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Abstract: Stem cells and cellular plasticity are likely important components of tissue response
to infection. There is emerging evidence that stem cells harbor receptors for common pathogen
motifs and that they are receptive to local inflammatory signals in ways suggesting that they
are critical responders that determine the balance between health and disease. In the field of
papillomaviruses stem cells have been speculated to play roles during the viral life cycle, particularly
during maintenance, and virus-promoted carcinogenesis but little has been conclusively determined.
I summarize here evidence that gives clues to the potential role of stem cells and cellular plasticity in
the lifecycle papillomavirus and linked carcinogenesis. I also discuss outstanding questions which
need to be resolved.
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1. Introduction

Human papillomavirus (HPV) infection occurs via micro wounds which allow the virus access to
the basal layer of stratified epithelia. This target site of infection has been the subject of intense scrutiny,
leading to significant progress regarding the molecular mechanisms governing the attachment and
eventual entry of the virus into initially infected cells [1,2]. However, the basal layer of stratified
epithelia has a relatively heterogeneous composition containing committed undifferentiated cells,
progenitors, and also the tissue stem cells [3]. It is not understood whether these are subject to
differential infection and whether the fate of infected cells varies based on cell identity prior to
infection. Nevertheless, it has been proposed that the virus may be more successfully maintained [4,5],
and indeed infected cells are more likely to proceed to tumorigenesis when the initially infected cell
is a tissue stem cell [6,7]. To this day there is little evidence to conclusively resolve this question. Yet
as progress is being made to better understand the role of “stemness” in carcinogenesis overall, the
question of its role in HPV-mediated carcinogenesis and potentially the viral lifecycle, grows more
intriguing. Furthermore, our evolving understanding of cellular plasticity raises new possibilities
which may be at play during the HPV lifecycle and pathogenesis. In this review, I will discuss the
available evidence and its implications and propose significant questions which remain to be addressed.

2. The Target Cell of Papillomavirus Infection

Papillomaviruses can productively infect both mucosal and cutaneous stratified epithelia.
Infection and the ensuing life cycle of the virus are intimately linked to the differentiation program
of the tissue [8,9] thus our reconstruction of these events relies on the solid understanding of tissue
biology. The skin is an easily accessible model tissue for stratified epithelial differentiation, homeostasis,
and regeneration due to its rapid turnover and ability to regenerate quickly upon mechanical injury.
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Much of our knowledge pertaining to the role of stem cell populations in these processes derives from
studying the cutaneous epithelia in mouse models [3]. The characteristics of cutaneous epithelia and
their stem cell populations may or may not extrapolate to the mucosal tissues. However, since
the cervical stem cells have not been conclusively characterized the comparison of the cervical
and cutaneous epithelia is useful and necessary. In stratified epithelia, the stem cells orchestrate
tissue homeostasis as well as acute regeneration [3]. From work done in mouse models we know
that different stem cell pools are primarily responsible for replacing lost cells during homeostasis
and regeneration [10,11]. Genetic ablation experiments have also provided evidence that a certain
amount of plasticity exists (for example if bulge stem cells are ablated, neighboring cells can replenish
the stem cell niche) [11,12]. Stem cells in cutaneous epithelia are typically slow-cycling and can
perform asymmetric division, dependent on the cellular niche, generating one stem and one transient
amplifying/progenitor cell. Of course, during wound repair the balance of asymmetric division may
be shifted to replenish stem cell populations to homeostatic levels [11]. Progenitors can then undergo
large numbers of cell divisions and gradual differentiation helping to replenish the tissue.

Studies using HPV virus like particles (VLPs), or infectious virions for attachment and viral
entry argue against the exclusive targeting of a small subpopulation such as the tissue stem cells.
Rather, the virus associates with the exposed basement membrane at a site of wounding, and furin
cleavage leads to conformational changes on the capsid which allow it to attach to nearby basal
cells via a receptor which recognizes L1 capsid protein [1,2]. The high prevalence of infection with
HPVs [13] seen in populations worldwide also provides an argument against a model in which the
virus exclusively targets a rare subpopulation. It is likely that both stem and non-stem cells adjacent
to a site of wounding can be infected. If there are smaller differences of susceptibilities to infection
between cell types, those would be technically difficult to quantify at least in vivo. However, it is
conceivable that the outcome of infection differs depending on the cell type infected.

