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The Wnt signalling pathway plays key roles in cell proliferation, differentiation and fate
decisions in embryonic development and maintenance of adult tissues, and the twelve
Armadillo (ARM) repeat-containing protein β-catenin acts as the signal transducer in this
pathway. Here we investigate the interaction between β-catenin’s ARM repeat domain and
the intrinsically disordered protein adenomatous polyposis coli (APC). APC is a giant
multivalent scaffold that brings together the different components of the so-called “β-
catenin destruction complex”, which drives β-catenin degradation via the ubiquitin-
proteasome pathway. Mutations and truncations in APC, resulting in loss of APC
function and hence elevated β-catenin levels and upregulation of Wnt signalling, are
associated with numerous cancers including colorectal carcinomas. APC has a long
intrinsically disordered region (IDR) that contains a series of 15-residue and 20-residue
binding regions for β-catenin. Here we explore the multivalent nature of the interaction of β-
catenin with the highest affinity APC repeat, both at equilibrium and under kinetic
conditions. We use a combination of single-site substitutions, deletions and insertions
to dissect the mechanism of molecular recognition and the roles of the three β-catenin-
binding subdomains of APC.
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protein interaction (PPI), multivalency, fuzzy binding, armadillo repeat

INTRODUCTION

The study of protein-protein interactions (PPI) is key to understanding protein functionality within a
cell: signaling, transport, catalysis, etc. The majority of PPIs events involve the interactions of 10 or
fewer amino acid between two binding partners. However, there are exceptions to this rule; one
example being the interaction between adenomatous polyposis coli (APC) and β-catenin, which
forms an unusually large and elongated binding surface with approximately 5000 A˚2 of surface area
buried (Figures 1, 2) (Ha et al., 2004; Xing et al., 2004). APC is a multifunctional protein contributing
to proliferation, differentiation and migration in cells by regulating the levels of β-catenin available
for transcription of the LEF-TCF4 family of transcription factors and by controlling the stability of
microtubules during interphase and mitosis. APC is a tumour suppressor gene, and alterations in the
gene are an early event in 80%–85% of sporadic colorectal cancers and germline mutations that lead
to colorectal cancer in familial adenomatous polyposis (McCartney and Näthke, 2008; Zhang and
Shay, 2017; Caspi et al., 2021). APC is a 310 kD protein with a coiled-coil dimerization domain region
at the N-terminus and an armadillo repeat domain that interacts with proteins involved in cell
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FIGURE 1 | APC and β-catenin. (A) Schematic of the domain structure of APC from N- to C-terminus: coiled-coil oligomerisation domain, turquoise; armadillo
domain, light green; β-catenin- binding 15aa repeats, red; β-catenin-binding 20aa repeats, pink; axin-binding SAMP repeats, yellow; microtubule-binding basic region,
blue; and EB1-binding domain, purple. Themutational cluster region is underlined in red. (B) Sequence of the third 20aa repeat construct of APC, and fragments thereof,
used in this study. Phosphorylated residues are in bold, and lysine-interacting residues are underlined. (C) Prediction of disorder propensity of the third 20aa repeat
(R3) of APC using the flDPnn program. Amino acids with values above the dotted line are predicted to be disordered and those below ordered (Hu et al., 2021). The
coloured bars at the top of the graph represent the three subdomains of APC R3: the N-terminal α-helical domain is in peach (APCa), the lysine-binding domain in purple
(APCb), and the phosphorylation domain in pink (APCc).

A

B
C

FIGURE 2 | The interaction of the third 20aa repeat (R3) of APC with β-catenin. (A) Schematic representation of the structure of the armadillo repeat domain of β-
catenin in complex with the phosphorylated third 20aa repeat of APC(R3) (PDB 1TH1) (Xing et al., 2004). The three subdomains of APC R3 are coloured: the N-terminal
α-helical domain in peach (APCa), the lysine binding domain in purple (APCb), and the phosphorylation domain in pink (APCc). The amino acids that are phosphorylated
are represented as sticks and the two lysine-interacting amino acids as spheres. The β-catenin ARM repeats that bind to the three APC subdomains are coloured:
ARM 10–12 in blue, ARM 5–9 in turquoise, and ARM 1–4 in dark blue. (B) Schematic showing the location of the key β-catenin-binding residues in APC R3. APC and β-
catenin are coloured as in (A). The five phosphorylated residues, S1–S4 and T1, are represented by circles. The lysine-binding residues D1486 and E1494 are
represented by triangles. The site of the single cysteine residue (C1501) is represented by a yellow star. (C) Buried surface area by residue of pAPC R3 in the complex
with β-catenin derived from PDB 1TH1 calculated using Cocomaps (http://www.molnac.unisa.it/BioTools/cocomaps, Vangone et al., 2011). The bars at the top of the
graph indicate the three subdomains of APC R3 coloured as in (A).
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migration and adhesion; at the C-terminus are domains that bind
to microtubules involved in APC functions in chromosomal and
mitotic progression. The central region comprises approximately
1,000 amino acids and is predicted to be intrinsically disordered
(Figure 1C). It contains eleven potential β-catenin binding sites
consisting of four 15 amino acid (15aa) repeats and seven 20
amino acid (20aa) repeats, which can be phosphorylated, and
three SAMP regions that bind axin (Figure 1A).

