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Abstract: Persistent organic pollutants (POPs) such as organochlorine (OC) pesticides,
polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated
dibenzofurans (PCDFs) have become wide-spread environmental contaminants as a consequence
of their extensive use, long-range transport, and persistence. Because POPs are highly resistant to
metabolic degradation, humans bioaccumulate these lipophilic and hydrophobic pollutants in fatty
tissues for many years. Previous studies have demonstrated that POPs including PCBs are involved in
the development of diabetes mellitus (DM) type 2 and insulin resistance. Numerous epidemiological
studies suggest an association between POP burden and DM type 2/metabolic syndrome. In addition,
several experimental studies have provided additional evidence supporting the association between
POP exposure and DM type 2 or insulin resistance. Epidemiological and experimental studies have
provided compelling evidence indicating that exposure to POPs increases the risk of developing
insulin resistance and metabolic disorders. However, the detailed molecular mechanism underlying
POP-induced insulin resistance is yet to be elucidated. In this article, we review literature that
has reported on the association between POP burden and insulin resistance and the mechanism
underlying POP-induced insulin resistance, and discuss implications for public health.

Keywords: insulin resistance; persistent organic pollutants

1. Persistent Organic Pollutants (POPs)

Numerous chemicals produced by humans intentionally or unintentionally have been released
into ecosystems since the Industrial Revolution, and the propensity for these toxic chemicals to not
degrade has been reported consistently since the 20th century. The most representative chemicals
showing a well-known causal relationship are POPs [1].

POPs contain two basic groups of synthetic organic compounds: polycyclic aromatic
hydrocarbons and halogenated hydrocarbons, which include several organochlorines (OCs),
namely dioxin, furan, polychlorinated biphenyls (PCBs), Mirex, toxaphene, heptachlor, chlordane,
and dichloro-diphenyl-trichloroethane (DDT). Historically, halogenated hydrocarbons have been
shown to be the most resistant to degradation by photodegradation or heat, and halogenated
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hydrocarbons possess low solubility in water, high solubility in lipids, and are global produced,
used, and released. OCs are typically the most persistent of all halogenated hydrocarbons. Universally,
the more highly chlorinated biphenyls tend to accumulate to a greater extent than the less chlorinated
PCBs; likewise, metabolism and excretion are slower for the highly chlorinated biphenyls than for the
less chlorinated PCBs. Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans
(PCDFs) are polyhalogenated aromatic hydrocarbons that exert high toxicity. There are 210 different
congeners, including 75 dioxin congeners and 135 furan congeners, of which 17 are potentially toxic.
PCBs are a family of 209 congeners for which there are no known natural sources [2].

These substances accumulate with the highest concentration in humans, a top species in the
food chain, while remaining in the soil or water and exhibiting toxicity for many years [3]. In May
2001, 12 POP species (aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB),
Mirex, toxaphene, PCBs, PCDDs, and PCDFs) were initially prohibited for use through the Stockholm
Convention. Thereafter, nine additional POPs were prohibited in May 2009 [4].

Generally, POPs not only have long half-lives, persisting in the environment for years or decades,
but also are widely dispersed around the world, through the air, water currents, and living organisms.
Additionally, POPs bioaccumulate and biomagnify, penetrating the food chain; in other words,
they bioconcentrate at higher levels in food webs, thus polluting and exposing all living things,
including humans. POPs are linked with serious health risks in humans and other living organisms [5].
Since most POPs are lipophilic, they tend to remain in fat-rich tissues, such as adipose tissues.

POPs have been measured in various living organisms [6]. POPs have been measured in biological
samples, such as human blood, body fat, and breast milk in studies around the world. These chemicals
are not well metabolized or excreted. Thus, even small doses that are ingested daily can accumulate to
yield detectable amounts over time [3].

