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Genetically modified genomes are often used today in many areas of fundamental and applied research. In many studies,

coding or noncoding regions aremodified in order to change protein sequences or gene expression levels. Modifying one or

several nucleotides in a genome can also lead to unexpected changes in the epigenetic regulation of genes. When designing a

synthetic genome with many mutations, it would thus be very informative to be able to predict the effect of these mutations

on chromatin. We develop here a deep learning approach that quantifies the effect of every possible single mutation on

nucleosome positions on the full Saccharomyces cerevisiae genome. This type of annotation track can be used when designing

a modified S. cerevisiae genome. We further highlight how this track can provide new insights on the sequence-dependent

mechanisms that drive nucleosomes’ positions in vivo.

[Supplemental material is available for this article.]

The first geneticallymodified organismswere created in the seven-
ties, shortly after Cohen et al. developed the DNA recombination
technology (Cohen et al. 1973). This has been the foundation of
biotechnology which is now a flourishing domain both in funda-
mental research and industrial applications (Russo 2003). The re-
cent development of game changing technologies such as
CRISPR and DNA oligonucleotide de novo synthesis now opens
the way to major genome rewriting projects (Ostrov et al. 2019).
A first paradigmatic example of this effort, the Saccharomyces cere-
visiae 2.0 (Sc 2.0) project (Richardson et al. 2017), will soon deliver
the first example of a complete synthetic eukaryotic genome.
Several projects are now starting with the aim to design more syn-
thetic genomes (Ostrov et al. 2019) that could reach even the scale
of the human genome. In the field of genomic engineering, the
first step is to design the DNA sequence of interest, either resulting
from very few edits of the wild-type sequence, or from a more ex-
tensive genome rewriting, or even from the introduction of DNA
sequences coming from a different organism. When introduced
in the cell, this sequencewill be interpreted by the cellularmachin-
ery, and the resulting activity can be unpredictable. To date, there
is no way to know whether the nucleosomes will assemble
and position themselves on the DNA as expected, whether they
will be modified or not by enzymes, or whether the chromatin
will fold in space in an appropriate way. Because experimentally
testing a huge quantity of trial sequences is cumbersome, if
not unfeasible, computational tools are a good alternative to opti-
mize the design of synthetic sequences so that they can fold into a
functional chromatin in vivo. Although this is a complex problem,
the solution could come from the recent uptake of deep neural
networks.

In parallel to the evolution of experimental genome editing
techniques, the explosion of the amount of data available together

with algorithmic advances and the use of graphical processing
units (GPUs) (Shi et al. 2016) enabled the development of deep
neural networks in many different contexts. This led to several
breakthroughs in domains such as computer vision (Krizhevsky
et al. 2012; Girshick et al. 2014; Long et al. 2015), speech recogni-
tion (Hannun et al. 2014), and machine translation (Wu et al.
2016). As a data-driven domain, genomics followed the trend,
and pioneering studies (Alipanahi et al. 2015; Zhou and
Troyanskaya 2015) have demonstrated the effciencyof deepneural
networks to annotate the genome with functional marks directly
by interpreting the DNA sequence. The application of deep neural
networks to genomics is growing at a high pace, and it can now be
considered as a state of the art computational approach to predict
genomics annotations (Quang et al. 2015; Kelley et al. 2016, 2018;
Kim et al. 2016; Min et al. 2016; Jones et al. 2017; Umarov and
Solovyev 2017; Eraslan et al. 2019; Zou et al. 2019). One of the ad-
vantages of deep neural networks is their ability to predict a
learned annotation on a variation of the genome, that is, to predict
the effect of mutations.

In this work, we report the use of deep learning to estimate
the effect on nucleosome positions of changing each single nucle-
otide of the S. cerevisiae genome into another nucleotide. The nu-
cleosome positioning in S. cerevisiae has been extensively studied
in the past by MNase-seq. This protocol relies on the enzymatic
digestion of the linker DNA between nucleosomes and the se-
quencing of the protected DNA (Zhang et al. 2011; Hughes and
Rando 2015; Krietenstein et al. 2016). Several studies pointed to-
ward a close link between gene regulation and nucleosome posi-
tions (Tsankov et al. 2010; Hughes et al. 2012). The role of the
DNA sequence in the nucleosome positioning process has been a
longstanding debate. To assess this question, a pioneering study
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(Segal et al. 2006) showed evidence for the existence of motifs neg-
atively correlated with nucleosome positions (Iyer and Struhl
1995; Anderson and Widom 2001; Raisner et al. 2005). Kaplan
et al. (2009) developed a statistical method to predict the nucleo-
some density from the DNA sequence, emphasizing the preferen-
tial positioning of nucleosomes on specific DNA statistical motifs.
Numerous computationalmethods (for review, see Teif 2016) were
developed afterward to predict the positions of nucleosomes from
the DNA sequence. Recently, deep neural networks were also ap-
plied to discriminate between 147-bp-long sequences bound by a
nucleosome and 147-bp-long sequenceswithout anynucleosomes
(Di Gangi et al. 2018; Zhang et al. 2018).