Tandem-repeat proteins such as β-catenin contain arrays of
small structural motifs (20–40 amino acids) that pack in a linear
fashion to produce elongated, one-dimensional architectures with
a continuous hydrophobic core and extended solvent-accessible
surfaces (Figure 2A) and are ubiquitous in nature, their chief
function being to bind other proteins (Javadi and Itzhaki, 2013).
β-catenin has a 530-residue central domain of 12 tandem
armadillo (ARM) repeats (Huber et al., 1997; Xing et al.,
2008), which are 42-residue motifs that form a triangle of
three helices. The twelve imperfect ARM repeats of β-catenin
stack linearly to form a right-handed superhelix of helices that
can be divided into three regions: ARM repeats 1–4 to which axin
binds, ARM repeats 5–9 which contains the groove used by a
number of β-catenin binding partners, and the third region
formed by ARM repeats 9–12. The third helix of each ARM
repeat lines the groove formed by the superhelix and is enriched
in positively charged residues creating an extended docking site
shared by a number of β-catenin’s negatively charged intrinsically
disordered binding partners including ICAT, APC, E-cadherin
and TCF7/L2 (Eklof Spink et al., 2001; Poy et al., 2001; Graham
et al., 2002; Xing et al., 2003; Ha et al., 2004) (Figure 1D). The
highly elongated interface nature of the interfaces between
natural ARM repeat proteins and IDRs is currently being
exploited by Pluckthun and colleagues to build artificial ARM
proteins capable of recognizing any linear peptide sequence
(Hansen et al., 2016).

β-catenin carries out two distinct functions in the cell, the first
of which is as the signal transducer in the canonical Wnt
signalling pathway (Van Der Wal and Van Amerongen, 2020)
and resulting in the transcription of genes that are of
developmental importance and those involved in tissue
homeostasis. In the absence of a Wnt signal, cytosolic β-
catenin is continuously synthesised and then sequestered and
targeted for proteasomal degradation by a multi-protein complex
called the β-catenin destruction complex (BDC) that forms
biological condensates (Schaefer et al., 2018). The BDC
comprises five different proteins: two structural proteins, APC
and axin, three kinases [glycogen synthase kinase 3β (GSK3β) and
casein kinase 1α and casein kinase 1ε (CK1α, CK1ε)], and protein
phosphatase 2A (PP2A). In the BDC β-catenin is
hyperphosphorylated at its N-terminal disordered region by
the combined action of GSK3β and CK1α (Kimelman and Xu
2006) and subsequently recognised and ubiquitinated by the E3
ubiquitin ligase β-TrCP (Wu et al., 2003) and degraded by the
proteasome. The second function of β-catenin is as an adaptor
mediating cell-cell adhesion at adherens junctions, whereby β-
catenin binds to the intracellular domain of the cadherin family of
proteins (Huber and Weis, 2001; Pokutta and Weis, 2007; Harris
and Tepass, 2010; van der Wal and van Amerongen, 2020).

The behaviour of IDPs in complex with their binding partners
can be divided into static complexes (Uversky, 2011), in which the
IDP is ordered and hence visible in X-ray crystal structures), and
dynamic or “fuzzy” complexes, in which the IDP retains a degree
of disorder upon complex formation (Sigalov et al., 2007; Borg
et al., 2007; Mittag et al., 2009). IDP binding mechanisms have
been grouped into four classes: simple two-state binding, avidity,
allovalency, and so-called “fuzzy” binding (Olsen et al., 2017),
reflecting the variability in disorder and the extent to which the
disorder and conformational heterogeneity is retained upon
complex formation; even in the simple two-state case,
association can involve conformational selection or folding
upon binding (Wright and Dyson, 2009; Bachmann et al.,
2011; Dogan et al., 2014; Rogers et al., 2014; Karlsson et al.,
2020). Given the very long interfaces involved, the interaction of
β-catenin with its binding partners provides a striking system
with which to study IDR molecular recognition (Smith et al.,
2021; Wiggers et al., 2021). In the case of APC, the intrinsically
disordered 20aa repeats adopt an extended structure that wraps in
an anti-parallel fashion around the entire ARM domain of β-
catenin (Liu et al., 2006; Xue et al., 2012; Minde et al., 2013)
(Figure 2). The 20aa repeats of APC contain a conserved core
motif (SLSSLS); a similar motif is also found in the β-catenin-
binding region of E-cadherin, and both APC and E-cadherin are
phosphorylated by casein kinase 1 (CK1) and glycogen synthase
kinase 3 (GSK3) (Ikeda et al., 2000; Rubinfeld et al., 2001), and
binds ARM1-4 of β-catenin. Additionally, two negatively charged
residues, Asp1486 and Glu1494 in the N-terminal region flanking
the core form salt bridges with two lysine residues [K435 and
K312, respectively (known as lysine “buttons”)] within ARM5-9
of β-catenin, and these lysine residues are also essential for the
interaction of β-catenin with Tcf and E-cadherin. Lastly, an
alpha-helical N-terminal region of the APC 20aa repeat
interacts with ARM10-12. Strikingly, the individual 20aa
repeats in APC vary greatly in their binding affinities, and it
remains to be determined exactly how the repeats work together
to regulate β-catenin in the cell (Liu et al., 2006; Seo and Jho, 2007;
Su et al., 2008; Roberts et al., 2011). Here, using single-site
substitutions, domain truncations and insertions, we dissect
the contributions to β-catenin binding of the three different
interfaces within the highest-affinity third 20aa repeat of
APC (R3).