2. Human Implications of POPs

The awareness of POPs was the result of large-scale casualties caused by the exposure to
high concentrations of POPs in the early 20th century. From 1956 to 1961, more than 4000
cases of porphyria occurred in Eastern Turkey due to the ingestion of HCB [7]. In 1968 and
1979, Japan and Taiwan, respectively, consumed approximately 1200 types of contaminated
cooking oil, resulting in “Yusho” (oil disease), which includes symptoms, such as reproductive
dysfunction, severe chloracne, hyperpigmentation, discharge from eye, headaches, vomiting,
fever, visual disturbances, and respiratory problems. Between 1962 and 1971, there was a
strong positive relationship between developmental soft tissue sarcoma, non-Hodgkin’s lymphoma,
Hodgkin’s disease, chloracne, and chronic lymphocytic leukemia, and the use of Agent Orange
including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [8]. It has also been reported that diabetes
mellitus (DM) type 2, hypertension, heart disease, and chronic respiratory conditions are associated
with POP exposure [9].

Likewise, POPs are toxic at high levels as demonstrated by mass poisoning incidents. Exposure
to high levels of POPs is associated with serious human health problems including death, disease,
and birth defects among humans and animals [10]. Specific health risks can include cancer, allergies,
hypersensitivity, and damage to the immune, neurological, and reproductive systems.

Initially, it was difficult to reveal the causal relationship between the effects of chronic POPs
exposure at very low concentrations compared with high concentrations of acute toxicity, which was
revealed much later. According to State of the Science of Endocrine Disrupting Chemicals—2012
published by the WHO in 2012 [1], chronic exposure of lower concentrations of POPs has been
shown to lead to female reproductive dysfunction [11,12], testicular cancer [13,14], breast cancer [15],
prostate cancer [16], decreased semen quality [17–19], increased cryptorchidism and hypospadias
at birth [20,21], and cognitive and behavioral deficits caused by developmental exposure [22–24].
In particular, these neurodevelopmental disorders have been linked to severe forms of thyroid hormone
deficiencies, and the decrease of thyroid function has been associated with PCBs, PBDEs, phthalates,
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bisphenol A, and perfluorinated chemicals in some epidemiological studies [25]. Thyroid cancer
has also been to have a weak association with pesticides and 2,3,7,8-tetrachlorodibenzo-p-dioxin.
With regard to metabolic disorders, decreased bone mineral density or increased risk of bone fractures,
obesity, DM type 2, and metabolic syndrome due to the disruption of the energy storage–energy
balance endocrine system are suspected to be potentially sensitive to endocrine-disrupting chemicals
(EDCs) [26–29].

OCs, PCBs, HCB, and pesticides, including DDT and lindane (g-hexachlorocyclohexane, HCH),
are classified as latent carcinogens to humans according to the International Agency for Research on
Cancer [30,31]. Regarding the mechanism of cancer development by POPs, an epigenetic mechanism
(i.e., chromosomal instability, abnormal gene expression, and DNA methylation) has been suggested,
and the inverse relationship between DNA global methylation levels and blood plasma levels for
several POPs has been reported [32]. Furthermore, there are strong epidemiological research data
associating the exposure to phthalates with airway disorders, including asthma, and the exposure to
phthalates and dioxins is associated with endometriosis and allergies.

PCBs that are intensively being released into the environment are also carcinogenic in nature,
because they are weakly estrogenic, and some OCs have been tested almost exclusively in
epidemiological studies in breast [33,34], prostate [34], colorectal, and endometrial cancers [35],
and in non-Hodgkin’s lymphoma [36]. Furthermore, the neurotoxic of effects of PCBs are related to
dose–response and structure–activity relationships (SAR). Sufficient epidemiological and experimental
evidence has shown that PCB exposure is associated with motor and cognitive deficits in humans and
animal models [37].

3. POPs as ECDs

Endocrine-disrupting chemicals (EDCs) disturb the immune, reproductive, and nervous system in
humans and animals. Several studies have previously indicated that POPs are ECDs [38,39]. Recently,
many epidemiological studies have provided evidence regarding the relationship between POPs
and metabolic disorders. Lee et al. revealed that the levels of Methanobacteriales in the human gut
were associated with higher body weight and waist circumference [40]. Janesick et al. suggested
the EDCs as an obesogene [41]. The epidemiologic evidences for association between DM type 2
and EDCs were little by little accumulated recently [42–46]. Although rare, the causality of DM
type 1 by EDCs also reported [47]. Metabolic syndrome (which is defined clinically as hypertension,
abdominal (central) adiposity, increased serum triglycerides, low serum high density lipoproteins
(HDL), and high blood sugar, even after fasting [48]) is an important disease group that can cause
obesity and DM type 2 [49]. Although several studies also reported the progression of the metabolic
syndrome, obesity, and DM type 2 by EDCs [50–52], experimental data revealing the mechanism
underlying POPs exposure-induced endocrine disruption are lacking.

