pre-trained models.

4.5 Comparison of Corona-Nidaan with other
published approaches

In this section, we compared the Corona-Nidaan model
with other published approaches (shown in Table 11). The
proposed Corona-Nidaan model achieves 95% accuracy
on the ChestX dataset and outperforms other previously
published approaches. The dataset comprised of total 13862

Fig. 14 Confusion matrix of the model (Fig. 5) using pre-trained
DenseNet201
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Fig. 15 Line plots of categorical
cross-entropy loss and accuracy
over training epochs of the
model (Fig. 5) using pre-trained
DenseNet201

chest X-ray images which are collected from the three
different open-source image repository [7, 8, 20]. The
studies mentioned in this section have used the same
COVID-19 samples from COVID-19 Image Data Collection
[8]. Wang and Lin et al. [35] proposed the COVID-Net
deep learning model and achieved 92.6% test accuracy
in three-class classifications. Their model is trained and
tested with the same number of samples collected from
the same data sources. The overall performance of the
model is good. However, COVID-Net suffers from false-
negative results for the COVID-19 class. The COVID-Net
consists of 117.4 million parameters, which is 29 times
larger than that of Corona-Nidaan model. The precision
and recall value of COVID-Net for each class type is
lower than that of our proposed model. Hemdan et al.
[12] achieved 90% accuracy by utilizing transfer learning
with seven pre-trained CNNs. The authors claimed that
VGG19 and DenseNet201 performed well compared to the
other five pre-trained models. However, in case of these
CNN models, the f1-score for COVID-19 and Normal
class calculated is 91% and 89% respectively, where it is
94% and 96% respectively in case of our model. Ozturk
et al. [22] used a deep convolutional neural network,
DarkCovidNet, and achieved 87.02% test accuracy in
three-class classifications. The model is trained using 500
pneumonia, 500 normal, and 125 COVID-19 chest X-
ray samples. The sensitivity, precision, and f1-score of
DarkCovidNet model stated for three-class classifications
are 85.35%, 89.96%, and 87.37%, respectively, which are
lower than that of Corona-Nidaan model (shown in Table 9).

Table 9 Performance of Corona-Nidaan on the ChestX test dataset

Precision Recall F1-Score

COVID-19 0.94 0.94 0.94

Normal 0.93 0.98 0.96

Pneumonia 0.97 0.92 0.94

Accuracy 0.95

Macro avg 0.95 0.95 0.95

Weighted avg 0.95 0.95 0.95

From the confusion matrix for three class classifications, it
is clear that the DarkCovidNet model suffers from false-
positive and false-negative results. DarkCovidNet used
only 500 samples for each pneumonia and normal class,
using under-sampling technique to avoid the problem of
imbalanced classification, however, such random deletion
of samples from the majority class loses important class
information. For COVID-19 screening, Mangal et al. [19]
used transfer learning and obtained 90.5% accuracy. They
used 115 COVID-19, 1,341 normal, and 3,867 pneumonia
chest X-ray samples to train the CovidAID model. The
model’s overall performance is impressive, especially for
COVID-19 cases with a sensitivity of 100 %. However,
the model suffers with the same problem of getting many
false-negative cases for the normal class. It is important to
minimize false negative and false positive rates for initial
screening techniques. Apostolopoulos et al. [1] adopted the
same transfer learning technique as Hemdan et al. [12] and
also observed that the performance of VGG19 is better
than other pre-trained CNNs. They achieved 93.48% three-
class classification accuracy on the test dataset. Basu et
al. [2] achieved 95.3% using 12 layers of CNN against
a dataset consisting of 225 COVID-19, 50 Other-disease,

Fig. 16 Confusion matrix for Corona-Nidaan on the ChestX test
dataset
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Fig. 17 Line plots of categorical
cross-entropy loss and accuracy
over training epochs of the
Corona-Nidaan model

322 Pneumonia, and 350 Normal samples. It is found that
the authors used five-fold cross-validation to measure the
performance of their model, and the model is trained on
minimal Normal and Pneumonia samples. Oh et al. [21]
used 57 Tuberculosis, 191 Normal, 54 Bacterial Pneumonia,
20 Viral Pneumonia, and 180 COVID-19 X-ray images
to train proposed patch-based CNN. The authors stated
91.9% test accuracy when tested on the same samples,
however, the model suffers from false positive and negative
results. The number of trainable parameters in their model
is as twice as that of our model. The precision value of
COVID-19 (76.9%), Pneumonia (90.3%) infections, and the
sensitivity of Normal class (90%) is lower. Khan et al.
[17] used a limited number of training samples to train
CoroNet (Xception pre-trained on ImageNet) and achieved
89.6% three-class classification accuracy. The number of
trainable parameters of their model is eight times larger
compared to Corona-Nidaan and the model also mis-
classifies many Pneumonia cases as Normal cases. Perumal
et al. [23] used 205 COVID-19 (X-ray), 1,349 Normal,
2,538 Bacterial Pneumonia, 202 COVID-19(CT) and 1,345
Viral pneumonia samples to train VGG-16 CNN and
achieved 93% accuracy. The model sometimes misclassifies
COVID-19 as viral pneumonia, viral pneumonia as COVID-
19, and Normal as Bacterial Pneumonia. The computational
complexity of the proposed model is also enormous.