MATERIALS AND METHODS

Molecular Biology and Protein Expression
and Purification
The plasmids encoding the armadillo (ARM) repeat domain of
human β-catenin (residues 134–671) and APC were kind gifts from
Prof. W. I. Weis and Dr. S. H. McLaughlin, respectively. The R3
region of APC and fragments thereof (Figure 1) and shorter
constructs of APC were produced by PCR, and mutations were
introduced using site-directed mutagenesis. All plasmids used for
expressionwere cloned into amodified pRSET vector where theHis-
tag has been replaced by a GST-tag and a thrombin cleavage site
introduced between the GST and the protein of interest; after
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cleavage this leaves two amino acids, GS, at the N-terminus of the
protein. All proteins were expressed in E. coli C41 cells (Miroux and
Walker, 1996). Transformed cells were grown in 2TY media with
appropriate antibiotic until OD600 of 0.6 at 37°C was reached, the
temperature was then lowered to 25°C and the cells induced with
0.2 mM IPTG after a further 18 h the cells were harvested at 5,000 g
for 7 min at 4°C. The cells were resuspended in 50mM Tris-HCl
buffer pH7.5, 150mM NaCl, 1 mM DTT containing protease
inhibitors and lysed using an Emusiflex C5 (Avestin) at 10,000
psi. The lysed cells were centrifuged at 35,000 g for 35min at 4°C.
The proteins were purified using glutathione-Sepharose 4B beads
(Cytiva). The GST was cleaved from the target protein on the resin
using thrombin and the protein eluted.

β-catenin was further purified using a Mono-Q column
(Cytiva) equilibrated in 50 mM Tris-HCl buffer pH 8.9,
50 mM NaCl, 1 mM DTT and eluted with a linear NaCl
gradient to 1M NaCl. Fractions containing greater than 95%
β-catenin were pooled, flash frozen, lyophilised, and stored at
−80°C (Supplementary Figure S1). Further purification of the
APC constructs was achieved by removing high molecular weight
impurities using differential filtration; the samples were
centrifuged through a centrifugal concentrator with a 30 kD
molecular weight cut-off (MWCO) membrane, and the flow
through was concentrated using a 3 kD MWCO centrifugal
concentrator (Supplementary Figure S2). The purified protein
was then flash frozen and stored at −80°C. The identities of all
proteins were confirmed by MALDI mass spectrometry
performed by Dr. Len Packman (University of Cambridge
PNAC Facility). β-catenin concentration was calculated from
its extinction coefficient at 280 nm obtained from ProtParam
(Gasteiger et al., 2005), and APC concentration was measured
using the Pierce™ BCA protein Assay Kit (ThermoFisher).

Labelling of APC With Fluorescent Tags
APC constructs were labelled at the single cysteine residue located at
position 1,501, which was retained in all of the fragments made here.
Proteins were buffered exchanged into PBS containing 1mM TCEP
and labelled with either fluorescein-maleimide or Alexa Fluor™ 488
C5 maleimide. Fluorescein-maleimide was added at a 5-fold molar
excess concentration to protein and incubated for 1 h at room
temperature; excess dye was removed by acetone precipitation of
the APC construct (Vivès and Lebleu, 2003); the labelled protein was
resuspended in PBS, 1 mM DTT. A 2-fold molar excess of Alexa
Fluor™ 488 C5 maleimide was added to the protein for 2 h at room
temperature and excess dye was removed using Pierce™ Dye
Removal Columns (ThermoFisher). The labelling efficiency was
determined from the ratio of the concentration of the
fluorescein/Alexa Fluor™ 488 moiety to the protein
concentration, and additionally the number of sites labelled per
molecule was assessed byMALDImass spectrometry (performed by
Dr. Len Packman, University of Cambridge PNAC Facility). This
analysis showed that all of the APC constructs were labelled at >90%
and at the single intended site (Cysteine 1501). Labelled APC was
flash frozen and stored at −80°C.

Equilibrium Binding Measurements
The binding of fluorescent labelled APC constructs to β-
catenin was monitored either by fluorescence or by
fluorescence anisotropy using a LS55 fluorimeter (Perkin
Elmer). All proteins were buffer exchanged into PBS, 1 mM
DTT, and measurements were made at 25°C. Excitation and
emission wavelengths were 495 and 519 nm, respectively, and
slit widths were 5 nm. APCbc labelled at Cys 1501 with Alexa-
488 was used in a competition fluorescence assay to measure
the IC50 values of the phosphomimetic APCbc variants for β-
catenin. In these experiments, a solution of 20 nM Alexa-488-
APC and 200 nM β-catenin was incubated in the cuvette at
25°C for 30 min prior to titration of unlabelled APCbc variants
using a Microlab 500C dispenser (Hamilton). After addition of
each aliquot, the sample was stirred for 30 s and equilibrated
for a further 60 s before measurement. The IC50 was calculated
using the following equation:

F � Ff + ΔF
(1 + ( [U]

IC50
)) (1)

where F is the measured fluorescence, Ff is the fluorescence of the
free ligand, ΔF is the change in fluorescence between the free and
bound form, and U is the concentration of the competing APC
ligand.