Building on these previous works, we use here convolutional
neural networks (CNNs) to predict the experimental nucleosome
density (i.e., the results of the MNase protocol) for every position
on the S. cerevisiae genome from the raw DNA sequence. The mod-
el reproduces well the characteristic nucleosome depletion around
transcription start sites (TSSs) as well as the typical periodic nucle-
osomal pattern on gene bodies.We then use themodel as an in sil-
ico model of the yeast machinery to predict the effect of every
single mutation along the genome. In doing so, we assign to every
nucleotide a score representing its importance regarding the nucle-
osome positioning process. This genomic track is accessible
at GitHub (https://github.com/etirouthier/NucleosomeDensity/
blob/master/Results_nucleosome/mutasome_scerevisiae.bw) and

can be used freely by others, when designing genetically modified
yeast, to anticipate the effect of inducedmutations on nucleosome
positioning. We also use this track to analyze the DNAmotifs that
present a high mutation score, corresponding to motifs that are
important for nucleosome positioning.

Results

Quality of the prediction

The first goal of this study is to accurately predict the nucleosome
density directly from the DNA sequence. We use a CNN model
whose input is defined by a one-hot-encoded DNA sequence of a
given length L and whose output is the nucleosome local density
associated with the nucleotide found in center of the input se-
quence. Several approaches aiming at extracting nucleosome posi-
tions from the nucleosomedensity have been proposed (e.g., Chen
et al. 2013, 2014), but our goal here is to predict the experimental
output—that is, the continuous nucleosome density—rather than
the nucleosome positions that can be inferred from this experi-
mental density. We present in this section a quantitative evalua-
tion of the prediction quality.

A typical experimental result, such as the one of Hughes
et al. (2012), exhibits a locally periodic signal, with depleted re-
gions preferentially found in inter-genic regions (Fig. 1A, red
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Figure 1. Evaluation of the predicted nucleosome density. (A) Comparison between experimental (red) and predicted (blue) nucleosome densities in a
region of Chromosome 16. Genes are shown in blue on top of the two tracks (data from Hughes et al. 2012). (B) Density plot of the predicted nucleosome
density in function of the experimental nucleosome density. The correlation between the two signals is 0.68. The distributions of the values of these two
tracks on Chromosome 16 are also shown at the top (experimental) and on the right (prediction). (C) Cross-correlation between nucleosome densities on
Chromosome 16 for four technical replicates (data fromKaplan et al. 2009) and four predictions obtainedwithmodels trained on each of the four replicates
(e.g., rep1_pred is obtained with amodel trained on the rep1 nucleosome density). (D) Cross-correlation between nucleosome densities for 13 experiments
and 13 predictions with models trained on each of the 13 experimental densities (experimental densities are on the horizontal axis, predicted densities on
the vertical axis). The 13 experiments were carried out using different growth media (namely YPD, YPEtOH, and YPGal). Two different cross-linking con-
ditions were used (cross-linking of nucleosomes on DNA prior to MNase digestion: CL; or no cross-link: NOCL).
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signal). We train a CNN (refer to Methods for details) using the
experimental nucleosome density of all chromosomes but the
Chr 16, which is kept aside as a test set. A length L =2000 bp
of the input sequence was chosen, and all sequences of length
L obtained with a 1-bp sliding window on each chromosomes
are used for training (Chr 1 to Chr 13), validation (Chr 14 and
Chr 15), and test (Chr 16). The prediction on Chromosome 16
matches the experimental density, both in genic and inter-genic
regions (Fig. 1A, blue signal). A quantitative comparison between
the two signals on the whole chromosome is displayed in Figure
1B. Our method reaches a Pearson’s correlation of 0.68 between
prediction and experiment, a value comparable with the results
obtained by state-of-the-art CNN-based methods on other tracks
annotating the human genome, such as DNase sensitivity or his-
tone modifications (Kelley et al. 2018).

To investigate the generalizability of our results, we trained
four CNNs models independently on four experimental replicates
from a different data set (Kaplan et al. 2009). The Pearson’s corre-
lation between predictions (0.85 ±0.05) is in the same range as the
correlation between experimental replicates (0.87±0.07). These
values are constantly higher than the correlation between predic-
tions and experiments (0.58 ±0.05) which is itself lower than the
correlation of 0.68 we obtained with the Hughes et al. data set
above (Fig. 1C; Hughes et al. 2012). An important control is that
the performance obtained by comparing the predicted density
with the experimental density coming from the data set used for
training the model is not significantly higher than the perfor-
mance obtained by comparing the predicted density with the ex-
perimental densities from data sets which were not used for
training (i.e., correlation between rep1_pred [as defined on Fig.
1C], and rep1 is comparable to the correlation of rep1_pred with
the three other experimental densities). The model thus filters a
large part of the replicates variability, which indicates a good gen-
eralizability of the results.

Training a network is a nondeterministic process. We trained
four networks on the same data set and looked at the variability in
predictions. We found that this variability can vary locally and is
correlated with the experimental variability observed between rep-
licates (Supplemental Fig. S1). This indicates that using CNN could
also be valuable to find regions of higher or lower confidence in ex-
perimental data.