3. A Cell Reservoir for Long-Term Viral Maintenance

If one takes for granted the more likely scenario that both stem and committed cells can be the
targets of infection, then a vital question concerns the fate of infection in a stem as opposed to a
committed cell. A popular hypothesis has been that long-term maintenance of the viral DNA can take
place within infected tissue stem cells [4,5]. This is particularly relevant to low-level, asymptomatic,
persistent infection which has been argued to be the source of future reactivation. [14,15]. During the
long period between initial infection and disease development the viral DNA may be able to persist in
a small subset of cells and is clinically undetectable. The reasons for lack of detection are likely linked
to the small number of cells harboring genomes and low levels of viral replication. Such infections can
escape immunological control later in life and lead to disease. Reactivation is marked by higher levels
of viral replication and transcription which facilitate clinical detection. While reactivation has not been
conclusively determined to occur in humans it is strongly supported by evidence obtained using rabbit
papillomaviruses as a model [5,16]. In a cottontail rabbit papillomavirus (CRPV) infection model, viral
genomes were detected in an area of the hair follicle which coincides with cells with in vitro clonogenic
activity [16]. In a rabbit oral papillomavirus (ROPV) infection model it has been shown that the virus
DNA can persist for long periods of time in a subset of the basal epithelial cells [5]. The authors
speculate that these cells harboring viral DNA represent the epithelial stem cells. This scenario is
not unlikely when one considers the contrast between the timeline of disease reactivation (over a
year following infection) compared to the quick regenerative pace of the epithelium. One would
predict that upon infection of a committed cell, the progeny cells harboring the virus would be cleared
from the tissue in a matter of days/months. Thus, it is reasonable to hypothesize that cells which are
maintained and harbor genomes for long periods of time represent a type of tissue stem cell. However,
little is known about the molecular characteristics of a stem cell in the rabbit oral epithelium. Much
less can be inferred about the identity of the cell prior to infection, thus it is difficult to assess this
claim conclusively.
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Hair follicle stem cells have also been proposed as the reservoirs for human cutaneous HPV
infections. DNA of β-papillomaviruses is frequently isolated from plucked eyebrow hairs [17,18]
suggesting that a cell type at this location is the long-term reservoir of the virus. β-Papillomaviruses
are emerging as potential co-factors in a subset of non-melanoma skin cancers [19,20]. Definitively
pinpointing the exact nature of the cell reservoir may be important for predicting the possibility of viral
reactivation in at-risk populations (Epidermodysplasia verruciformis (EV) patients, transplant recipients
etc.) [20].

The inability to define the concrete characteristics of the human cervical stem cells has complicated
studies aiming to understand the maintenance of the human mucosotropic viruses. It is thought that
the transformation zone which is characterized by a transition from columnar to squamous epithelium
is the site of the so-called reserve cells which may act as the cervical stem cells. Some markers have
been proposed for reserve cells (e.g., Keratin 17 (K17), p63, Keratin 7 (K7), etc.) [21,22] but the dearth of
healthy human biopsy material and the loose anatomic equivalence of the mouse cervix have hindered
functional studies of stemness on such putative stem cell populations. Importantly, a subset of cells in
the transformation zone have been shown to be susceptible to HPV infection, and high-grade lesions
stemming from this area are more likely to progress to carcinoma in situ [22]. Furthermore, lesions
share the expression of markers of this area—e.g., K7, matrix metalloproteinase-7 (MMP-7), cluster of
differentiation 63 (CD63)—and this immunophenotype was not regenerated after removal, in other
sites, or by HPV oncogene expression in keratinocytes. It is likely that these junctional cells represent
the source of at least some cervical malignancies and may represent a cervical stem cell population.
Reserve cells can likely serve as a site for infection and potentially a viral reservoir. There are however
HPV lesions which can be detected in other mucosal sites (e.g., the vagina) which do not share this
anatomic feature thus it is unlikely that these cells are the unique targets of infection, maintenance
or transformation.