All other APC constructs were labelled with fluorescein, and
the dissociation constants were measured by fluorescence
anisotropy. In these experiments, aliquots of β-catenin were
titrated into a cuvette containing 10 nM fluorescein-labelled
APC, and the sample was stirred and equilibrated before
measurement (as described above). Both fluorescence
anisotropy and fluorescence intensity were measured at 15°C.
As there was a difference in the fluorescence intensity of bound
and unbound APC, the fluorescence anisotropy was adjusted
using the following equation:

Radj �
(R−Rf

Rb−R)(
Qf

Qb
)Rb + Rf

1 + (R−Rf

Rb−R)(
Qf

Qb
)

(2)

where Q is the measured fluorescence and R is the measured
anisotropy. The subscripts f and b denote the unbound (free) and
saturated bound forms of labelled APC. The adjusted anisotropy
data were then fitted using a single-state Hill plot to derive the Kd

and Hill coefficient, h:

R � RhPh

Kh
d + Ph

(3)

where P is the APC concentration
To calculate the Gibbs free energy of binding from the Kd,

Equation 4 was used:

ΔG � RT lnKd (4)
where R is the gas constant and T is the temperature in
Kelvin.
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Kinetic Experiments
Stopped-flow fluorescence was used to measure the kinetics of
binding with a SX-19 stopped-flow fluorimeter (Applied
Photophysics). The excitation wavelength was 495 nm, and a
cut-off filter of 515 nm was used to measure the emission. The slit
widths were 2 nm for both excitation and emission. All proteins
were prepared in PBS buffer, 1 mM DTT, and the experiments
were performed at 15°C. The β-catenin concentrations used were
at least ten times higher than that of the APC to ensure pseudo
first-order conditions; a fixed concentration of fluorescein-
labelled APC (25 nM) was rapidly mixed with varying
concentrations of unlabelled β-catenin (between 250 and
2,000 nM) in a 1:1 volume ratio, and the change in
fluorescence intensity was recorded. For dissociation
experiments, the complex of β-catenin and labelled APC was
pre-formed by mixing the two proteins in a 1:1 molar ratio
(200 nM) and incubated for 1 h at 15°C in the dark. The pre-
formed complex was then mixed in a 1:1 volume ratio with
10 times molar excess of the same APC construct, and the change
in fluorescence intensity was measured. A minimum of five traces
was collected and averaged. The averaged trace was plotted using
GraphPad Prism 5 (GraphPad Software, Ltd.) and fitted to either
a single exponential phase or the sum of two exponential phases.
For the association experiments, the observed rate constant, kobs,
was plotted against the concentration of β-catenin, and kon was
calculated from the linear fit:

kobs � kon[β catenin] + koff (5)

RESULTS

The region of APC used in this work encompasses the third 20aa
repeat (R3) (residues 1,494–1,514) and flanking regions that
contribute to the interaction with β-catenin (Figure 1). This
repeat was shown previously to have the highest affinity for β-
catenin of all APC repeats (Liu et al., 2006), and there are
structures of both the phosphorylated repeat (Figure 1D) and
the unphosphorylated repeat in complex with β-catenin (Ha et al.,
2004; Xing et al., 2004; Choi et al., 2006). It can be subdivided into
three subdomains in terms of its interaction with β-catenin:
residues 1,465–1,483 (referred to subsequently as the helical
domain “a”) that bind to ARM10-12 of β-catenin; residues
1,483–1,502 (the lysine-binding domain “b”) that bind to
ARM5-9; and residues 1,502–1,532 (the phospho domain “c”)
that bind to ARM1-4 (Figure 2).

Effects of Phosphomimetic Substitutions
in APC
It is important to note that in the crystal structures of β-catenin-
APC and β-catenin-E-cadherin complexes, both of which show
similar contacts between β-catenin and the phosphorylation sites
of the respective ligands, there appears to be no interaction
between β-catenin and these residues in their
unphosphorylated forms (Huber and Weis, 2001; Ha et al.,

2004). In addition to the β-catenin contacts made by the
phosphorylated sites of APC spanning residues 1,487–1,510,
there are other contacting residues, notably within 1,510–1,529
that folds back onto 1,487–1,510 (Figure 2). With an APC
construct comprising subdomains b and c (residues
1,483–1,533), referred to as APCbc, the five phosphorylation
sites were mutated to the phosphomimetic glutamate either
individually or in combination [T1487E (T1), S1504E (S1),
S1505E (S2), S1507E (S3), S1510E (S4)], and the IC50s were
measured by competition fluorescence assay using APCbc labelled
with Alexa-488 at Cys 1,501 (Figure 3).

Mutation of any one of these residues to the phosphomimetic
increases the affinity for β-catenin between 4-fold and 30-fold,
with S1507E showing the greatest increase; in the crystal structure
of the complex, phospho-S1507 (S3) is tightly coordinated and
fixed in a specific orientation by three β-catenin residues and
therefore would be predicted to have the tightest binding affinity
of the five phosphorylated residues. Phospho-S1505 (S2) does not
appear to make any contacts with β-catenin in the crystal
structure of the complex, but the phosphomimetic mutation at
this site nevertheless increased the binding affinity 5-fold. This
could be as result of the interaction of E1505 with R1523 within
the short helix formed by this region of APC, which could
stabilise its interaction with β-catenin. Alternatively, it may
reflect a “fuzzy” behaviour of the APC-β-catenin interaction,
in which the interface, and the interactions formed by specific
residues, in solution is different from the static structure captured
in the crystallography. Constructs containing four or more
phosphomimetics showed a ~150-fold increase in affinity.

The affinity of the full-length R3 domain, APCabc containing
all five phosphomimetics (referred to subsequently as pAPC), was
also measured by fluorescence anisotropy, (see next section), and
the Kd determined to be 5.3 nM (Table 1; Figure 4). This value is
similar to Kd values obtained in previous studies using an APC R3
construct that had been phosphorylated using CK1-ε and GSK3-β
(Ha et al., 2004; Xing et al., 2004; Choi et al., 2006; Liu et al., 2006),
indicating that glutamate serves as a good phosphomimetic.

