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Background: Approximately 30% of Chinese individuals with cytogenetically normal
acute myeloid leukemia (CN-AML) have biallelic CEBPA (biCEBPA) mutations. The
prognosis and optimal therapy for these patients are controversial in clinical practice.

Methods: In this study, we performed targeted region sequencing of 236 genes in 158
individuals with this genotype and constructed a nomogram model based on leukemia-free
survival (LFS). Patients were randomly assigned to a training cohort (N =111) and a validation
cohort (N =47) at a ratio of 7:3. Risk stratification was performed by the prognostic factors to
investigate the risk-adapted post-remission therapy by Kaplan–Meier method.

Results: At least 1 mutated gene other thanCEBPAwas identified in patients andmutation
number was associated with LFS (61.6% vs. 39.0%, P =0.033), survival (85.6% vs. 62.9%,
P =0.030) and cumulative incidence of relapse (CIR) (38.4% vs. 59.5%, P =0.0496). White
blood cell count, mutations in CFS3R, KMT2A and DNA methylation related genes were
weighted to construct a nomogram model and differentiate two risk subgroups. Regarding
LFS, low-risk patients were superior to the high-risk (89.3% vs. 33.8%, P <0.001 in training
cohort; 87.5% vs. 18.2%, P =0.009 in validation cohort). Compared with chemotherapy,
allogenic hematopoietic stem cell transplantation (allo-HSCT) improved 5-year LFS (89.6%
vs. 32.6%, P <0.001), survival (96.9% vs. 63.6%, P =0.001) and CIR (7.2% vs. 65.8%,
P <0.001) in high-risk patients but not low-risk patients (LFS, 77.4% vs. 88.9%, P =0.424;
survival, 83.9% vs. 95.5%, P =0.173; CIR, 11.7% vs. 11.1%, P =0.901).

Conclusions:Our study indicated that biCEBPAmutant-positive CN-AML patients could
be further classified into two risk subgroups by four factors and allo-HSCT should
be recommended for high-risk patients as post-remission therapy. These data will
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help physicians refine treatment decision-making in biCEBPA mutant-positive
CN-AML patients.
Keywords: acutemyeloid leukemia, targeted region sequencing (TRS), biCEBPAmutations, risk stratification, therapy
INTRODUCTION

Acute myeloid leukemia (AML) is one of the adult malignancies
bearing the fewest mutations (1, 2). However, this disorder still
comprises heterogeneous subgroups with variable responses to
therapy stratified by identified leukemia driver events such as
abnormalities in FLT3-ITD, NPM1, and BCR-ABL1 fusion.
Patients without adverse or favorable genetic alterations were
classified into the intermediate-risk subgroup and allogenic
hematopoietic stem cell transplantation (allo-HSCT) was
recommended to improve survival (3). Some of the intermediate-
risk patients with normal karyotype were refined as the favorable
risk ones in the revised 2016 WHO classification of AML because
they had the prognostically favorable alteration, biallelic CEBPA
(biCEBPA) mutations, compared with patients with wild-type or
monoallelically mutated CEBPA (4, 5). However, this subgroup is
still not homogeneous with relapse rate reaching approximately
40% (4, 6) and thus the best post-remission therapy remains
controversial. Elucidation of cooperating events in this subgroup
is urgently required.

Approximately 86% of AML patients have two or more driver
mutations and such gene-gene interactions significantly alter the
prognosis (5). To clarify the potential risk factors in biCEBPA
mutated AML patients, next-generation sequencing has been
adopted in many studies for the detection of co-mutated genes
with sensitivity reaching 1 in 107 cells (7). GATA2, CSF3R and
other tyrosine kinase genes (KIT, JAK3 and FLT3-ITD), WT1
and genes involved in chromatin/DNA modification, cohesin
complex, and splicing were identified as hotspots in recent
studies to decipher prognostic stratification in biCEBPA
mutated AML (6, 8–12). Despite promising results, the true
status of these concomitant mutations and their prognostic
impact on biCEBPA mutated AML remain to be fully defined
(13). This discordance may be attributed to two reasons. First,
the sample size of biCEBPA mutated AML patients was small
(<100 in most studies), thus limiting the statistical significance of
the conclusions to some extent. Second, dozens of genes, or just
the hotspot genes, were detected, hindering analysis of the
relationships among different mutations.