4. Changes in Tissue Stem Cell Dynamics during Infection

Infected tissue stem cells are of interest due to their potential links to carcinogenesis. However,
more recently stem cells have also been implicated in the tissue response to infection. There is an
emerging understanding that tissue stem cells have evolved to respond directly both to commensal and
pathogenic microbes as evidenced by the expression of pattern recognition receptors (PRRs) in tissue
stem cells [23–25]. In addition to inflammatory signals (discussed in a later section of this review),
tissue stem cells have been shown to respond to the presence of microbes in ways which define the
balance between maintaining tissue health or disease development. The paradigm has been set by
studies in the gut where expression of nucleotide-binding oligomerization domain-containing protein
2 (Nod2) [24] and Toll-like receptor 4 (TLR4) [25] receptors in intestinal stem cells has provided a direct
link for the interaction of the stem cells with tissue commensals via the recognition of peptidoglycan
and lipopolysaccharide (LPS), respectively. This interaction has been shown to be critical to tissue
regeneration and homeostasis suggesting a direct link between microbes and tissue stem cells as
essential to tissue health. Of course, tissue stem cell dynamics have also been shown to be perturbed
by pathogenic bacteria in the gut [26,27] and other tissues such the urogenital tract where pathogenic
Escherichia coli [28] mobilize tissue stem cells and progenitors during pathogenesis.

While the effects of infection on tissue stem cell dynamics are less well understood in cutaneous
and mucosal epithelia compared to the gut, studies investigating the expression of viral gene products
on skin stem cell populations suggest that important changes occur. Compelling evidence regarding
the changes in stem cell dynamics during papillomavirus infection comes from studies using transgenic
animals for both mucosotropic [6,29] and cutaneous HPVs [30]. The available evidence for HPV16
converges towards a model where the expression of early gene products pushes the tissue stem
cells towards a hybrid state: one which retains typical markers of stem cells (e.g., K15) [6,29], but
also expresses atypical markers (e.g., P-cadherin) [6] and loses key functional characteristics such
as quiescence. Loss of quiescence and increased mobilization of the stem cells has been reported
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both upon individual expression of HPV16 E6 and HPV16 E7 likely through different pathways [29].
This change in stem cell dynamics may represent a critical aspect in the process of viral carcinogenesis.
Stem cell quiescence is a tumor refractory state and its absence may render the tissue more vulnerable
to additional carcinogenic insult [31]. Interestingly, HPV-associated tumorigenesis has also been
linked to non-quiescent, skin stem cell populations [32] likely to be hierarchically linked to quiescent
populations [33]. One study showed that in mice, tumors induced by HPV16 oncogenes are derived
from descendants of leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5)-positive stem
cells [6]. These are long-lived, non-quiescent cells in the hair follicle, which have been shown to actively
contribute to hair-follicle growth. Combined, these findings may represent a common pathway in
which HPV infection can lead to carcinogenesis by increasing stem cell mobilization and promoting
a stem cell state which is receptive to further oncogenic changes. These studies were performed in
mice, using transgenic animals which express the viral oncogenes throughout the basal layer of the
epithelium. Thus, it is difficult to precisely extrapolate these findings to what happens during human
infection. But the results support the notion that expression of viral oncogenes in cells with stem
cell properties has the potential to profoundly alter the behavior of these cells, their susceptibility to
carcinogenic insult, and rendering them more likely to contribute to carcinogenesis.

5. Changes in Cellular Plasticity during Infection

Initial focus has been on uncovering how the behavior of stem cells may change upon
papillomavirus infection. There is however also evidence which supports an alternate, not mutually
exclusive scenario: that during infection it is possible that reprogramming events can contribute to the
emergence of stem-cell like cells.

The increased stem cell mobilization seen in transgenic animals is also concurrent with the
expression of stem cell markers such as Keratin15 (K15) outside the typical stem cell niche [6,29].
The expression of early genes from the cutaneous HPV8 has also been shown to lead to an expansion of
stem cell markers, specifically leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) [30] in
a model expressing the early genes of HPV8 in the skin epithelium of mice. Interestingly similar Lrig1
expression pattern was also seen in biopsies from EV patients. This may represent a field cancerization
effect critical to β-papillomavirus-induced carcinogenesis which does not implicate the integration of
the virus in developing carcinomas as seen in alpha-papillomaviruses.