Dissection of the Different
β-Catenin-binding Regions of APC Repeat 3
We next looked at APC R3 constructs comprising each of the
three different β-catenin binding interfaces either alone or in
combination (Figure 1B), and the affinities were measured by
fluorescence anisotropy using APC labelled at residue 1,501 with
fluorescein (Figure 4; Table 1). Domains b and c could be
expressed in isolation, but domain a could not. The binding of
the phosphodomain c was only detectable in the phosphomimetic
form, p-c (Kd of 160 nM), suggesting that this region only
interacts with β-catenin in the cell when phosphorylated,
which is consistent with what is observed in the crystal
structures (as discussed above). The lysine-binding domain b
has a dissociation constant of 246 nM, which is similar to that of
p-c; when domain b is combined with unphosphorylated domain
c (bc), the affinity shows only a small increase (196 nM) relative to
b alone, again consistent with the weak interaction of
unphosphorylated c with β-catenin. When domain b is
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combined with domain a (ab) the affinity increases approximately
2.5-fold relative to b alone (90 nM versus 246 nM). The entire
unphosphorylated APC fragment comprising all three domains
(abc) has a 12-fold higher affinity than bc and a 5-fold higher
affinity than ab. The increase in affinity upon adding
unphosphorylated c to ab is somewhat surprising given the
very small increase in affinity observed upon adding
unphosphorylated c to b. Adding p-c to ab (i.e., the entire
phosphorylated APC fragment, p-abc) results in the largest
increase in affinity of adding any single domain (~18-fold,
5.3 nM versus 90 nM).

Differences were observed in the shapes of the binding curves,
indicating that there is cooperative binding of the subdomains for
some of the APC constructs but not others. Cooperativity was
observed for pAPC, as indicated by a Hill coefficient of 2, but not
for the unphosphorylated APC or for any of the phosphorylated
or unphosphorylated fragments (Hill coefficient of 1 within error)
(Figure 5 and Table 1). This result suggests that the binding of
the phosphorylated domain c results in an increase in affinity of
the other domains, presumably due to the tethering of one
domain bringing the other domains into proximity.

Because the lysine-binding domain b is the middle domain, it
cannot be deleted in the same way as the helical domain a and
phospho domain c. However, its affinity for β-catenin can be
dramatically weakened by mutation of the lysine-interacting
residues D1486 and E1494 (Xing et al., 2003; Ha et al., 2004;
Kohler et al., 2008). The mutation D1486S lowered the affinity of
unphosphorylated APC by more than 100-fold (2 μM vs 16 nM).

(E1494T reduces the affinity to below the detection limit of the
experiment (>5 μM)). This result suggests that domain a cannot
bind to β-catenin in the absence of sufficient contacts made by
domains b and c. D1486S lowered the affinity of pAPC 7.5-fold
(30 nM vs. 5 nM). The affinity of pAPCabc D1486S is higher than
the affinity of p-c alone (160 nM), suggesting that some contacts
of domain a with β-catenin are retained when domain c is bound;
alternatively there may be some fraying of the β-catenin interface
in the isolated p-c fragment, meaning that p-c does not effectively
recapitulate the interactions present in the full p-abc and p-abc
D1486S constructs.

We also investigated the contributions of the three domains of
APC to the kinetics of β-catenin binding by stopped-flow
fluorescence measurements of the fluorescein-labelled APC
(Figure 5). (The kinetics of abc were also measured using
Alexa 488-labelled APC, and similar kinetics were observed to
those obtained using fluorescein-labelled APC). Two phases
could be detected in the dissociation kinetics, a fast phase
(~35% amplitude) and a slow phase (~65%). Deletion of
domains a and c (constructs bc and ab, respectively) results in
small (~3-fold) decreases in the association rate and small (2-
fold) increases in the dissociation rate (Table 1; Figure 4). Only
one dissociation phase could be detected for bc, but given that for
many of the variants there is a relatively small difference in the
rates of the two phases, it could be that they are too similar in bc
to distinguish. The introduction of the phosphomimetics (p-abc),
which strengthens the interaction of domain c with β-catenin, has
a small effect on the association kinetics (4-fold) and a larger

FIGURE 3 | Increasing affinity for β-catenin of APCbc constructs with increasing number of phosphomimetic substitutions. Glutamate substitutions were made at
phosphorylation sites T1487E (T1), S1504E (S1), S1505E (S2), S1507E (S3), S1510E (S4). The IC50s of these phosphomimetic APCbc variants was measured by
fluorescence competition assay using APCbc labelled with Alexa488 at Cys 1501. The data are shown as the mean ± SEM of three replicates.
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effect on the dissociation kinetics than on the association kinetics,
decreasing the fast dissociation phase 6-fold and the slow
dissociation phase 50-fold. In contrast, the introduction of the
D1486S mutation, which weakens the interaction of domain b
with β-catenin, has negligible effect on the association kinetics of
p-abc but a large effect on the dissociation kinetics, decreasing the
fast phase 40-fold and the slow phase 200-fold. The association
and dissociation kinetics of (unphosphorylated) abc D1486S
could not be measured due to the very low binding affinity of
this construct.