In addition to mutational information, clinical data are also of
significance. In our previous study, we established the prognostic
value of pretreatment parameter, such as higher white blood cell
(WBC) count, and posttreatment parameter, such as minimal
residual disease detected by multiparameter flow cytometry
(MFC-MRD) in biCEBPA mutated AML (14, 15). Patients
with positive MFC-MRD after consolidation therapy showed a
high risk of relapse and benefited from transplantation (15).
Therefore, chemotherapy would no longer be appropriate as the
first-line treatment for some biCEBPA mutated AML patients
and identification of additional risk factors is required to refine
2

treatment decision-making. However, a comprehensive and risk-
adapted estimation of the most appropriate post-remission
therapy based on clinical and molecular data at diagnosis
(pretreatment parameters) in this population remains to
be established.

In this study, we conducted high-depth (≥1 000×) targeted
region sequencing (TRS) in a large panel with 236 known and
potential driver genes to investigate the mutational context in
158 newly diagnosed patients with cytogenetically normal AML
(CN-AML) and biCEBPA mutations. Mutational and clinical
data at diagnosis were combined and weighted in a nomogram
model for refined risk stratification. This study will provide
practical prognosis information for biCEBPA mutated CN-
AML patients and pave the way for precision treatment.
PATIENTS AND METHODS

Patients
A total of 1 255 patients with newly diagnosed AML were
enrolled from February 2010 to December 2019 at Peking
University People’s Hospital. All participants included in our
study met the following criteria: (1) age ≥15 years; (2) normal
cytogenetics; (3) achieved complete remission (CR); (4)
biCEBPA mutant-positive (Figure 1). In total, 158 participants
qualified for subsequent analyses. The protocols for induction
therapy and post-remission therapy are described in our
previous study (14, 16–18). Induction treatment included 1–2
cycles of IA10 (idarubicin 10 mg/m2 for 3 days and cytarabine
100 mg/m2 for 7 days), HAA (homoharringtonine 2 mg/m2 for 7
days, aclarubicin 20 mg/day for 7 days and cytarabine 100 mg/m2

for 7 days) or CAG (cytarabine 10 mg/m2 every 12 hours for 14
days, aclarubicin 20 mg/day for 4 days and granulocyte-colony
stimulating factor 300mg/day for 14 days). When CR was
achieved, patients were recommended to receive at least 6
cycles of consolidation chemotherapy, including 4 cycles of
intermediate-dose cytarabine (2 g/m2 every 12 hours for 3
days) and 2 or more cycles of anthracycline (daunorubicin 45
mg/m2 or idarubicin 10 mg/m2 for 3 days or mitoxantrone 8 mg/
m2 for 3 days) in combination with cytarabine (100 mg/m2 for
7 days). Patients proceeded to undergo an allo-HSCT received
at least 2 cycles of consolidation chemotherapy. Donors were
selected from human leukocyte antigen (HLA) matched siblings,
HLA matched unrelated donors or HLA haploidentical related
donors. MFC-MRD monitoring was described as previously
reported (15). The sensitivity was 0.01% and any measurable
level of MRD was considered positive (19). For patients with
positive MRD after allo-HSCT, preemptive antileukemic
chemotherapy in combination with donor lymphocyte infusion
(DLI) or interferon-a was given (20). For patients with
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hematologic relapse, chemotherapy followed by DLI was given as
the first-line strategy. And for relapse prophylaxis, only DLI was
used. Details of DLI were described previously (21, 22).