In light of technologies describing cellular reprogramming developed after Yamanaka’s seminal
discoveries in 2006 [34], the re-expression of stem cell markers in differentiated cells has been
re-evaluated as perhaps more meaningful than just mere dedifferentiation. It is now thought that
increased cellular plasticity may have functional significance in the pathogen lifecycle and disease.
In vitro cellular reprogramming of differentiated cells to pluripotency has been hailed as a way to
derive pluripotent cells which has initiated the development of better research models in the lab and is
under study to provide solutions in the field of regenerative medicine. Reprogramming is an epigenetic
process which gradually shifts the transcriptional program of a differentiated “reprogramming” cell to
that of a pluripotent one. Despite the concern for side-effects such as teratoma formation, the field
of reprogramming has made progress with in vivo [35] approaches, particularly strategies to achieve
tissue regeneration and rejuvenation. Studies aimed at understanding the mechanism of in vivo
reprogramming, have revealed that physiological stimuli such as tissue damage, inflammation and
senescence in a tissue can potentiate induced pluripotency in vivo [36]. Tissue damage or senescence
triggers the release of interleukin-6 which is critical in facilitating reprogramming in neighboring
cells [36]. This introduces the possibility that there may be evolutionarily conserved physiological
importance for in vivo cellular reprogramming-like processes which remain to be understood. It is
important to note that no findings to date suggest that such stimuli (tissue damage, senescence)
can trigger pluripotency independently. However, they add to accumulating credible evidence that
they may create a permissive environment for reprogramming events leading to intermediate and
likely transitory stem-like states. Critically, both tissue damage and senescence are relevant to the
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papillomavirus lifecycle. Stem-like states do not adhere exactly to the characteristics of isolatable
tissue or embryonic stem cells. However, such transitory states, are understood to form a continuum
spanning between differentiated and stem cells [37,38]. They are amenable to directed differentiation
in vitro, and likely represent safer avenues for transdifferentiation strategies than the use of pluripotent
cells [39,40]. However, the potential roles of transitory stem-like states in physiological processes,
including infection are poorly understood.

One of the most intriguing and compelling reported examples of reprogramming in vivo
implicates the intracellular Mycobacterium leprae [41]. The bacterium has been shown to reprogram
infected Schwann cells into stem cell-like cells. The reprogramming has significant implications for
the course of pathogenesis as well as the life cycle of the pathogen [42]. While Schwann cells have
high retention for the bacteria, the reprogrammed cells provide a route of dissemination into other
cell types which may be critical for neuropathogenesis during leprosy. While the molecular pathways
through which M. leprae infection leads to such events are incompletely understood, initial evidence
suggests that they involve in part the innate immune response and inflammation which precede such
reprogramming events [43].

Inflammation is naturally of relevance to the HPV lifecycle as well, particularly if one takes into
account the mode of infection. Both infection-associated and sterile inflammation are understood to
contribute to a regenerative response and inflammation is emerging as an evolutionarily conserved
mechanism of tissue regeneration [23]. Regenerative inflammation can be mediated both via native
signals to the tissue stem cells as well as to differentiated cells which may undergo profound
dedifferentiation or experience increased “stemness”. In fact, in the drosophila and the mammalian
gut, where regenerative inflammation has been most extensively studied, it has been shown to be
important both in the maintenance of tissue homeostasis in healthy tissue, as well as the promotion
of disease [23,24,26,27,44,45]. This regenerative inflammatory response is thought to extend to other
epithelial tissues and is likely an important aspect of epithelial recovery following papillomavirus
infection [23,46]. However, its implications in the viral lifecycle and pathogenesis have not been
addressed. Newer model systems involving a murine papillomavirus which infects via a site of
wounding may shed light to this aspect of papillomavirus biology as they most closely mimic the
conditions of real life infection [47–49].

Other than leading intracellular lifestyles HPVs do not have many commonalities with
mycobacteria at a first glance. However, upon closer inspection of the available evidence there
is good reason to suspect that the virus may be contributing to similar events. The viral oncogenes
have prominent targets which are implicated in stem cell biology and may contribute to epigenetic
reprogramming via their inactivation.

6. Mechanisms of Enhancing Cellular Plasticity

Work aimed at illuminating the critical steps during the process of reprogramming cells to
pluripotency, clearly implicated prominent tumor suppressors in stem cell biology. p53, retinoblastoma
protein (pRb) and other key players in tumor suppression have been shown to control checkpoints
during cellular reprogramming [50–54]. Their loss or inhibition has been shown to facilitate the
reprogramming process. Furthermore, they have been shown to impact the function of stem cell
related factors: p53 can control the expression of the stem cell related protein Nanog [55], while pRb
can directly bind sex determining region Y-box 2 (Sox2),and octamer-binding transcription factor 4
(Oct4) [56] thus controlling pluripotency networks via these key transcription factors. Since both p53
and pRb are critical targets of papillomavirus oncogenes it is important to interrogate whether in
addition to removing critical barriers for cell cycle control, their targeting during viral infection creates
a tissue environment which is more conducive to increased cellular plasticity (Figure 1). Consistent
with this E6 contributed to reprogramming of cells from Fanconi anemia patients which are difficult
to reprogram via its action on p53 [57]. The proteins encoded by the INK4A/ARF locus, some of
which are implicated in papillomavirus pathogenesis are also important during reprogramming [52].
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The extent to which in vivo inactivation of such tumor suppressors enables increased cellular plasticity
and phenomena of natural reprogramming remains to be seen.