Modulation of the Binding Interfaces of APC
by Linker Insertions
To further probe the relationships between the three binding
interfaces within APC, linkers were inserted at two different sites
where there are no visible contacts with β-catenin in the crystal
structures (Ha et al., 2004; Xing et al., 2004) (Figures 2, 6). The
first site was between domains a and b (between residues 1,478
and 1,479) at the C-terminus of the α-helix. The second site was
between domains b and c (between residues 1,500 and 1,501).

This region of APC is four amino acids in length and is not visible
in the crystal structure of the complex, suggesting that it is highly
dynamic. Three types of linkers were used: one flexible linker and
two rigid linkers (Figure 6). The linkers were all designed to be of
similar length (16–19 amino acids) and have similar charge
properties. The flexible linker (FL) is based on the (SG)4 linker
between tandem immunoglobulin domains but also includes
lysine and glutamate residues to aid solubility (Chen et al.,
2013). The rigid linker RL forms an α-helix stabilised by
glutamate-lysine salt bridges (Marqusee and Baldwin, 1987;
Arai, 2021). The polyproline linker forms an extended left-
handed helix and is regarded as a rigid “molecular ruler”
(Schuler et al., 2005; Adzhubei et al., 2013). This linker is
expected to be longer (~4 nm) than the RL linker (~1.8 nm).

Insertion of either the rigid or the flexible linker at 1,500
between domains b and c into either APCabc or pAPCabc reduced
the affinity ~1.5–2-fold indicating that most of the contacts with
β-catenin were not disrupted (Table 1; Figure 6). A reduction in
affinity even without any disruption of contacts is expected due to
the greater entropy cost of closing the longer loop formed by the
linker upon binding to β-catenin. Insertion of the polyproline

TABLE 1 | Effects of mutations, truncations and insertions in APC Repeat 3 region on the interaction with β-catenin. p-APC indicates phosphomimetic mutations, APC
indicates non-phosphorylated form. Presence or deletion of subdomains a, b and c is indicated in subscript. FL indicates flexible linker, RL indicates rigid linker, PP
indicates polyproline linker (see also Figure 5A), and the site of linker insertion is indicated in subscript. In the schematics, the key contacting residues are denoted in circles
(phosphomimetics) and triangles (lysine-binding residues). ND indicates not detectable. The values of Kd, ΔG and Hill coefficient are derived from the fluorescence anisotropy
experiments. The on- and off-rates and time constant (τ, calculated from the fast off-rates) were determined by stopped-flow fluorescence experiments. ND indicates not
detectable. The SE error come from at least three replicates.

APC fragment Schematic of APC R3
region

Kd (nM) ΔG (kcal
mol−1)

Hill
coefficient

kon
(µM−1s−1)

koff fast (s
−1) koff slow (s−1) τ (s)

APCabc 16.5 ± 5.1 −10.6 ± 0.1 1.09 ± 0.1 49.2 ± 5.1 0.46 ± 0.06 0.11 ± 0.02 1.54 ± 0.23

APCab 89.9 ± 26.6 −9.6 ± 0.2 1.3 ± 0.5 13.3 ± 1.7 1.12 ± 0.31 0.24 ± 0.032 0.66 ± 0.18

APCbc 196 ± 18.7 −9.2 ± 0.1 1.1 ± 0.1 14.8 ± 1.5 0.73 ± 0.06 ND 0.96 ± 0.08

APCb 246 ± 3.5 −9.0 ± 0.1 0.9 ± 0.1 — — — —

pAPCabc 5.3 ± 0.6 −11.3 ± 0.1 2.0 ± 0.2 207 ± 11 0.07 ± 0.01 0.0021 ± 0.003 9.51 ± 0.53

pAPCc 160 ± 37.0 −9.2 ± 0.2 1.1 ± 0.2 — — — —

APCabcD1486S 2054 ± 213 −7.8 ± 0.1 0.8 ± 0.1 ND ND ND ND

pAPCabcD1486S 21.4 ± 1.2 −10.5 ± 0.1 1.2 ± 0.3 151 ± 14 2.89 ± 0.01 0.400 ± 0.002 0.24 ± 0.006

APCabcFL1500 28.3 ± 5.9 −10.3 ± 0.1 1.0 ± 0.1 24.1 ± 7.0 0.45 ± 0.04 0.10 ± 0.003 1.54 ± 0.13

APCabcRL1500 31.2 ± 3.6 −10.3 ± 0.1 0.9 ± 0.1 18.1 ± 1.6 0.89 ± 0.02 0.223 ± 0.002 0.80 ± 0.14

pAPCabcFL1500 10.9 ± 2.4 −10.6 ± 0.1 1.8 ± 0.1 101.0 ± 9.6 0.16 ± 0.18 0.0085 ± 0.0015 4.45 ± 1.16

pAPCabcRL1500 10.8 ± 2.9 −10.9 ± 0.2 2.0 ± 0.3 102.5 ± 7.9 0.21 ± 0.02 0.0122 ± 0.0016 3.52 ± 0.78

pAPCabcPP1500 16.4 ± 2.5 −10.6 ± 0.1 1.2 ± 0.2 89.7 ± 5.1 0.44 ± 0.035 0.018 ± 0.002 1.59 ± 0.24

APCabcFL1478 21.5 ± 3.5 −10.5 ± 0.1 1.4 ± 0.2 83.5 ± 2.4 0.77 ± 0.038 0.177 ± 0.007 0.90 ± 0.04

pAPCabcFL1478 18.7 ± 0.17 −10.5 ± 0.1 1.2 ± 0.2 — — — —
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linker into pAPCabc reduced the affinity three-fold (16.4 nM
versus 5.3 nM). The affinity was similar to that of
unphosphorylated APCabc (16.5 nM) that has a weakened c
domain and pAPCabc D1486S (30 nM) that has a weakened b
domain, suggesting that the polyproline linker disrupts the
interface and prevents domains b and c either side of it from
binding to β-catenin simultaneously. Only the flexible linker was
inserted at 1,478 (between domains a and b), and it did not
change the binding affinity of APCabc but reduced the affinity of
pAPCabc 5-fold, suggesting disruption of contacts in domains a
and/or b.