An elaborate study revealed that PCB-77 may contribute to the development of obesity and
obesity-associated atherosclerosis [53]. The study that examined the in vitro and in vivo effects of
PCB-77 and TCDD demonstrated that low concentrations of PCB-77 or TCDD increased adipocyte
differentiation, glycerol-3-phosphate dehydrogenase activity, and the expression of peroxisome
proliferator-activated receptor gamma. In addition, PCB-77 was shown to promote the expression
and release of various proinflammatory cytokines in vitro, and PCB-77 resulted in an increase in body
weight, adipocyte hypertrophy, serum dyslipidemia, and augmented atherosclerosis in vivo. However,
this study did not address insulin resistance.

4. Epidemiologic Evidence of POP-Induced Insulin Resistance

The relationship between POPs and DM type 2 or insulin resistance was not an important
issue in the early 20th century, although it has been suggested for people who were constantly and
chronically exposed to low concentrations of POPs in the 1990s. The studies regarding exposure to
POPs, including TCDD, which is the most potent congener of dioxin, or other POPs in occupational
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or accidental settings, have reported an increased risk of DM type 2, modified glucose metabolism,
and insulin resistance [54–58].

The issue of the fully encompassing problem has been reported as a strong
relationship between the serum concentration of six POPs (2,2,4,4,5,5- hexachlorobiphenyl,
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin, oxychlordane,
p,p-dichlorodiphenyltrichloroethane, and trans-nonachlor) and the prevalence of DM type 2 [46].
This cross-sectional prospective study involved 2,016 adult participants, and the association was
strong despite the adjustment of several confounding factors and stratified analyses, and OCs or
nondioxin-like PCB (PCB-153) were found to be most strongly correlated with DM type 2 notably.
Furthermore, these authors investigated the relationship between serum concentrations of POPs,
especially OC pesticides or nondioxin-like PCBs, and insulin resistance, pre-stage diabetes mellitus,
or the potential risk of DM type 2 in nondiabetic adults [59]. This study also showed the association
between POPs and insulin resistance, and the authors even suggested the possibility of interaction
with obesity to increase the risk of DM type 2. Although the sample size was small, a case–control
study has also been reported. For 50 nondiabetic subjects with metabolic syndrome and 50 normal
controls, the association between eight OC pesticides and metabolic syndrome was examined and only
heptachlor epoxide was related meaningfully [60].

Beyond the simple examination of the association between POPs and DM type 2, the predictive
potential of the occurrence of DM type 2 from POP levels in serum has been examined. Lee et al.
measured the serum levels of 8 OC pesticides, 22 PCB congeners, and 1 polybrominated biphenyl
(PBB) of 90 controls subjected that remained free of DM type 2. The 90 cases developed DM type 2 in
1987~1988 and in 2005~2006. Although the serum levels of POPs were very low, these levels were very
similar to exposure levels observed in nature which increased the risk of DM type 2, suggesting an
important role for POPs in current trends in DM type 2 due to obesity [61].

Recently, a toxicology program workshop thoroughly reviewed 72 published epidemiological
studies that investigated the associations of POPs with DM type 2 prior to the assessment [62].
According to the review, the association between DM type 2 and OC compounds such as
trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), PCBs, dioxins, and dioxin-like chemicals
were found to be strongly correlated; however, associations between other non-OC POPs, such as
perfluoroalkyl acids and brominated compounds, and DM type 2 were found to be less correlated.
However, as the review study also indicated, further experimental data are required to support the
epidemiological studies.

5. Current Concepts Regarding the Mechanism Underlying Insulin Resistance

Insulin resistance can occur through dysfunction of insulin signaling pathway. Current concepts
of insulin signaling pathways are depicted in Figure 1.