To further investigate the generalizability of our models, we
trained independently CNNs on experimental densities ob-
tained under different experimental conditions (Kaplan et al.
2009). Those conditions are the growth medium (YPD, YPEtOH,
YPGal) and the presence or absence of a formaldehyde cross-
linking step in the experimental protocol. For each condition,
several technical replicates are available. All the model-predicted
densities do not correlate significantly better with the experi-
mental densities that were obtained with the same growth me-
dium as compared to the density that were used to train the
model. This points toward an overall similar nucleosome posi-
tioning in these different growth conditions (Fig. 1D). We
next focus on regions surrounding the GAL1-10 promoters,
which are known to exhibit a different nucleosome occupancy
profile in YPD versus YPGal (Supplemental Fig. S2). Our predic-
tion captures the nucleosome depletion at these gene promoters
in YPGal (highlighted in light blue on Supplemental Fig. S2) but
fails to reproduce the strong positioning of specific nucleosomes
neighboring these promoters in YPD (highlighted in light gray
on Supplemental Fig. S2). The model thus learns some of the
growth medium-specific patterns at locations where the nucleo-

some density changes significantly between experimental
protocols.

Themodels trained on experimental results including or lack-
ing a cross-linking step produce quite different predictions when
applied on the Chromosome 16 sequence. The models that were
trained with an experimental density lacking a cross-linking step
are predicting densities that correlate, on average, better (0.59)
with experimental densities obtained with no cross-linking step
than with experimental densities obtained using a cross-linking
step (0.49). Similarly, predicted densities obtained with a model
trained on cross-linked data correlate, on average, better with ex-
perimental densities obtained with cross-link (0.45 vs. 0.39). The
globally lower correlation values obtained using experiments
that include a cross-linking step show that this step generatesmod-
ifications in the experimental nucleosome density that cannot be
predicted from the sequence alone. This suggests that this step can
alter the nucleosome profile in a nonreproducible way.

For the sake of comparison of our CNN-based method with
previously proposed CNN-based method for predicting nucleo-
some positions from DNA sequences, we used two previously pro-
posed networks (Di Gangi et al. 2018; Zhang et al. 2018) to predict
the nucleosome density over the entire Chromosome 16. We
found a correlation between prediction and experiment of 0.43
and 0.40 to be compared with 0.68 obtained with our model
trained and tested on the Hughes et al. (2012) data set. The lower
performance of previously published methods for this task is ex-
pected because both methodologies were designed as classifiers
which discriminate between fragments of DNA containing a nu-
cleosome and fragments of DNA devoid of nucleosomes, whereas
our method is designed to predict directly the nucleosome density
over awhole chromosome. Allmethods nevertheless reproduce ac-
curately inter-genic nucleosome-depleted regions, but ourmethod
reproduces with more accuracy the locally periodic density ob-
served between depleted regions (see Supplemental Fig. S3).

Studying the effect of input length L on the predicted nucleosome

phasing at TSSs

Whereas specific DNA-binding proteins usually recognize short
DNAmotifs, nucleosomes are positioned by a combination of sev-
eral other mechanisms, including DNA local flexibility and shape,
as well as the presence of neighboring nucleosomes (Mavrich et al.
2008; Tsankov et al. 2010; Zhang et al. 2011; Hughes et al. 2012;
Riposo and Mozziconacci 2012). The length L of the input se-
quence in our model is thus an important parameter that can
change the performance of the CNN. We display on Figure 2 a
comparison between the predicted and experimental metagene
profiles (i.e., nucleosome density averaged over TSS regions) for
different input lengths (L=151, 501, 1001, and 2001 bp). The ex-
perimental nucleosome density exhibits a characteristic pattern
when averaged over TSS regions: a region with a low density,
known as the nucleosome-depleted region (NDR), precedes the
TSS position. Further nucleosomes are regularly spaced with a pe-
riodicity of 167 bp on the gene body (Mavrich et al. 2008; Riposo
andMozziconacci 2012). This pattern reflects themolecularmech-
anisms at work in nucleosome positioning. Nucleosomes are ex-
cluded from regions preceding TSSs, which are enriched with
RNApolymerase. These regions act as barriers aroundwhich nucle-
osomes tend to stack upon each other, either due to thermal noise
(Mavrich et al. 2008), or to chromatin remodelers (Lieleg et al.
2015) and local attraction between nucleosome faces (Riposo
and Mozziconacci 2012). How accurately this characteristic
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pattern is reproduced by themodel is hereafter used as a qualitative
measure.

The CNNmodel is able to identify and predict the NDR for all
values of the input length L. This result is expected because short
DNA motifs such as poly(A) motifs are known to exclude nucleo-
somes from these regions. However, the prediction of the periodi-
cal pattern has a strong dependence on the input length L. For L=
151 bp (which corresponds to a single nucleosome), the model is
not able to recover the periodical pattern (Fig. 2A); the correlation
between the predicted and the experimental metagene profiles is
nevertheless high—it reaches 0.9 (Supplemental Fig. S4). For L=
501 bp (approximately three nucleosomes), a periodical pattern
starts to appear, and the first nucleosome after the TSS is well po-
sitioned (Fig. 2B); this improvement can be quantified by the cor-
relation betweenmetagene profiles which increases to 0.93. For L=
1001 bp (six nucleosomes), the periodical pattern improves, and
the first three nucleosomes after the TSS are well positioned (Fig.
2C); the correlation between the metagene profiles reaches 0.95.
The best prediction quality is obtained for L=2001 bp, which cor-
responds to 12 nucleosomes, the typical size of longer genes. For
this particular length of the input, the characteristic nucleosome
pattern in TSS regions is well reproduced by our network (Fig.
2D); the correlation between the metagene profiles is accordingly
increased to 0.97. Further increasing the input length does not
change the performances significantly, whereas it penalizes the
training process due to an increasing need for computational
memory. The global correlation between experimental and pre-
dicted densities over the whole chromosome increases from 0.63
to 0.68 (Supplemental Fig. S7) when the input length L increases.