In addition to targeting tumor suppressors which have been linked to cellular reprogramming
there is also evidence to suggest that the viral oncogenes may contribute to cellular reprogramming in
ways which are independent of their ability to target p53 or pRb. High-risk HPVs (16, 31) have recently
been shown to upregulate Kruppel-like factor 4 (Klf4) and contribute to its hypoSUMOylation [58].
This upregulation was necessary for the differentiation dependent lifecycle of the virus however it is
also critical to note that the functions of Klf4 cells harboring viral genomes were markedly different to
those seen in control keratinocytes. Biochemical evidence which dates back to the initial understanding
of the function of Oct4 demonstrated the ability of high-risk HPV E7 (similar oncoproteins such
as adenovirus E1A) to directly interact and synergize with Oct4 for the activation of its target
genes [59,60]. More recent evidence from transgenic animals suggests that E7 may also contribute to
the transcriptional upregulation of Oct4 [61]. Furthermore, E7 was shown to epigenetically reprogram
cells via the transcriptional activation of histone demethylases lysine (K)-specific demethylase 6A and
6B (KDM6A and KDM6B, respectively) [62]. This upregulation led to a decrease in Histone3 Lysine27
(H3K27) trimethylation, and downstream transcriptional changes such as the activation of Hox genes.
Critically this expression has been linked to the high p16 expression characteristic of HPV positive
cancers and may represent a way of targeting HPV-positive cancer cells since they are dependent
on its continued expression [63]. The E7 protein of cutaneous HPVs has been shown to lead to the
upregulation of several stem cell markers genes in infected keratinocytes and to the formation of cells
with stem-like properties—e.g., epithelial cell adhesion molecule (EpCaM) [64]. High-risk mucosal
as well as cutaneous HPVs and murine papillomaviruses also inhibit the Notch pathway which is
known to play important roles in commitment to differentiation [65,66]. Of course, the role of such
reprogramming to the viral lifecycle and pathogenesis is not well understood. It may be linked to
important aspects of the viral life cycle.
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degradation: retinoblastoma protein (pRb) has been shown to bind both sex determining region Y-box
2 (Sox2), and octamer-binding transcription factor 4 (Oct4) leading to repression of pluripotency [56].
p53 Has been shown to directly bind and suppress transcription from the Nanog promoter [55]. Both
pRb and p53 have been shown to be important gatekeepers during cellular reprogramming, and
their absence significantly facilitates the process [50,51,53,56]. (b) Transcriptional upregulation of
histone modifying enzymes: Upregulation of lysine (K)-specific demethylase 6A and 6B (KDM6A and
KDM6B, respectively) mediated by the E7 oncogene of HPV16 leads to a reduction of repressive H3K27
chromatin marks and downstream activation of targets such as Hox genes [62,63]; (c) Transcriptional
upregulation of stem cell-related transcription factors: the viral oncogenes E6 and E7 of high-risk types
have been linked to the upregulation of pluripotency associated transcription factors—Oct4 [61],
Hes family basic helix-loop-helix transcription factor 1 (Hes1) [67]. Infection with cutaneous
papillomaviruses has also been linked to the upregulation of stem cell related genes [30,64].
(d) Post-transcriptional control of stem cell related transcription factors has also been demonstrated: E7
has been reported to bind Oct4 and act as a transcriptional co-activator [60]. Both E6 and E7 have been
shown to transcriptionally, post-transcriptionally and post-translationally regulate Kruppel-like factor
4 (Klf4) (e.g., via hyposumoylation) leading to modified Klf4 activity in infected keratinocytes [58].
The upregulation of stemness related genes has been most frequently attributed to the viral oncogenes
E6 and E7 but the full mechanisms underlying some of these effects have yet to be elucidated.
Furthermore, the impact of the re-expression or modulation of stemness related genes in the viral
lifecycle and carcinogenesis is still poorly understood.