5.1. Mechanism of Insulin Resistance

Insulin resistance, a condition where cellular responses to insulin are unsuitable, is found
primarily in insulin-sensitive tissues, liver, muscle and fat. Insulin resistance can result from various
situations including abnormal insulin signaling, lipotoxicity, inflammation, mitochondrial dysfunction,
and endoplasmic reticulum (ER) stress. These mechanisms are chiefly mediated by inhibitory
serine/threonine phosphorylation, dephosphorylation, transcriptional modifications, posttranslational
modifications, and genetic mutations [63].
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Figure 1. Current concepts of insulin signaling pathways.

5.2. Insulin Receptor

Insulin signaling is initiated through insulin binding with the extracellular domains of the
insulin receptor, followed by receptor autophosphorylation of several tyrosine residues located in
intracellular domains. This tyrosine residue interacts with various adaptor proteins, including insulin
receptor substrate-1 and -2 (IRS-1 and IRS-2, respectively) and SH2 domain-containing protein (SHC),
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which bind to intracellular receptor sites and become phosphorylated. Mutations on the insulin
receptor have been identified in several conditions such as leprechaunism, Rabson-Mendenhall
syndrome, or the type-A syndrome of insulin resistance, but have not been observed in patients
with typical DM type 2 [63].

5.3. IRS Protein

IRS-1 and IRS-2 recruit the formation of molecular complexes and activate downstream signaling
cascades. For example, in IRS-1-deficient mice, insulin resistance develops mainly due to decreased
insulin-stimulated glucose metabolism in the muscle alone. In IRS-2-deficient mice, however,
multiple defects impact the liver, muscle and adipose tissue, which includes reduced peripheral
glucose utilization, reduced suppression of endogenous glucose production, and reduced hepatic
glycogen synthesis [64].

5.4. PI 3-kinase/Akt Signaling

The key target of the IRS protein is phosphoinositide 3-kinase (PI 3-kinase). PI3-kinase
activates phosphoinositide-dependent kinase-1 (PDK1 and PDK2) by the phosphorylation of
phosphatidylinositol 4,5 bisphosphate (PIP2) into phosphatidylinositol 3,4,5 triphosphate (PIP3) [65].
Activated PDK1 phosphorylates serine/threonine kinases including Akt/protein kinase B (PKB) and
atypical protein kinase C λ and ζ (PKCλ/ζ) [66,67]. Akt kinase plays a central and varying role in
biological processes, including cell growth, survival and, metabolism and responses to hormones,
growth factors, and cytokines in numerous cell types [68]. In an in vivo study, Akt2-deficient mice
showed insulin resistance in the liver, skeletal muscle, and adipose tissue [69,70]. Among three
different isoforms of Akt (Akt 1, 2, and 3), Akt2 is chiefly found in insulin-responsive metabolic
tissues and is essential for insulin metabolic processes. Insulin-stimulated Akt2 results in the uptake
of circulating glucose through GLUT4 translocation from intracellular compartments to the cell
membrane, especially in skeletal muscle and adipose tissue [71]. Insulin signaling to Akt in the liver is
crucial to the suppression of glucose production and increased lipid synthesis [72,73]. Insulin–Akt
signaling inhibits FoxO1 as a transcription factor that enhances the expression of the gluconeogenic
enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) [74].
Akt phosphorylation also induces the activation of the SREBP1c transcription factor, which leads to de
novo lipid synthesis [73].

5.5. Roles of Lipotoxicity in Insulin Resistance

The plasma free fatty acid (FFA) level is controlled by insulin. When the FFA level is continuously
elevated, it causes lipotoxicity in non-adipose tissues and insulin resistance, and DM type 2 can
occur [75]. High levels of plasma FFA induce the activation of c-Jun N-terminal kinase (JNK), IκB kinase
(IKK), and PKC and IRS-1 Ser-307 phosphorylation [76]. Among the FFAs, palmitate especially
promotes insulin resistance by ER stress, cytokine production, and activating JNK, and NF-κB [77–79].
Diacylglycerol (DAG) and ceramide, which are intermediate metabolites of FFAs, also induce insulin
resistance. Increased muscle DAG causes insulin resistance by activating PKC-θ and IRS-1 Ser-307
phosphorylation [80]. Ceramide activates PKC and JNK, inhibits Akt activation via Akt Thr-34
phosphorylation, and increases the interaction of protein phosphatase 2 (PP2A) with Akt [81–84].