Genome transfection of Kluyveromyces lactis in S. cerevisiae

Hughes et al. (2012) transfected pieces of the Kluyveromyces lactis
genome into S. cerevisiae and measured the nucleosomal density
with MNase-seq in order to compare the nucleosome positioning
mechanisms in different species. Following their idea, we try to
predict the nucleosome density in a different yeast species to fur-
ther assess the generality of themodel. Themodel trained on S. cer-
evisiae is first used to predict the nucleosome density on
Chromosome F of K. lactis. Results are presented in Figure 3, where
the predicted density averaged over TSSs is compared with two dif-
ferent experimental densities (Fig. 3A): the nucleosome density on
Chromosome F ofK. lactis (Fig. 3B) and the nucleosome density on
Chromosome F of K. lactis transfected in S. cerevisiae. The CNN is
able to capture accurately the NDR in K. lactis while being trained

on S. cerevisiae. We conclude that DNA sequence motifs that deter-
mine NDR are similar between those two species. If we consider
now the periodical pattern on the gene body, we can see that the
prediction on K. lactis displays a periodical pattern, but the value
of the period, called nucleosomal repeat length (NRL), is the
same as in S. cerevisiae (167 bp), whereas it should be 176 bp, as ob-
served in K. lactis. The predicted density is indeed similar to the ex-
perimental nucleosome density obtained on the transfected K.
lactis sequences in S. cerevisiae. Our model is able to predict the
behavior of the cell machinery of S. cerevisiae for the task of posi-
tioning nucleosomes on an exogenous genome.

Having carefully characterized the behavior of our model
across replicates, experimental conditions, and DNA sequences
from different species, we now wish to use it to predict the effect
of single mutations on the nucleosome positions.

Predicting the effect of single mutations

With our model in hand, it is now possible to predict the nucleo-
some positions resulting from a mutation in the genome. The ra-
tionale behind this is that the more important a nucleotide is
regarding nucleosome positioning, the more the effect of a
mutation of this nucleotide will modify the predicted nucleosome
density. In order to find positions on the genome associated
with such modifications, we generate all the possible single muta-
tions along the genome and assign to every position a mutation
score. This mutation score represents the Z-normalized distance
between the nucleosome density predicted with and without
mutation. Training several CNNs by letting aside from the training
set each time the chromosome on which the prediction will be
made, we computed the mutation score across the whole genome
(see Methods for details).

A typical example of the mutation score along a region of
Chromosome 16 with representative peaks at specific positions is
outlined in Figure 4A. Those peaks often coincide with NDRs, rep-
resented as red dotted lines in Figure 4A. Aligned and averaged
around every NDR start, the mutation score displays a peak cen-
tered on the NDR (Fig. 4B). This result highlights the fundamental
role of the NDR in nucleosome positioning.

The distributionof themutation score (Fig. 4C) exhibits a nar-
row peak with over 90% of the values falling between −1 and +1
standard deviations, to be compared with 68% expected for a nor-
mal distribution. The distribution also features a long tail toward
positive values corresponding tomutations having a strong impact

B C DA

Figure 2. Influence of the input length L on the pattern of the predicted nucleosome density in TSS regions. Average predicted (blue) and experimental
(red) nucleosome density in TSS regions. The predicted nucleosome density is here obtained with CNN models trained with different values of L ([A]: 151
bp, [B]: 501 bp, [C ]: 1001 bp, [D]: 2001 bp). The other hyperparameters of the network are the same. Nucleosome positions (in red for the experimental
and blue for the predicted densities) are sketched below the curves. +1 and −1 refer to the first nucleosomes before and after the NDR.
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on nucleosome positioning. In the following, we focus on muta-
tions with a score above 5, representing 0.6% of the genome.

To investigate the existence of DNA motifs for nucleosome
positioning (Segal et al. 2006), we analyze the motifs found at
these highmutation score positions.We collect all 15-bp sequenc-
es surrounding a nucleotide with a high mutation score and ex-
tract from them overrepresented motifs (see Methods). Those
motifs can be separated into two groups. The first group
corresponds to poly(A) and the second group corresponds to
poly(CG) (Fig. 4C).

The first group, poly(A), has previously been shown to be
overrepresented in NDRs and to have a role in nucleosome exclu-
sion from these regions (Suter et al. 2000; Anderson and Widom
2001; Raisner et al. 2005; Segal and Widom 2009). This effect
has been proposed to be in part due to the natural stiffness of
the poly(A) stretches (Iyer and Struhl 1995) and is enhanced and
modulated by active nucleosome remodeling (Zhang et al. 2011;
de Boer and Hughes 2014). An important player in this process is
the Remodeling the Structure of Chromatin (RSC) complex, which
has been shown in vitro to clear promoters by removing nucleo-
somes from poly(A) sequences (Krietenstein et al. 2016).