7. Potential Links of Cellular Plasticity to Disease

There is a dearth of studies which would allow definitive conclusions about the upregulation
of stem cell related proteins in the viral life cycle. However, there is an accumulating body of
evidence suggesting they may be linked to disease. The upregulation of genes related to stem cells
may be a way in which the virus contributes to the formation and maintenance of cancer stem cell
populations (Figure 1). Recently E6 has been shown to be upregulated in cancer stem cell-like cells
isolated from primary tumors cervical cell lines based on their immunophenotype and sphere forming
capabilities [67]. These cells were also shown to express Oct4, Sox2, Nanog, and Lrig1 and were
dependent on E6-mediated expression of Hes1 for continued self-renewal.

The expression of stem cell related markers is now increasingly reported in HPV-related cancers.
Proteins such as Sox2, Nanog, and Oct4 are now thought to serve not only as biomarkers tumor stage
and therapy response in cancer but also may be directly implicated in the process of carcinogenesis.
In HPV-associated cancers stem cell markers Oct4, Sox2 (in cervical cancers) [68], and Lrig1 (in head
and neck squamous cell carcinomas) [69] have been reported and proposed as potential biomarkers.
Given the established role of p16INK4A as a useful biomarker it remains to be seen whether the use of
these are of added prognostic benefit. Nevertheless, the expression of these proteins in cancer biopsies
and cervical cancer cell lines may provide insights into potential roles in the carcinogenic process.
Critically, the links of early gene products, particularly the viral oncogenes of human papillomaviruses
to the upregulation of such markers lends credibility to this notion.

A source of skepticism for studies supporting a changing cellular state during infection, derives
from the refractoriness of keratinocytes to cellular reprogramming and perceived lack of plasticity. It is
clear that no condition has been described thus far where a viral gene product or set of products have
been shown to independently lead to an isolatable stem cell. However, it is critical to bear in mind that
infection occurs in the context of a wound. It is an aspect of infection which has been poorly accounted
for particularly since many experimental models used in papillomavirus research do not take it into
consideration. In virion-infected monolayer keratinocytes, organotypic cultures of stably transfected
keratinocytes or transgenic animals expressing viral gene products, the wound environment is not
routinely modelled. However, during real-life infection, in addition to the viral invasion which triggers
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an inflammatory response via the presence of pathogen associated molecular patterns (PAMPs) there
are also damage associated molecular patterns (DAMPs), and reactive oxygen species (ROS) released
as a result of the wounding. Thus, both infection-associated, as well as sterile inflammation should
be kept in mind as additional important factors which likely remove constraints towards increased
cellular plasticity [36].

8. Conclusions

The role of stem cells and cellular stemness has been proposed to be important in the lifecycle
and disease promotion by HPVs. Viral genomes have been detected in anatomical locations which are
consistent with those of stem cells yet conclusive evidence as to whether infected stem cells are the
sites of viral maintenance of all HPVs or the cancer initiating cells of HPV-related cancers is to this
day tenuous. Early gene products, and particularly the viral oncogenes have been shown to modify
stem cell dynamics and cellular stemness, however the extent to which this is critical for the viral
lifecycle or for ensuing disease remains elusive. As HPV-related cancers account for about 5% of
human cancers [13] (and potentially more if one considers the accumulating evidence for the role of
β-papillomaviruses in cutaneous carcinogenesis) understanding the viral reservoir and mechanisms of
carcinogenesis remains imperative. At the same time, emerging tools and concepts from the booming
field of stem cell biology facilitate the task at hand. Current evidence suggests that viral maintenance
occurs in cells whose characteristics are consistent to those of stem cells (Figure 2). Critical questions
remain in tracing the origins of such cells: do they derive from infected tissue stem cells, or do they
develop stem-like characteristics subsequent to infection? It is also clear that early gene products, and
particularly the viral oncogenes can change the behavior of stem cells in a tissue, as well as reprogram
cells towards states which resemble stem cells in some aspects. The next frontier would be to uncover
direct links for these phenomena to aspects of the lifecycle on carcinogenesis.
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Figure 2. Model of changes in stem cells during papillomavirus infection and carcinogenesis.
(a) Papillomaviruses can gain access to the basal layer of stratified epithelia via microwounds. Following
attachment to the basement membrane, the virus can infect committed or stem cells in the basal layer
of the epithelium. As the epithelium heals, infected cells are subject to changes due to the expression of
early gene products and local inflammatory signals linked to infection and the regenerative response.
(b) Stem cells or stem-like cells (with at least some atypical features) detected during infection and
viral maintenance may be derived from infected stem cells or committed cells which have been
reprogrammed. (c) Cancer stem cells may likewise be derived from infected tissue stem cells or from
drastically de-differentiated committed cells.
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