High-Depth TRS and Analysis
We designed a panel of 236 known and potential driver genes for
TRS (Supplementary Table 1). DNA was extracted from bone
marrow samples using DNAzol® kits (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. The
sequencing process was performed according to our previous
report (23). The average sequencing depth on target per sample
was ≥1 000×. Typical mutations in NPM1 (type A/B/D) were
validated by real-time quantitative polymerase chain reaction and
atypical mutations were validated by Sanger sequencing (24).
Mutations in FLT3-ITD were validated by Sanger sequencing.

Nomogram Model and Risk Stratification
Participants were assigned to a training cohort (N =111) and a
validation cohort (N =47) at a ratio of 7:3 randomly. A
nomogram was constructed based on the variables selected
from the Cox regression model. The discrimination ability of
the prediction model was measured by the concordance index
(C-index) and the calibration was evaluated graphically by the
calibration plots. Risk stratification was performed based on the
nomogram model.

Endpoints and Statistical Analyses
The primary endpoint in this study was leukemia-free survival
(LFS), which was calculated from the date of CR to relapse, death
from any cause, last contact, or June 30th, 2020. The secondary
endpoints included survival, cumulative incidence of relapse (CIR)
and non-relapse mortality (NRM). Survival was calculated from the
date of diagnosis to death from any cause, last contact, or June 30th,
2020. CIR and NRM were used in a competing risk setting and
Frontiers in Oncology | www.frontiersin.org 3
death without disease progression or relapse was treated as a
competing event. Continuous variables were analyzed by Mann-
Whitney U test. Categorized variables were analyzed by Pearson
Chi-square test. Survival functions were estimated using the Kaplan-
Meier method and compared by the log-rank test. Variables were
selected by univariate Cox regression model and those with P <0.15
were subsequently enrolled in the multivariate Cox regression
model. Receiving an allo-HSCT was recorded as a censored event
to identify the prognostic factors before an allo-HSCT. Landmark
analysis was performed to revise bias from early relapse or death
when comparing the outcomes of post-remission therapies.
Analyses were performed using SPSS software version 22.0
(Chicago, IL, USA), GraphPad Prism 7.04® (San Diego, CA,
USA) and R software version 4.0.2 (http://www.Rproject.org).
P <0.05 was considered to indicate statistical significance.
RESULTS

Patient Characteristics
Among the 158 patients with biCEBPA mutations, 103 received
chemotherapy only, while 55 received an allo-HSCT. Rate of
patients receiving an allo-HSCT was significantly decreased after
2016 than before (22.5% vs. 44.8%, P =0.003). The median time
from the first CR (CR1) to receiving an allo-HSCT was 4.77
months. According to the landmark analysis, 10 patients with
LFS ≤4.77 months would be excluded from the subsequent
analyses unless receiving an allo-HSCT was treated as a
censored event. As shown in Table 1, there were no significant
differences between the consolidation chemotherapy and allo-
HSCT cohorts in terms of sex, WBC, hemoglobin, platelets,
French-American-British (FAB) type and MRD after induction
(MRDint) (all P >0.05). Age and CR rate after first induction
were significantly greater in the consolidation chemotherapy
FIGURE 1 | Patient recruitment and cohort assignment. AML, acute myeloid leukemia; CN, cytogenetically normal; TRS, targeted region sequencing; Allo-HSCT,
allogenic hematopoietic stem cell transplantation.
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cohort than that in the allo-HSCT cohort (age, median, 41 y vs. 33
y, P <0.001; CR rate, 92.6% vs. 79.6%, P =0.021). The allo-HSCT
cohort had better 5-year LFS (84.8% vs. 51.2%, P <0.001) and 5-year
survival (91.9% vs. 74.1%, P =0.018), lower 5-year CIR (9.1% vs.
47.7%, P <0.001) but comparable NRM (6.1% vs. 1.1%, P =0.125)
(Supplementary Figure 1).