As observed at equilibrium, the linker insertions at 1,500
(between b and c) had only small effects on the association
rate, decreasing it ~2-fold for both APCabc and pAPCabc.
There were also small increases (~2.5-fold) in the
dissociation rates. Insertion of the polyproline linker into
pAPCabc had a larger effect on the dissociation kinetics,
increasing the rate of the fast dissociation phase 6-fold to
a value similar to that of APC; the rate of the slow dissociation
phase was increased 9-fold but it was still much slower than
constructs APCabc and pAPCabc D1486S with weakened c/b
domain. Interestingly, insertion of the flexible linker at 1,478
(between a and b) increased the association rate of APCabc 2-
fold. This result could be due to some steric stress between
binding interfaces of the two domains that is relieved upon
linker insertion.

The Hill coefficient was ~1 for APCabc with either the flexible
or rigid linker inserted at bc, indicating a single binding event. In
contrast, for pAPCabc with the flexible or rigid linker inserted at
the same position the Hill coefficient was ~2, indicating that
cooperativity between b and c is maintained upon linker
insertion. Insertion of the polyproline linker into bc in
pAPCabc gave a Hill coefficient of 1, consistent with this linker
preventing the binding of b and p-c simultaneously. From these
results and the results for the truncations showing that the Hill
coefficient is 1 for constructs ab and abc lacking the high-affinity
p-c domain, we can conclude that a and b are not independent
domains but rather form one contiguous binding surface.

DISCUSSION

Here we explore the molecular recognition of the third 20aa
repeat region of APC as an example of the β-catenin binding
partners that are phospho-regulated in the β-catenin destruction
complex (BDC). In its unphosphorylated form, APC contacts are
predominantly with β-catenin ARM5-9, thus allowing the
interaction of β-catenin ARM1-4 with axin (Ha et al., 2004).
The formation of the trimeric complex of β-catenin, APC and
axin has been shown to lead to increased phosphorylation of β-
catenin, thereby promoting its recognition and ubiquitination by
the E3 ligase SCFβ−TrCP (Ranes et al., 2021). Phosphorylated APC

FIGURE 4 | Effects of truncations and mutations in APC on β-catenin-binding. Dissociation constants (A), on-rates (B), off-rates (C), and time constants (D). Both
fast and slow off-rates are shown. The time constant are calculated from the fast off-rates.
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binds across all twelve of β-catenin’s ARM repeats, thereby
displacing axin, retaining β-catenin in the cytoplasm and
restarting the process of interactions in the BDC (Schaefer and
Peifer, 2019). APC repeat 3 can be divided into three subdomains,
and we used a combination of single-site substitutions,
truncations and insertions to dissect the contributions of the
subdomains to the interaction. As the subdomains are not fully
separate from each other there may be fraying of the interface
formed by one domain when its adjacent domain is absent, and
consequently there are some caveats in the interpretation of the
effects of the variants where we have truncated one or more of the
subdomains. Nevertheless, the following conclusions can bemade
(Figure 7):

1) In a multivalent system such as this, the strength of the
interactions of the individual subdomains are context
dependent, i.e., they are dependent on the presence or
absence of the other subdomains. The most striking
examples are the effects of a mutation that disrupts key
contacts in domain b and the effects of mutations that
mimic phosphorylated residues in domain c: The mutation
D1486S in domain b causes a 100-fold decrease in the affinity
of the unphosphorylated APC, whereas there is only a 4-fold
decrease in the affinity when the mutation is made in the
phosphomimetic pAPC. Likewise, the phosphomimetic
mutations in domain c cause a 100-fold increase in the
affinity of APC D1486S, whereas there is only a 3-fold
increase in the affinity when the same phosphomimetic
mutations are introduced in APC.

2) This cooperativity of the interactions is evident also in the
different shapes of the binding curves, and it can be quantified with
the Hill coefficient. Cooperativity (Hill coefficient of 2) is only
observed for pAPC and for loop insertions where b and c retain
their ability to bind simultaneously. No cooperativity (Hill coefficient
of 1) is observed for variants in which either b or c has a weakened
affinity (APC, pAPC D1486S), for insertions such as polyproline
linker where b and c cannot bind simultaneously, and for the
fragment ab lacking domain c. The Hill coefficient of 1 observed
for constructs ab and abc indicates that a and b effectively form a
contiguous domain rather than two independent domains.

3) The similar affinities of pAPC D1486S and APC, and of
fragments p-c and b, suggest that the interactions made by these
two domains with β-catenin are of similar strength (Figure 6).
We expect the affinity of phosphorylated c domain to be higher
than our phosphomimetic c domain, and therefore it is likely that
in the cell p-c makes a greater contribution than b to the
interaction of pAPC with β-catenin.