The second group, poly(CG), also corresponds to the binding
sequence of a subunit of the RSC (RSC3) (Badis et al. 2008). These
sequences are found preferentially ∼100 bp upstream of TSSs (see
Supplemental Fig. S5). Mutation of the RSC3 protein has been
shown to result in an increase in nucleosome occupancy at
NDRs which contained a poly(CG)motif, suggesting that these se-
quences can exclude nucleosomes as well (Badis et al. 2008).

The roles of poly(A) and poly(CG) have previously been de-
scribed only in NDRs upstream of TSSs, and our findings are in
line with these previous results. Indeed, only a fraction of those
coremotif occurrences result in a significantly highmutation score
(21% for poly[A], 13% for poly[T], and 29% for poly[CG]) (Fig. 4D).
These sites are enriched in NDRs: when the motifs are present
within gene bodies, their predicted impact on nucleosome posi-
tions is weaker.

We next ask whether all NDRs have poly(A) or poly(CG) mo-
tifs and find that almost 60% of the NDRs harbor at least one of
thesemotifs (Fig. 4E). Approximately 40% of the NDRs harbormo-

tifs coming from one group only, but the two groups are not mu-
tually exclusive, because ∼20% of the NDRs harbor motifs coming
from both kinds, that is, one poly(A) and one poly(CG) (Fig. 4E).
We next investigate the relative position of these motifs relative
to the TSS. Poly(A) and poly(CG) motifs are typically located 120
and 140 bp upstream of the TSS (Supplemental Fig. S5). When
both sites are present within a NDR, the poly(A) is, on average,
moved further away from the TSS (160 bp). The position of the
start site of the NDR does not depend on the group of motifs pre-
sent: the NDR always starts, on average, 75 bp upstream of the TSS
(Supplemental Fig. S5).

To investigate more quantitatively the effect of disrupting
these motifs within the NDR, we compute the averaged predicted
nucleosome density in a 200-bp region centered on all motif in-
stances within NDRs with and without mutations in the motif.
A mutation of a nucleotide in either a poly(A) or poly(CG) motif
results in an increase of the nucleosome density in the vicinity
of the mutation (Fig. 4F). A similar effect is seen for the comple-
mentarymotifs poly(T) and poly(GC). This effect does not depend
on the fact that one or two different motifs are found within a
NDR.We conclude that, in agreementwith previously reported ex-
perimental results, these two motifs are involved in the depletion
of nucleosomes. Using this methodology, we do not find any mo-
tifs that would position nucleosomes by attracting them, that is,
motifs for which a mutation would locally reduce the nucleosome
density.

Predicting the effect of multiple mutations

When designing synthetic genomes, one often needs to make sev-
eralmutations in a given region.We therefore set out to investigate
qualitatively the effect on the prediction of the nucleosome occu-
pancy of having two or more mutations. We chose for illustration
purposes a region of Chromosome 16 displaying two high muta-
tion score positions in an inter-genic region (Fig. 5A, top). The
two sites, numbered 1 and 2, fall into two NDRs that flank a
well-positioned nucleosome. We computed the variation in pre-
dicted nucleosome occupancy that resulted in mutating each
one of the sites or mutating both sites. Mutation of site 1 results

A B

Figure 3. Predictions on the Kluyveromyces lactis genome compared with experiments. The prediction of the model, trained on Saccharomyces cerevisiae
and applied on Chromosome F of K. lactis, is comparedwith the experimental data obtained by Hughes et al. (2012). The signal around every TSS is aligned
with respect to the first nucleosome downstream from the TSS and averaged. (A) Endogenous context (Chr F of K. lactis in K. lactis). (B) Transfected context
(Chr F of K. lactis in S. cerevisiae).
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in a partial loss of the correspondingNDR.Nucleosome occupancy
decreases at nucleosomal peaks in the vicinity of themutation (in-
dicated with dotted lines on Fig. 5A) and increases in linker re-
gions. Mutation of site 2 induces a wider opening of the
corresponding NDR as well as a sliding of the two neighboring nu-
cleosomes away from the NDR.Whenmutating both sites, this re-
sults in a nontrivial combination of the two variations, leading to
an overall higher perturbation of the nucleosomal occupancy than
for one mutation alone.

We then set out to quantify the average effect of having two
mutations at high-scoring mutation sites. We reasoned that the
combination of two mutations may depend on the distance be-
tween these mutations. Based on the autocorrelation of the muta-
tion score (Fig. 5B), we defined three different types of
comutations: the first one for mutations that are closer than 5 bp
corresponds to mutations in the same motif; the second one for
mutationswhich are foundbetween 5 and 90 bp away corresponds
to mutations within a cluster of motifs; and the third one corre-
sponds to mutations which are found between 90 and 500 bp.
Note that by construction of our network, mutations which are
found at a distance greater than two input sequence lengths
(here, 4000 bp) will be independent, so that the mutation score
for the two mutations will be the sum of mutation score for each
mutation taken independently. In order to evaluate the effect of
two mutations and compare this effect with the effect of single
mutations, we selected 1000 loci with high (>5) mutation scores
on each chromosome and computed their average mutation score
(Fig. 5C, light gray). For all thesemutations, we investigated the ef-
fect of high-scoringmutations that were foundwithin 5 bp (Short)
by computing their average nonstandardized mutation score (Fig.
5C, gray). We then compared these two values with the average
nonstandardized score obtained by mutating both the primary