Genomic Analysis of biCEBPA
Mutated CN-AML
Of the 158 biCEBPA mutated ones, two patients carried two
frameshift deletion mutations respectively and one carried two
frameshift insertion mutations (Figure 2). We identified 1 306
mutations in 203 genes other than CEBPA. The median mutation
number was 8 (1–20). Interestingly, additional mutations of ≤5,
6–7, 8, 9–10, >10 were identified uniformly with ~20% of
patients (Supplementary Figure 2). Missense mutations were
the predominant type (N =1 024; 78.4%), followed by frame-shift
Frontiers in Oncology | www.frontiersin.org 4
(N =103; 7.9%), in-frame (N =98; 7.5%), nonsense (N =55; 4.2%)
and splice-site (N =26; 2.0%) mutations. These genes (mutated in
≥10 patients) were classified into 9 genetic subgroups:
transcription factors (GATA2 and MYC), tumor suppressors
(WT1 and MPL), activated signaling (NRAS, CSF3R, LILRB3,
JAK3, MACF1, MST1, FLT3-ITD, KIT, NCOR2 and LAMA5),
chromatin modifiers (EP300, SRCAP, DPF2, ASXL2 and ALK),
cell metabolism (HERC2), DNA methylation (TET2), cohesin
complex (RAD21), histone methylation (KMT2A and KMT2D)
and others (AHNAK2, PCLO, EPPK1, POTEG, TRIO, POTEH,
LOXHD1, AHNAK, HMCN1 and PLEC). Two genetic subgroups
(spliceosome and adhesion) were not listed because of the low
frequency of their mutated genes. GATA2 was the most
frequently affected gene in 48 patients (30.4%), followed by
WT1 (N =42, 26.6%), NRAS (N =31, 19.6%), AHNAK2 (N =31,
19.6%), PCLO (N =28, 17.7%) and CSF3R (N =24, 15.2%). FLT3-
ITD represented 10.1% (N =16) in this population and 14 of
FIGURE 2 | Genomic landscape of 158 CN-AML patients with biCEBPA mutations. Genes mutated in ≥10 patients are shown. Boxes are colored according to the
mutation type. Black box indicates multi-hit of mutation type. Non-black box of CEBPA indicates the same mutation type in one patient. The top bar indicates
mutation load (mutation/Mb DNA) and the right bar indicates mutation frequency.
TABLE 1 | Patient characteristics categorized by post-remission therapy.

Variables Consolidation Chemotherapy (N=94) Allo-HSCT (CR1) (N=54) P-value

Sex, N (%)
Male 55 (58.5) 38 (70.4) 0.151

Age, y
Median (range) 41 (17–74) 33 (15–59) <0.001

WBC, ×109/L
Median (range) 17.27 (1.15–315.62) 18.30 (3.52–266.00) 0.164

Hemoglobin, g/L
Median (range) 102 (47–157) 100 (58–157) 0.707

Platelets, ×109/L
Median (range) 27 (5–184) 35 (2–172) 0.363

FAB type, N (%)
M2 88 (93.6) 48 (88.9) 0.483

CR after first induction, N (%)
Yes 87 (92.6) 43 (79.6) 0.021

MRDint positivity, N/N (%)
Yes 48/88 (54.5) 35/51 (68.6) 0.103
August 2021 | Volume 11 | Article
Allo-HSCT, allogenic hematopoietic stem cell transplantation; CR, complete remission; WBC, white blood cell; FAB, French–American–British; MRDint, minimal residual disease after induction.
706935

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Risk Stratification of AML
them were identified by Sanger sequencing. The missed two
variants were attributed to the low mutational burden (7.7% and
7.9% respectively). Only 1 patient had NPM1 mutation and this
variant was further validated by real-time quantitative
polymerase chain reaction.

We further identified 21 pairs of genes with co-occurrence
and 1 pair with mutual exclusivity with significance (P<0.05,
Figure 3A). Both NRAS and NCOR2 had 4 pairwise associated
genes. Mutations in NRAS, JAK3 and KIT showed significant
associations with each other. Positive pairwise associations were
also found in TET2 and POTEG, GATA2 and AHNAK, and
CSF3R and ASXL2. Only GATA2 showed significant mutual
exclusivity with KMT2A. KEGG pathway enrichment analysis
revealed that the mutated genes, including CEBPA, were mainly
involved in cancer (Figure 3B). These genes represent pan-
cancer biomarkers not only in myelogenous leukemia (acute
and chronic myeloid leukemia) but also in many solid tumors.
Apart from several pivotal cancer-related pathways in signal
transduction, we also enriched pathways in central carbon
metabolism in cancer, microRNAs in cancer and EGFR
tyrosine kinase inhibitor resistance.

