
royalsocietypublishing.org/journal/rsob
Review
Cite this article: Long KR, Huttner WB. 2019

How the extracellular matrix shapes neural

development. Open Biol. 9: 180216.

http://dx.doi.org/10.1098/rsob.180216
Received: 7 November 2018

Accepted: 11 December 2018
Subject Area:
developmental biology/neuroscience

Keywords:
extracellular matrix, development, tissue shape
Authors for correspondence:
Katherine R. Long

e-mail: long@mpi-cbg.de

Wieland B. Huttner

e-mail: huttner@mpi-cbg.de
& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
How the extracellular matrix shapes
neural development

Katherine R. Long and Wieland B. Huttner

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany

KRL, 0000-0003-0660-2486; WBH, 0000-0003-4143-7201

During development, both cells and tissues must acquire the correct shape to

allow their proper function. This is especially relevant in the nervous system,

where the shape of individual cell processes, such as the axons and dendrites,

and the shape of entire tissues, such as the folding of the neocortex, are highly

specialized. While many aspects of neural development have been uncovered,

there are still several open questions concerning the mechanisms governing cell

and tissue shape. In this review, we discuss the role of the extracellular matrix

(ECM) in these processes. In particular, we consider how the ECM regulates

cell shape, proliferation, differentiation and migration, and more recent work

highlighting a key role of ECM in the morphogenesis of neural tissues.
1. Introduction
The development of the nervous system requires a complex and intricate

balance between the proliferation of progenitors, differentiation of the correct

cell types and the subsequent migration and connection of these cells. While

significant progress has been made in understanding how each of these aspects

is regulated individually, the exact mechanisms that govern their coordination

remain largely unknown. However, this coordination is crucial to ensure the

development of the correct shape and function of the nervous system. This is

true on multiple scales, ranging from the shape of cell processes to the shape

of entire tissues.

The importance of regulating tissue shape in neural development is high-

lighted by the many neurodevelopmental disorders that arise from defects in

morphogenesis. During early neural development, these include neural tube

defects such as anencephaly, a failure of upper neural tube closure that results in

brain defects, and spina bifida, a failure of lower neural tube closure that results

in spinal cord defects [1,2]. Later in development, these include disorders that

lead to defects in the folding of the neocortex, such as lissencephaly, a reduction

in cortical folding, and polymicrogyria, an increase in cortical folding, both of

which can result in cognitive defects [3–5].

How tissue shape is regulated during neural development remains an unan-

swered question. A promising candidate for this is the extracellular matrix

(ECM), the complex network of proteins that surrounds cells within a tissue

[6]. ECM has long been known to not only be expressed within developing

neural tissues in many different species but also to regulate many aspects of

neural development [7–20]. Although it was once thought to act purely as a

scaffold to support the surrounding cells, the ECM has since been found to

have many more complex roles. In particular, it has recently been implicated

in regulating the morphogenesis of the developing neural tube [21–23] and

neocortex [24], directly impacting the shape of these developing neural tissues.

In this review, we will discuss how the ECM shapes neural development,

focusing on how it regulates aspects such as cell proliferation, differentiation,

migration and tissue morphology. We will not cover in detail the composition

of the ECM in the developing nervous system, nor the details of neural develop-

ment, which have expertly been reviewed elsewhere [11,13,25–32].
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2. Extracellular matrix and neural
progenitor cells

ECM components and their receptors have been studied in

neural progenitors for decades, and there are several key

functions that appear to be conserved across many species.

In particular, the regulation of progenitor proliferation, differ-

entiation and effect on cell shape appear to be highly

conserved. We will discuss how the ECM regulates these

specific aspects of neural development, with a focus on the

developing neural tube and neocortex.

2.1. Proliferation
During early neural development, the ECM and its related

receptors have been shown to have many functions. They

provide structural support, often in the form of a basement

membrane, but also modulate or stimulate signalling path-

ways that drive proliferation, both directly and indirectly.

The key families of ECM components and receptors

that have been shown to regulate proliferation are the

proteoglycans, laminins and integrins.

2.1.1. Proteoglycans

There are several major types of proteoglycans (reviewed in

[33]) but in this section, we will focus on the heparan sulfate

(HS) and chondroitin sulfate proteoglycans (CSPGs). Both

consist of a core protein with one or multiple glycosamino-

glycan chains attached [33,34], either HS or chondroitin

sulfate (CS), respectively. These chains can be modified, for

example, by the site of sulfation in CS chains [35], thought

to affect the function of CSPGs. The CSPGs include the lecti-

can family (brevican, neurocan, versican and aggrecan),

phosphacan, CD44 and the transmembrane component

NG2 [18,33]. The heparan sulfate proteoglycans (HSPGs)

include the syndecans, the glypicans, agrin and perlecan.

Of the HSPGs, perlecan is an example of an ECM com-

ponent that provides structural support and regulates the

proliferation of neural progenitors. Disruption of perlecan

by the addition of a functional blocking antibody was

shown to cause disruption of the basement membrane in

the chick neuroepithelium, resulting in cell detachment and

protrusion into the lumen of the developing diencephalon

[36]. In mouse neocortex development, disruption of perlecan

resulted in basement membrane disruption that led to an

over-expansion of the neuroepithelium [37]. This expansion

was due to an over-migration of neurons past the disrupted

basement membrane, leading to the presence of ectopic neur-

ons in the meningeal layers and, in half of the embryos

studied, exencephaly (malformation of neural tube formation

resulting in extrusion of the brain from the skull) [37].