and secondary mutations (Fig. 5C, red). We used here nonstandar-
dized scores which are always positive and additive by construc-
tion, whereas standardized scores are not. This procedure was
repeated for mutations found between 5 and 90 bp away
(red, Medium) as well as for mutations found between 90 and
500 bp away (red, Long). We conclude that the effect of having
two mutations of high mutation score within a region can be, on
average, approximated by the sum of the effect of each mutation
taken independently and that this effect does not depend on the
distance between mutations. The sum of the mutation score of
eachmutation and themutation score associated with their simul-
taneous mutations are strongly correlated (0.75 for short-, 0.70 for
medium-, and 0.80 for long-distance comutations) (Supplemental
Fig. S6A–C). As a recommendation for genome design, we thus ad-
vise changing as few nucleotides as possible with high mutation
scores.

When repeating a similar analysis for lowmutation score nu-
cleotides (score< 1) (Fig. 5D), we also found that mutating two nu-
cleotides with low mutation score impacts, on average, the
nucleosome occupancy in the proportions one would expect by
adding the mutation scores for each mutation. The sum of the
nonstandardized mutation score of each mutation and the muta-
tion score of the comutations are also strongly correlated (0.73
for short-, 0.82 for medium-, and 0.97 for long-distance comuta-
tions) (Supplemental Fig. S6D–F). On average, mutating two
such nucleotides leads to a standardized mutation score of 1,
still much below the highest scores that can be obtained by chang-
ing some specific nucleotides with high mutation scores.
Nevertheless, when adding more and more mutations within the
same region, the mutation score can reach values as high as 15,
that is, scores obtainedwhenmutating two high-score nucleotides
(Fig. 5E). As a guideline for design, our analysis shows that, on

A

B
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D

F

E

Figure 4. Effect of single mutations on the nucleosome density. (A) Themutation score on a region of Chromosome 16. NDRs are shownwith red dotted
lines. (B) Average of the mutation score aligned on all NDR starts. On average, the mutation score is peaking in the NDR, showing the major role of those
regions in the nucleosome positioning process. (C ) The distribution of the mutation score, as well as the threemotifs enriched in the DNA sequences found
in peaks with high mutation scores. (D) Proportion of poly(A), poly(T), and poly(CG) motifs in the genome that correspond with a high mutation score.
(E) Proportion of four groups of NDR:NDR containing only poly(A/T) motifs (referred to as A-T), containing only poly(CG) likemotifs (CG), containing both
poly(A) and poly(CG) like motifs (A-T-CG), and NDR harboring none of these motifs. (F) Effect of a mutation in the poly(A/T) and poly(CG) motifs found in
NDRs on the nucleosome density in A-T and CG NDRs, respectively (top), and in A-T-CG NDRs (bottom).
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average, 20 low-score mutations have a similar effect as compared
to one high-score mutation.

These figures can serve as a baseline to evaluate the effect of a
specific sequence design on nucleosome positions, but in the case
of a massive editing of many nucleotides, we recommend running
a full prediction of nucleosome occupancy on the designed se-
quence in order to check for the potentially unwanted effects on
nucleosome positioning.

Discussion

In this study, we used deep learning to generate a genomic track
that leverages MNase-seq experimental results in order to predict
the potential changes of nucleosome positioning resulting from
mutating any base pair in the S. cerevisiae genome. A similar proce-
dure can, in principle, be done for any genomic track. The benefits
of this track are twofold. First, it can give some guidelines to create
a synthetic genome without modifying nucleosome positions in
an unwantedmanner. Second, the results can be used to better un-
derstand how nucleosomes are positioned by the underlying DNA
sequence.

The study of the predicted nucleosome phasing at TSSs as a
function of the input length of the network gives us more precise
information. A network whose inputs are too short is able to cap-
ture the position of the NDR whereas it is not able to capture the
periodicity in the pattern of nucleosome positions away from
the NDR (Fig. 3). This observation leads to two conclusions:
NDRs are hard-coded by DNA motifs, whereas the DNA sequence
wrapped around nucleosomes is not suffcient to precisely set their
positions. In a cross-species context, in which the network is
trained in S. cerevisiae and the predictions are made on the K. lactis

genome, the periodicity is wrongly predicted to be the one of S. cer-
evisiae, whereas theNDRs arewell predicted. These observations re-
veal the importance of the conserved DNA motifs residing in the
NDRs in the process of nucleosome exclusion upstream of the
TSSs. Studying the influence of single mutations all along the ge-
nome allows us to confirm this mechanism and to point out these
specific motifs. Poly(A) and poly(CG) are, in agreement with earli-
er experimental studies (Suter et al. 2000; Anderson and Widom
2001; Raisner et al. 2005; Badis et al. 2008; Krietenstein et al.
2016), shown to be the core motifs preventing nucleosomes
from binding in the NDRs. Although our study confirms the role
of these core motifs, it also outlines that not all of these motifs
in the genome are important for nucleosome positioning. We
also show that other positions along the genome can play a role
in this process. A general guideline for designing a synthetic yeast
genome would be to preserve nucleotides that present a high mu-
tation score. For a quantitative anticipation of effects of mutation,
the mutation score track is available at GitHub (https://github
.com/etirouthier/NucleosomeDensity/blob/master/Results_nucleo
some/mutasome_scerevisiae.bw).