Mutational Context and Clinical Relevance
The general relapse rate was 32.3% (51/158) in our cohort. We
further explored the correlation of mutational complexity with
disease progression. A higher median mutation number was seen
in ones with events (9 [2–18] vs. 8 [1–20]; P =0.050) for the
patients receiving consolidation chemotherapy only. According
to the median mutation number (N =8), patients were simply
divided into two subgroups: patients with low mutational burden
(mutation number <8, N=66) and high mutational burden
(mutation number ≥8, N =92). Patients with low mutational
burden showed significantly higher 5-year LFS (61.6% vs. 39.0%,
P =0.033), higher 5-year survival (85.6% vs. 62.9%, P =0.030),
lower 5-year CIR (38.4% vs. 59.5%, P =0.0496) and comparable
5-year NRM (0 vs. 1.5%, P =0.407) compared with those with
high (Supplementary Figure 3).

Nomogram for LFS Analysis
Clinical variables, genes, and genetic groups with mutations
in ≥10 patients were enrolled for univariate analysis of LFS
(allo-HSCT was recorded as a censored event). Eight variables
were eligible for subsequent analysis with P <0.15 in the training
cohort (Supplementary Table 2) and 4 of them eventually
entered the nomogram model after multivariate Cox analysis:
WBC (high vs. low, represents >18.30×109/L vs. ≤18.30×109/L),
CSF3R mutation (+ vs. -), KMT2A mutation (+ vs. -) and DNA
methylation related mutation (mutations in TET2, DNMT3A,
BAZ2A, IDH2 and IDH1, mutated in 14, 9, 5, 5 and 3 patients
respectively) (+ vs. -) (Figure 4A). All points corresponding to
the 4 variables were summed to predict individual probabilities
of 1-, 3- and 5-year LFS. The model showed good discrimination
with C-index value of 0.750 (95% confidence interval, 0.670–
0.830) as well as good calibration (Supplementary Figure 4A).
In validation cohort, the model also had good discrimination (C-
index, 0.771; 95% confidence interval, 0.661–0.881) and
calibration (Supplementary Figure 4B).
Frontiers in Oncology | www.frontiersin.org 5
Risk Stratification Based on
Nomogram Model
According to the variables in nomogram model, patients with no
identified risk factor were assigned to the low-risk subgroup
(N =50) and the remaining to the high-risk (N =108). In training
cohort, low-risk patients (N =35) showed better 5-year LFS
compared with the high-risk (N =76, 89.3% vs. 33.8%,
P <0.001) (Figure 4B). In the validation cohort, there were 15
patients assigned to low-risk subgroup and 32 to high-risk. The
validation cohort also differentiated the two risk subgroups (low
risk vs. high risk, 87.5% vs. 18.2%, P =0.009) (Figure 4C).
MRDint was available in 148 patients and 59 (39.9%) ones
were positive. The positive rate was significantly lower in low-
risk subgroup (9/45, 20.0%) compared with high-risk (50/103,
48.5%) (P =0.001).

Allo-HSCT Was Superior to Chemotherapy
in High-Risk Subgroup
We then interrogated the effect of consolidation chemotherapy
and allo-HSCT as post-remission therapies in the two risk
subgroups. In the low-risk subgroup (N =49), there was no
significant difference in the 5-year LFS (allo-HSCT vs.
consolidation chemotherapy, 77.4% vs. 88.9%, P =0.424), 5-
year survival (83.9% vs. 95.5%, P =0.173), 5-year CIR (11.7%
vs. 11.1%, P =0.901) and 5-year NRM (10.9% vs. 0, P =0.099)
(Figures 5A–D). However, in the high-risk subgroup (N =99),
allo-HSCT was superior to consolidation chemotherapy alone
(5-year LFS, 89.6% vs. 32.6%, P <0.001; 5-year survival, 96.9% vs.
63.6%, P =0.001; 5-year CIR, 7.2% vs. 65.8%, P <0.001) with
comparable 5-year NRM (3.1% vs. 1.6%, P =0.685)
(Figures 5E–H).
DISCUSSION