5.6. Roles of Inflammation in Insulin Resistance

In obesity, chronic and low-grade inflammation prevails and is involved in the pathogenesis
of various chronic diseases. Pro-inflammatory cytokines secreted in the adipose tissue and by
macrophages such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 can promote
insulin resistance by multiple mechanisms [85,86], which include Ser/Thr kinase activation and
decreases in IRS-1, glucose transporter type 4 (GLUT-4), and peroxisome proliferator-activated receptor
gamma (PPARγ) expression or suppressor of cytokine signaling 3 (SOCS-3) activation [63,87–89].
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The activation of Toll-like receptors (TLRs), especially TLR-2 and TLR-4, is also an important factor in
inflammation-associated insulin resistance [78,90].

5.7. Roles of Mitochondrial Dysfunction in Insulin Resistance

The level of reactive oxygen species (ROS) as a byproduct of the electron transport chain in
mitochondria is increased as a result of insulin resistance [91]. Increased ROS levels can be caused by
reduced antioxidant enzymes, and alterations in mitochondrial proteins [92,93]. Increased ROS levels
activate the phosphorylation of the insulin receptor and the insulin receptor substrate and decrease
the level of the FoxO1 transcriptional factor, which eventually results in insulin resistance [93,94].
Because FFA metabolism is chiefly mediated by mitochondria, a decrease in mitochondrial function
can lead to FFA and lipid accumulation and subsequent insulin resistance.

5.8. Roles of ER Stress in Insulin Resistance

The endoplasmic reticulum (ER) has many functions including protein folding, posttranslational
modifications, and calcium storage. Some physiological conditions that increase the demand for
protein folding or the stimuli that disrupt protein folding, result in the accumulation of unfolded
or misfolded proteins in the ER lumen [95]. For re-establishing the protein-folding capacity and
preventing the accumulation of unfolded or misfolded proteins, a mechanism known as the unfolding
protein response (UPR) is activated by the alteration of transcriptional and translational processes [95].
Three ER membrane-associated proteins, which include PKR-like eukaryotic initiation factor 2α kinase
(PERK), inositol requiring enzyme1 (IRE1), and activating transcription factor-6 (ATF6), are known
as ER membrane-associated proteins to be related to the UPR and activate inflammatory pathways,
such as TNF-α, IL-1β, and IL-6 by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
activation and finally result in insulin resistance [96]. In the case of IRE kinase, the phosphorylation of
IRE-1α recruits the tumor necrosis factor receptor-associated factor 2 (TRAF2) protein, which activates
JNK and subsequent IRS-1 phosphorylation [79].

6. Experimental Animal Studies Investigating the Mechanism Underlying POP-Induced
Insulin Resistance

Several previous experimental studies have provided evidence supporting the association between
POPs exposure and DM type 2 or insulin resistance [97–100]. Ruzzin et al. demonstrated that chronic
exposure to low doses of a POP mixture, which is commonly found in food chains, induced the
severe impairment of whole-body insulin activity and contributed to the development of abdominal
obesity in rats. The in vitro treatment of differentiated adipocytes with nanomolar concentrations
of POPs mixtures, which mimic those found in crude salmon oil, induced a significant inhibition of
insulin-dependent glucose uptake [97]. A causal relationship between POPs and insulin resistance was
demonstrated by subsequent studies. Ibrahim et al. elucidated that the chronic consumption of farmed
salmon containing POPs causes insulin resistance and obesity in mice [100]. Gray et al. also provided
evidence supporting that chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin
resistance and hyperinsulinemia in mice [99]. Lv et al. studied the consequences of gestational and
lactational exposure to a POP perfluorooctane sulfonate (PFOS) on the effects of pre-DM in offspring.
In the study, they demonstrated that glucose and lipid homeostasis in adult rats is impaired by early-life
exposure to PFOS [98]. These experimental studies provide compelling evidence that exposure to
POPs increases the risk of developing insulin resistance and metabolic disorders. However, to date,
the detailed molecular mechanism underlying POP-induced insulin resistance is yet to be elucidated.