Of course, the procedure used here in yeast for nucleosome
positioning can be extended to other genomic tracks and other
species. Whereas we have validated here the high potential of
this approach by studying how the DNA sequence drives nucleo-
some positioning in yeast, we anticipate that it will be a very valu-
able tool to study nucleosome positioning rules in more complex
organisms and ultimately in human. This would, for instance, em-
power the community to ask whether some mutations frequently
associated with diseases have a predominant role in positioning
nucleosomes. Several issues will need to be solved to achieve this
aim. The first is mappability; because many genomic regions are

A B

D
E

C

Figure 5. Effect ofmutatingmultiple nucleotides. (A) Illustration of the effect of twomutations on nucleosome occupancy on a locus of Chromosome 16;
(top) mutation score over the region, (blue) predicted nucleosome occupancy for the wild-type sequence, (light gray and gray) local variation of the pre-
diction obtained when mutating position 1 or 2, respectively, (red) local variation of the prediction obtained when mutating both positions. Nucleosome
occupancy peaks are highlighted with dashed lines. (B) Autocorrelation of the mutation score (semi-log-10 plot). Three different regimes can be identified,
separated by dashed lines. (C ) Average nonstandardized mutation score obtained by mutating 16,000 randomly sampled single nucleotides presenting a
highmutation score (>5, light gray), bymutating, one by one, all nucleotides that are found closer than 500 bp to thesemutations (gray), and bymutating
all pairs of nucleotides that are closer than 500 bp (red). Mutation scores are separated in three categories based on the distance between the twomutated
nucleotides: less than 5 bp (Short), between 5 bp and 90 bp (Medium), and between 90 bp and 500 bp (Long). (D) Same asC but for nucleotides with a low
mutation score (<1). (E) Evolution of the mutation score with the number of mutations with a low mutation score. All mutations considered here—taken
individually—have a score <1. The solid line represents the average mutation score, and the width of the line represents the standard deviation of the dis-
tribution of mutation scores.
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repetitive, the nucleosome density cannot be measured on these
sequences, and this needs to be explicitly taken into account dur-
ing training. The second is the size of the genome. The human ge-
nome is more than 200 times longer than the yeast genome. This
has two impacts. The first is the coverage of the MNase experi-
ment. The best coverage achieved for human cells is about 30 reads
per nucleosome, whereas it is usually 10 times higher in a standard
yeast experiment (cf. Valouev et al. 2011 and Kaplan et al. 2009).
Last but not least, nucleosome spacing in human depends both
on the cell type considered as well as on the location on the ge-
nome. The nucleosomal spacing is 167 bp in yeast, and the nucle-
osomal density shows only minor changes in different growth
conditions (Supplemental Fig. S2). In human, the spacing can
change along the genome as well as in different cell types, taking
values ranging from178 to 205 bp (Valouev et al. 2011).We expect
that these issues can be solved by using more sophisticated net-
work architectures as well as increasing the computing power
and that future developments in deep learning algorithms will be-
come a game-changing technology for genome writing.

Methods

Data accession and preprocessing

We use the reference genome sacCer3 of S. cerevisiae, available at:
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/.

MNase-seq experimental results are available through NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) under accession numbers GSM552910 and GSE13622
(Kaplan et al. 2009). Data for K. lactis used in the present study
have been obtained from Tsankov et al. (2010) and are available
at GEO under accession number GSE21960. The experimental av-
eraged nucleosome density in the TSS regions was obtained from
the study of Hughes et al. (2012) and is available at GEO under ac-
cession number GSM953761.

To obtain the nucleosome density from single-end reads, we
take the beginning of each read and add one count for each base
pair in a region of 100 bp in the direction of the read. We then
truncate the obtained nucleosome density to a threshold—the
99th percentile of the distribution of density scores—and divide
the density by the threshold. This finally yields a density signal
comprised between zero and one. We prepare input sequences of
151, 301, 501, 1001, 1501, and 2001 bp for every position in the
genome except for Chromosome 16 to define the training
(Chromosome 1 to 13) and validation (Chromosome 14 and 15)
sets. We thus generate 10,613,042 input sequences among which
those corresponding to a nucleosomal density equal to zero are ex-
cluded (as they correspond to nonuniquely mappable sequences).
Each input sequence is then labeled with the nucleosome density
value found at its central position.

Model architecture and training

We implement the CNN using the Keras library (https://keras.io)
and TensorFlow (Abadi et al. 2016) as back-end. A RTX 2080 Ti
GPU is used to improve training speed. We use the adaptive mo-
ment estimation algorithm (Adam) to compute adaptive learning
rates for each parameter and a batch size of 512.

Our CNN architecture (see Fig. 6A) consists of three con-
volutional layers with, respectively, 64, 16, and 8 kernels of shape
(3 ×1× 4), (8 × 1×64), and (80×1 ×16). The stride is equal to 1. Our
model takes inputs of shape (L, 1, 4), the last dimension represent-
ing the four nucleotides.