Our study presents comprehensive information on mutational
context and detailed risk stratification of biCEBPA mutated CN-
AML patients. A significant reduction in the rate of
transplantation in recent years was seen in our study. This was
attributed to the important insights into biCEBPA mutations in
AML and recommendation for consolidation chemotherapy as
the first-line post-remission therapy (25). However, in
accordance with other studies (4, 6), we observed a
considerable relapse rate in the CN-AML patients with
biCEBPA mutations. Furthermore, although not limited to
CN-AML, our previous study with 36 patients identical to the
current study, also supported the heterogeneity of biCEBPA
mutations in patients with similar relapse rate (15). It has been
found that HSCT reduced the relapse rate in this population;
however, the survival benefit is still controversial (26, 27). Our
study indicated that allo-HSCT improved the prognosis
(Supplementary Figure 1), demonstrating that the first-line
post-remission treatment should be tailored according to an
individualized risk assessment. Risk factors alone cannot
represent the actual status of a patient and a comprehensive
and quantitative method such as a nomogram model may
August 2021 | Volume 11 | Article 706935
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A B

FIGURE 3 | Genomic analyses. (A) Pairwise association between genes mutated in ≥10 patients. Green colors indicate positive association and pink colors indicate
negative association. (B) KEGG enrichment analysis. The top 20 pathways are shown. Dot size depends on the mutation number and color depends on the q value
(adjust P value).
A

B C

FIGURE 4 | Nomogram model and risk stratification. (A) For WBC, “Yes” represents WBC >18.30×109/L at diagnosis; for genes or genetic group, “Yes” represents
mutation. (B, C) Leukemia-free survival analyses by risk stratification in training (B) and validation (C) cohort. WBC, white blood cell.
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provide a refined stratification. We thus sought to elucidate the
heterogeneity by a large panel and develop a new prognostic
model based on clinical and molecular data in this population.
Frontiers in Oncology | www.frontiersin.org 7
As expected, higher WBC (median as the cutoff) was
identified as the clinical prognostic factor. We found that at
least 1 mutation cooccurred with mutated biCEBPA and
A B