Table 10 Comparison of Corona-Nidaan with the transfer learning
model

Params (M) Accuracy

MobileNetV2 3.572 85%

VGG19 20.55 93%

InceptionResNetV2 55.91 80%

InceptionV3 23.90 77%

DenseNet201 20.29 84%

Corona-Nidaan 4.022 95%

4.6 Study of Corona-Nidaan performance against
Indian COVID-19 patient dataset

In this study, we tested the performance of Corona-Nidaan
on Indian patient chest X-ray samples. We consulted
medical experts from the Pune region, India, and Sardar
Vallabhbhai Patel COVID Hospital, New Delhi, India and
validated the performance of our model against almost 1000
X-ray samples belonging to two different classes (Normal,
COVID-19). These chest X-ray images’ assessment results
by Corona-Nidaan model against confirmed COVID-19
cases is shown in Fig 18. The model is validated for the
screening of COVID-19 infected patients by the medical
experts. The remarks of the end-users (Medical Experts) on
the performance of Corona-Nidaan model are as under:

1. The overall performance of the model on Indian
patient’s chest X-ray images is good, and the prediction
results are convincing, especially in the present
pandemic.

2. This low-cost tool can differentiate COVID-19 infec-
tion, Pneumonia, and Normal cases from chest X-ray
images without human intervention.

3. In exceptional cases with the early-stage symptoms,
COVID-19 X-ray images may be misclassified by the
model as Pneumonia or Normal. The early features of
COVID-19 infection may mimick other non-COVID
pneumonia features. Hence, to overcome this problem,
the model needs to train with more samples of Chest
X-ray images.

4. The model does not suffer from high false negative and
positive results, which indicates the suitability of the
model for medical imaging classification tasks. This is
in alignment with aim of this model, wherein we do not
want to miss any COVID case in the current CORONA
pandemic.

5. The information generated as a result of the X-ray
image analysis can be used as a screening test for rapid
and mass testing.
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Table 11 Comparison of Corona-Nidaan with other previously published approaches developed using chest X-ray images

Study Number of Samples Methods Accuracy Params (in
million)

Remarks

Wang and Lin et al. [35] 183 COVID-19
8,066 Nor-
mal 5,538
Pneumonia

COVID-Net b 92.6% 117.4 Model suffers from false-negative results for
COVID-19 cases and consists of more number
of trainable parameters.

Hemdan et al. [12] 25 COVID-19
25 Normal

COVIDX-
Net(VGG-19)
a

90% 20.55 93% of accuracy found on our dataset.

Ozturk et al. [22] 125 COVID-19
500 Normal 500
Pneumonia

DarkCovidNet a 87.02% 1.16 Model suffers from false-positive and false-
negative results. Under-sampling technique
loses important details of pneumonia and nor-
mal classes. 71% of accuracy found on our
dataset.

Mangal et al. [19] 115 COVID-19
1,341 Nor-
mal 3,867
Pneumonia

CovidAID c 90.5% – Model suffers from false-negative cases in case
of normal class.

Apostolopoulos et al. [1] 224 COVID-19
504 Normal 700
Pneumonia

VGG-19 a 93.48% 20.55 93% accuracy found on our dataset.

Basu et al. [2] 225 COVID-19
350 Normal 322
Pneumonia 50
Other-disease

12 layer CNN c 95.3% – The proposed model trained on very limited
Normal and Pneumonia samples.

Oh et al. [21] 180 COVID-19
191 Normal 54
Bacterial Pneu-
monia 57 Tuber-
culosis 20 Viral
Pneumonia

FC-
DenseNet103 +
ResNet-18 b

91.9% 11.6 Model is trained with very limited number
of samples, suffers from false positive and
negative results. More number of trainable
parameters.

Khan et al. [17] 284 COVID-19
310 Normal 330
Bacterial Pneu-
monia 327 Viral
Pneumonia

CoroNet (Xception) c 89.6% 33 More number of trainable parameters, trained
on limited number of training samples, Model
mis-classifies many Pneumonia cases as Nor-
mal.

Perumal et al. [23] 205 COVID-
19(X-ray) 1,349
Normal 2,538
Bacterial Pneu-
monia 202
COVID-19(CT)
1,345 Viral
pneumonia

VGG-16 c 93% – Model sometimes mis-classifies COVID-19,
viral pneumonia, and Normal cases. More
number of trainable parameters as VGG-
16 used. Manual pre-processing and feature
generation used.

ours 245 COVID-19
8,066 Nor-
mal 5,551
Pneumonia

Corona-Nidaan 95% 4.02 End to end learning approach, low mis-
classification rates, lightweight, and less num-
ber of trainable parameters.

a Implemented, trained and tested against our dataset
b Tested on the same samples as we did
c Reported accuracy by the author in their work
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Fig. 18 Chest X-ray images
diagnosis by the proposed
Corona-Nidaan model against
confirmed COVID-19 cases

(a) Predicted COVID-19 /

Actual COVID-19

(b) Predicted COVID-19 /

Actual COVID-19

(c) Predicted COVID-19 /

Actual COVID-19

(d) Predicted COVID-19 /

Actual COVID-19

5 Conclusion

In this study, Corona-Nidaan, a lightweight deep convolu-
tional neural network, is introduced for COVID-19 cases
screening using the chest X-ray samples. A simple oversam-
pling method to tackle the imbalance classification problem
is also suggested in this work. The following conclusions
can be drawn based on the results of this study: (1) Our
proposed Corona-Nidaan model achieved 95% test accuracy
with 94% recall and precision value for multi-class classifi-
cation. (2) The Corona-Nidaan model does not suffer from
too many false positive and false negative results, which
is an excellent indicator because it reflects our model’s
reliability. (3) Three stacked I-blocks are capable of cap-
turing critical COVID-19 features for better classification.
(4) Transfer learning can be used for medical imaging
tasks when the data set is small, and it found that VGG19
outperformed other pre-trained CNNs.

In our future work, the proposed model will be enhanced
to perform severity level analysis by collecting serial X-
ray images of COVID-19 infected with local radiologists
and hospitals’ help, as the major drawback in such research
work is the availability of minimal open-source COVID-19
chest X-ray samples.
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