The lack of information on the molecular aspects of POP-induced insulin resistance might
primarily be a result of the lack of interest in this issue by contemporary life scientists who focus
on cell and molecular biology. Difficult experimental approaches might also limit further study.
Although epidemiological findings suggest an association between low-level chronic exposure to
certain POPs and disease outcomes, the chronic exposure to POPs at low doses requires a long period
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of time to investigate. Therefore, many studies have investigated single POP treatments for a short
duration. Thus, it is not completely clear that the data obtained from these experimental systems
are relevant to human exposure. However, the exposure to multiple contaminants found in the
environment could produce increased adverse effects by synergistic toxicity mechanisms, resulting in
the lack of information [101].

Despite this limitation, numerous experimental studies have provided data supporting the
association between POPs exposure and DM type 2. Experimental studies reporting that POPs alter
glucose transport activity [102–105] and that POPs increase adiposity [85,106,107] have provided
insight regarding the mechanism underlying POP-induced insulin resistance because increased
adiposity as well as altered glucose transport activity are associated with insulin resistance. However,
these studies did not reveal the detailed mechanism by which POPs alter insulin signaling.
An experimental study has shown that chronic consumption of salmon containing POPs impairs
the ability of insulin to stimulate Akt phosphorylation in vivo. Another study has shown that
PCB-153 impairs insulin sensitivity through the dysregulation of hepatocyte nuclear factor 1 b
(HNF1b)/ROS/NF-κB [108]. Recently, we revealed the mechanism underlying the insulin resistance
induced by PCB-118 and PCB-138 [109]. In that study, we demonstrated that PCB-118 or PCB-138
promotes large lipid droplet (LD) formation through fat-specific protein 27 (Fsp27). In addition,
we elucidated that PCB-118 or PCB-138 impair the insulin-induced upregulation of p-Akt (Ser473)
and p-PI3K p85 (Tyr458). Importantly, we elicited that Fsp27 mediates PCB-induced insulin resistance
via IRS1 downregulation [109]. In another study, we demonstrated the mechanism underlying the
obesity induced by PCB-138. In that study, we elucidated that LD enlargement induced by PCB-138
confers adipocytes the resistance to TNF-α-induced cell death. In addition, we elicited that Fsp27,
perilipin, and survivin, at least in part, are involved in sustaining enlarged LDs, which contributes to
the induction of obesity and subsequent insulin resistance [110].

7. Future Tasks

According to previous epidemiological studies, the overall evidence is sufficient for a positive
association of some OC POPs with DM type 2. However, further experimental data are needed
to confirm the causality of these POPs. Dynamic experimental studies might not only prove
the causality but also provide important insights into the pathogenesis of DM type 2 and the
mechanisms governing POP-mediated insulin resistance. Experimental studies could offer a suitable
target for interventions targeting PCB-induced insulin resistance. For example, a previous study
demonstrated that PCB-induced impairment of glucose homeostasis in mice can be prevented by
resveratrol, potentially through the stimulation of Nrf2 signaling and enhanced insulin-stimulated
glucose disposal in adipose tissue [111]. In a previous study, we showed that the depletion of the
Fsp27 gene resulted in the inhibition of LD enlargement and attenuation of insulin resistance [109].
Furthermore, we demonstrated that metformin, a representative insulin resistance-improving drug,
alleviates PCBs-induced insulin resistance through Fsp27. These reports, in conjunction with future
studies, could provide us with an avenue for interventions targeting PCBs-induced insulin resistance.

8. Conclusions

Numerous epidemiological studies have provided compelling evidence indicating that
exposure to POPs increases the risk of developing insulin resistance and metabolic disorders.
Several experimental studies have provided evidence supporting the association between POP
exposure and DM type 2 or insulin resistance. However, the detailed molecular mechanism underlying
POP-induced insulin resistance is yet to be elucidated. Despite these limitations of experimental
approaches, experimental studies which have been recently reported provided new insight regarding
the pathogenesis of DM type 2. Experimental studies could offer a suitable target for interventions
targeting PCB-induced insulin resistance.
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Moreover, new information obtained from experimental studies could be considered by governing
organizations that are involved in the regulation of environmental contaminants.
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