D

E F

G H

C

FIGURE 5 | Prognosis of two post-remission therapies by risk stratification. (A–D) Leukemia-free survival, survival, cumulative incidence of relapse and non-
relapse mortality analyses in low-risk subgroup. (E–H) Leukemia-free survival, survival, cumulative incidence of relapse and non-relapse mortality analyses in
high-risk subgroup.
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mutation complexity did confer higher relapse risk, which
further verified the heterogeneity of biCEBPA mutated CN-
AML. GATA2 mutation was the most frequent co-activated
event with biCEBPA mutations (6, 8, 11). Study showed that
GATA2 activity affected the mutational dynamics of leukemia
in Cbfb-MYH11 knockin mice (28). The prognostic value of
this gene is not well established. Several studies have revealed a
trend of improvement in GATA2 mutated CN-AML patients
with biCEBPA mutations (8, 29), especially when mutations
disrupted the zinc finger 1 domain. In our study, GATA2
mutation showed no correlation with prognosis (data not
shown). We further identified two mutated genes (CSF3R
and KMT2A) and a genetic group (DNA methylation) which
conferred prognostic significance in our cohort. Braun et al.
(30) confirmed that CEBPA mutations must be the initial
event prior to mutant CSF3R since otherwise, AML did not
develop and CSF3R and CEBPA mutations cooperated to
promote leukemogenesis. CSF3R, which is involved in the
JAK-STAT signaling pathway, is a common tyrosine kinase
mutated gene in biCEBPA mutated AML patients who were
sensitive to JAK inhibition (9, 11, 31). The EGFR tyrosine
kinase inhibitor resistance is also a pathway related to tyrosine
kinase. Reports of the role of EGFR and its inhibitors (gefitinib
and erlotinib) in the origination, progression and treatment of
AML were discordant (32–34). Mahmud et al. (35) reported
elevated protein levels of EGFR and its activation in a subset of
AML and attributed the discordance in other studies to patient
selection because the EGFR levels in more than 80% of AML
patients did not differ from those in normal individuals.
Although EGFR mutations were not identified in this study
and its expression was not evaluated, the downstream mutated
genes which were enriched in the EGFR tyrosine kinase
inhibitor resistance pathway may confer drug resistance in
biCEBPA mutated CN-AML patients. Genes involved in DNA
methylation (such as TET2 and DNMT3A) were frequently
mutated in biCEBPA mutated AML, especially in the older
participants and mutated TET2 was not significantly different
from wild type in relapse/event-free survival (6, 36). We
further studied these genes as a genetic group and found
that mutations in this group conferred a worse outcome.
However, reports of other epigenetic modifiers involved in
histone methylation are rare (13). We identified that KMT2A,
as well as KMT2D and EP300 mutations, were mutually
exclusive with the most frequent GATA2 mutation
(Figure 3A). The infrequent mutation in KMT2 gene family
members represents an obstacle to interpretation. In our
study, we revealed that mutated KMT2A was also an
independent r isk factor in biCEBPA mutated CN-
AML patients.

Combined with sequencing data, we developed a nomogram
model and further stratified the patients by the risk factors.
According to our stratification, approximately one third of the
patients were categorized into the low-risk subgroup, which had
only biCEBPA mutations and no other detrimental clinical or
genetic factors. Low-risk patients were more sensitive to
induction chemotherapy with lower MRD level after induction
Frontiers in Oncology | www.frontiersin.org 8
therapy. The 5-year LFS and CIR in this subgroup were not
significantly improved by allo-HSCT and chemotherapy alone
seemed to have better 5-year survival. That was because of the
high rate of transplant-related mortality counterbalancing the
graft-versus-leukemia effect in allo-HSCT. These data strongly
indicated that this subgroup represented the patients with a real
favorable prognosis in those with biCEBPA mutated CN-AML.
However, allo-HSCT was shown to be a powerful therapy to
reverse the high mortality resulting from relapse in the high-
risk subgroup.

One limitation of our study was the analysis of FLT3-ITD.
The prognostic impact of FLT3-ITD in biCEBPA mutated
AML patients was controversial. Grossmann et al. (36)
indicated that FLT3-ITD had no impact, while Zhang et al.
(11) revealed that FLT3-ITD had worse outcome in biCEBPA
mutated CN-AML patients. In our study, 13 FLT3-ITD
patients with biCEBPA mutations received allo-HSCT during
the CR1 (median time from CR1 to allo-HSCT, 4.53 months).
The prognostic value could not be estimated because these
patients were censored at the date of allo-HSCT. Although
FLT3-ITD was more frequently observed in non-biCEBPA
mutated AML patients (6), the contribution of FLT3-ITD to
risk stratification warrants further investigation because two of
the FLT3-ITD patients receiving the consolidat ion
chemotherapy relapsed (LFS, 20.0 months and 16.1 months
respectively) eventually. Other prognostically associated genes
in our study, like CSF3R and KMT2A, still need a larger and
prospective study to validate.

In summary, we validated the heterogeneity of CN-AML
patients with biCEBPA mutations and developed a new
system of risk stratification based on a nomogram model.
Only one third of these patients represented the low-risk
subgroup, and consolidation chemotherapy should be the
first-line post-remission therapy. While in the high-risk
subgroup, allo-HSCT is recommended. These data, if
va l idated , wi l l be great ly benefic ia l in trans lat ing
commercial sequencing into clinical testing and directing
decision-making during treatment of CN-AML patients
with biCEBPA mutations.
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