4) In a multivalent system, large effects of domain deletion/
mutation on the dissociation kinetics are expected due to the
probability of rebinding being much lower when one or other of
the domains is absent or mutant. A single phase is observed for the
association kinetics of APC and all of the variants, whereas the
dissociation kinetics are biphasic. Several different kinetic
mechanisms can be envisaged: Binding/unbinding of the different
domains of APC could be sequential or concurrent. Further, given
that the affinities of domains b and c are similar, there could also be
parallel (alternative) binding/unbinding pathways of similar energies
corresponding to different orders of domain binding/unbinding.
This is analogous to the parallel (un)folding pathways observed for
repeat proteins, which is a result of the different repeats having
similar stabilities (Lowe and Itzhaki, 2007; Tripp and Barrick, 2008;
Werbeck et al., 2008; Tsytlonok et al., 2013; Aksel and Barrick, 2014;
Hutton et al., 2015). The mutations affect both of the dissociation
phases rather than only one or the other. The linker insertions also
affect both phases, and the largest effects are observed for the
polyproline linker (PP) which prevents b and c from binding
simultaneously. Despite mutation of the phosphorylated residues
in domain c (pAPC vs. APC) and mutation of the lysine-binding
residues in domain b (pAPC vs. pAPC D1486S) having similar
effects on the equilibrium binding affinity, mutation of domain b has
a larger effect thanmutation of domain c on the dissociation kinetics.
In the association kinetics, it is mutation of domain c that has the
larger effect. Insertion of random or flexible linkers between b and c
slows down the association and speeds up the dissociation, as
expected. Insertion of the polyproline linker (PP) is the most
disruptive and prevents simultaneous binding of b and c
domains and ablates the tethering effect, as shown by the
similarity in the binding affinity of pAPC PP to those of APC
and pAPC D1486S. The fast dissociation rate of pAPC PP is similar
to that of APC, but its slow dissociation rate is in between those of
APC (0.11 s−1) and pAPC (0.0021 s−1), and its association rate is in
between those of APC (49 μM−1s−1) and pAPC (207 μM−1s−1). The
observation that the mutations and insertions affect both
dissociation phases rather than only one or other indicates that
there is not a simple sequential unbinding mechanism and that the
dissociation of b and c domains is tightly coupled.

FIGURE 5 | Binding of β-catenin to the unphosphorylated and
phosphomimetic forms of APCabc. The dissociation constants were measured
by fluorescence anisotropy using APCabc labelled with fluorescein at Cys
1501. The unphosphorylated APCabc is shown in black circles and the
phosphomimetic, APCabc, in open circles. The data are shown as the mean ±
SEM of at least three replicates.
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We can compare these findings with those of another β-
catenin ligand, TCF7L2 (Smith et al., 2021). Like APC,
TCF7L2 has a b domain with lysine-binding residues.
However, unlike in APC, the interaction of the b domain of
TCF7L2 with β-catenin is fuzzy, and it does not adopt a fixed
conformation and is structurally malleable. Likely as a result of
this fuzzy interaction. Like β-catenin-APC, the kinetics of the β-
catenin-TCF7L2 dissociation and association are complex.
However, unlike β-catenin-APC, a sequential mechanism of
domain binding/unbinding can be readily discerned for β-
catenin-TCF7L2 as well as a shift to an alternative pathway
upon mutation in which the order of domain binding/
unbinding is reversed.

Above, we compare the effects of the different APC variants on
the binding affinity in terms of how they disrupt the interaction
with β-catenin. However, these mutations (which include charge
substitutions and linker insertions) could potentially alter the
binding affinity by changing the conformational ensemble of the
unbound APC. To address this point, we measured the CD
spectra of a subset of the APC constructs and compared them
with literature values for folded, (pre)molten globule and
unfolded proteins from the Protein Circular Dichroism Data
Bank (PCDDB) (Supplementary Figure S6). We found that the
spectra were similar to each other and random coil in nature,
suggesting that the unbound APC ensemble is not significantly
altered by the mutations made.

A

C D

E F

B

FIGURE 6 | The effect of linker insertions and mutation of the lysine-interaction residue D1486S in APC on β-catenin-binding. (A) The sequences and properties of
the linkers inserted into APCabc. The hydropathy was calculated usingmean hydropathy of a sequence (Kyte and Doolittle, 1982). (B) Schematic showing the two sites of
linker insertions in APC. (C)Dissociation constants were measured by fluorescence anisotropy of the APC variants labelled with fluorescein at Cys 1501, and the data are
shown as the mean ± SEM of three replicates. (D) The association rates and the rates of the two dissociation phases, fast (E) and slow (F), were measured by
stopped-flow fluorescence. The data shown are the mean ± SEM of at least two replicate experiments consisting of five kinetic traces at each concentration measured.
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It is important to understand kinetic stability, as measured by
dissociation rates, as well as thermodynamic stability in efforts to
develop inhibitors of protein-protein interactions. β-catenin is
upregulated in many cancers, but the identification of small
molecule inhibitors is challenging given the very large, extended
interaction surface. Moreover, positive and negative regulators share
part of this interface, making selective inhibition even more difficult,
and inhibitorsmust also avoid disrupting the interaction of β-catenin
with E-cadherin at the cell membrane. An alternative approach is to
direct the cytosolic pool of β-catenin for degradation using either
small molecule PROTACs (proteolysis-targeting chimeras) or
peptide-based molecules. To this end, dissecting the contributions
of the different APC subdomains of APC to β-catenin binding will
provide critical information for developing ligands capable of
effectively engaging β-catenin.
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