The first and second layer kernels identify 20-bp-long motifs
which will play a role in the local affnity of the DNA sequence for
nucleosomes. It is known, for instance, that poly(A) will disfavor
nucleosome formation, whereas an ∼10-bp periodic enrichment
of AA/TT/TA dinucleotides that oscillate in phase with each other
and out of phase with GC dinucleotides will increase the affnity of
the sequence for nucleosomes (Segal et al. 2006). The third layer is
designed to capture long-range information (coming from several
nucleosomes) in order to grasp the nucleosomes stacking one
against another (Riposo and Mozziconacci 2012).

The ReLU function is applied to the outputs of convolutional
layers, which are then entered into a max-pooling layer with pool-
ing size (2 ×1). After each max-pooling layer, batch-normalization
is applied aswell as a dropoutwith a ratio of 0.2. Finally, the output
of the last layer is flattened and connected to the output layer con-
taining one neuron through a single perceptron and using a linear
activation function to make predictions. We tested several other
architectures before choosing the one described above, and a full
recapitulation of hyper-parameters values whichwere tested is pre-
sented in Supplemental Table S1.

The loss function combines the Pearson’s correlation
(corr) between the prediction and the target and the mean abso-
lute error (MAE) between them (loss =MAE[ŷ, y] + 1−corr[ŷ, y],
with ŷ being the model prediction and y the target). The rationale
for using this combined loss function is that we get a faster conver-
gence and better final values both for the MAE and the correlation
than using only one of them as a loss function (see Supplemental
Fig. S7).

An early stopping procedure is applied during training to pre-
vent models from overfitting. The loss function is calculated on
the validation set at every epoch to evaluate the generalizability
of the model. The training procedure is stopped if the validation
loss does not decrease at all for five epochs and the model param-
eters are set back to their best performing value. The training pro-
cedure usually lasts 15 to 20 epochs.

TSS alignment

For Figure 2, genes positions of the studied species are download
from the Ensembl fungi browser (ftp://ftp.ensemblgenomes.org/
pub/fungi/release-46/gff3/saccharomyces_cerevisiae/Saccharomyc
es_cerevisiae.R64-1-1.46.gff3.gz). The alignment on the TSS is sim-
ply made by taking a window of [−500, 1000] bp around every TSS
and by averaging the signal.

Figure 3 displays the average nucleosome density in the TSS
region realigned on the first nucleosome downstream from the
TSS as previously performed by Hughes et al. (2012).

NDR determination

The NDR positions are defined as in Tsankov et al. (2010). Briefly,
the signal is firstlymodified by setting to zero all the positionswith
a value lower than 40% of the mean value, so that DNA linkers ap-
pear as a series of zeros. NDRs are then defined as the first linkers
longer than 60 bp upstream of each TSS. If no suffciently long link-
er is found closer than 1000 bp away from the TSS, the first zero is
set as the beginning of the NDR.

Mutation score

To assign amutation score to every position on the genome,weuse
the methodology displayed on Figure 6B. All the three possible
mutations at a given position (highlighted in blue) are performed.
The wild type and the three mutated genomes are used to predict
the nucleosome density. Predictions are made on the complete
range in which the mutation can affect the model, that is, ±1000
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bp around the mutated position. Then, using the training loss
function, we compute the distance between the wild type local
density and all the threemutated type local densities. By summing
these three distances, we assign a score to the mutated position.
This score is then Z-normalized within each chromosome to give
the mutation score. This score reflects how the nucleosome densi-
ty was perturbed by themutation at the chosen position. Knowing
that the nucleosome positions are not directly encoded in the un-
derlying DNA sequence, we take long-range perturbations into ac-
count using this methodology.

For the track presented along with the manuscript, the muta-
tion score on Chromosome N is the average of three mutation
scores obtained with three models independently trained on all
the chromosomes with the exclusion of Chromosome N.
Although only a small fraction of the training set is suffcient to
reach the maximum of accuracy (Supplemental Fig. S8), we chose
to use all sequences for training to improve the reproducibility of
the mutation scores. We finally obtain a robust mutation score,
as two independently computed scores reach a correlation of
0.88 (Supplemental Fig. S9). In this regard, it is good practice to
train several models independently and to use the average of the
prediction scores to assess the effect of a mutation.

Motif analysis

Wemake the assumption that a nucleotide assigned a high muta-
tion score belongs to a motif that plays a role in the nucleosome
positioning process. Every nucleotide assigned with a mutation
score >5 is considered to be the center of a 15-bp important motif.

All those loci are collected (64,610 loci) and aggregated when they
intersect (23,585 loci). We then use MEME (Bailey et al. 2015) to
extract significantmotif logos from those loci.We used the follow-
ing options: meme -oc outdir -nmotifs 10 -dna sacCer3peakseq.fa.
MEME is commonly used to extract binding site logos from the
DNA windows underlying peaks of ChIP-seq data; we use it to ex-
tract meaningful logos from the DNA windows containing nucle-
otides with high mutation scores.

Software availability

The mutation score track is available at GitHub (https://github
.com/etirouthier/NucleosomeDensity/blob/master/Results_nucle
osome/mutasome_scerevisiae.bw) and as Supplemental Code. All
of the code necessary to reproduce the results is accessible at
GitHub (https://github.com/etirouthier/NucleosomeDensity.git)
and as Supplemental Code.
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density and all the mutated type. The loss function used to train the network is used to compute the distance.
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