However, perlecan was also shown to have functions

beyond structural support. In the mouse embryos that did

not exhibit exencephaly, microcephaly (a smaller brain) was

present instead [38]. Loss of perlecan caused a lengthening of

the G1 phase of the cell cycle. This led to an overall reduction

in progenitor proliferation, and therefore a consequent

reduction in the number of neurons generated [38]. The loss

of perlecan appeared to mediate these effects in mouse by redu-

cing the spread of Sonic hedgehog [38]. This is consistent with

findings in Drosophila neuroblasts [39], where mutations in the
Drosophila homologue of perlecan, trol, led to a reduction of

both fibroblast growth factor (FGF) and Hedgehog (Hh) signal-

ling. This subsequently led to a reduction of neuroblast

proliferation, arresting the cell cycle in the G1 phase [39]. Trol
was shown to mediate these effects by increasing the move-

ment of Hh through the tissue, and by increasing the binding

ability of Hh to its receptors [39]. Together, these data suggest

that the functions of perlecan are highly conserved.

The regulation of neural progenitor proliferation appears

to be a conserved function of many proteoglycans. Another

HSPG, syndecan 4, has been shown to regulate proliferation

of neuroepithelial cells within the developing zebrafish

neural tube [40]. In contrast to perlecan, knockout of

syndecan 4 resulted in an increase in proliferation, whereas

over-expression leads to a reduction in proliferation [40]. Inter-

estingly, syndecans are known to interact with and modulate

the major family of ECM receptors, the integrins, [41,42],

which are discussed in more detail in the following section.

Another family of HSPGs, the glypicans, has also been

identified to regulate proliferation in the developing nervous

system. Glypican 1 and 4 are expressed in the developing

mouse neuroepithelium [43,44], and glypican 1 null mice were

reported to have a decrease in brain size, due to an inhibition

of FGF signalling [44]. FGF signalling is also modulated by

glypican 4, which promotes proliferation in the developing

mouse neural tube via FGF2 [43]. This relationship between

glypicans and FGF signalling appears to be evolutionarily

conserved, as glypican 4 has also been shown to modulate

FGF signalling in the Xenopus embryo to regulate early

forebrain patterning [45].

The CSPGs also play a role in regulating the proliferation

of neural progenitors. Within the developing mouse neocortex,

disruption of CSPGs via the addition of chondroitinase ABC

(the enzyme that degrades CSPGs) resulted in a reduction in

neural progenitor proliferation and subsequent generation of

neurons [46]. In addition, this loss of CSPGs then increased

the number of astrocytes generated, suggesting a switch in

progenitor fate from the neuronal to glial lineage [46]. Similar

results were also shown in neurosphere studies, where loss of

CSPGs via the addition of chondroitinase ABC reduced the

proliferation of mouse neurospheres, while, conversely, the

addition of CSPGs stimulated the formation and proliferation

of neurospheres via the epidermal growth factor (EGF)

pathway [47].

Although some roles of the proteoglycans appeared to be

conserved, there are cases where the function of a specific

component differs between species. For example, in contrast

to the above studies in mouse, loss of CSPGs in rat neuro-

spheres via chondroitinase ABC increased both proliferation

and neuronal differentiation [48]. Addition of chondroitinase

ABC to these neurospheres caused a change in shape, result-

ing in adherence of cells in vitro and a reduction in sphere

formation [48]. This function of CSPGs required additional

ECM-related molecules, as the effects of chondroitinase

ABC were blocked by the addition of echistatin, a disintegrin

(a highly potent inhibitor of integrin b1 and b3, isolated from

snake venom), suggesting that this function of CSPGs was

mediated by the integrin pathway [48].

2.1.2. Laminins and integrins

Two major families of ECM-related molecules are the lami-

nins and their receptors, the integrins. Each laminin chain is
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made up of an alpha, beta and gamma subunit, and from the

five alpha, four beta and three gamma subunits currently

known, 15 distinct laminin chains have been identified [49].

These are now named after their composition (i.e. laminin-

111 comprises the subunits alpha 1, beta 1 and gamma

1). Many of these laminin chains have been shown to be

expressed throughout neural development. In the mouse,

for example, almost all of the laminin chains are expressed

during neural tube formation (E9.5 in mouse [50]), and

high levels of laminin alpha 2 and 4 were detected in the

ventricular zone of the developing neocortex (E14.5 [51]).

Laminins are known to have a major function within the

basement membrane [52], but as with the proteoglycans, they

have also been shown to regulate neural progenitor proli-

feration. Until relatively recently, the specific laminin chains

were not available as recombinant proteins, resulting in

earlier studies often referring to laminin in general. This

general laminin is thought to have contained a mixture of

different laminins, but was often predominantly laminin-111.

Many of the studies on the effect of laminin on neural pro-

genitor proliferation were conducted using in vitro systems.

These have shown that the addition of laminin enhanced the

proliferation of mouse neuroepithelial cells [53]. It also increased

the proliferation and survival of human neural stem cells (NSCs)

[54,55], and promoted the differentiation of NSCs from human

embryonic stem cells (ESCs) [56]. Laminins are thought to pro-

mote these responses in two ways. The first way is by

modulating growth factors, such as enhancing FGF signalling

[53]. This is also observed in the adult NSC niche that lines the

lateral ventricles in the mouse and human brain, the subventri-

cular zone. Here, adult NSCs proliferate near laminin-rich

structures, called fractones, that capture FGF2 [57]. The second

way is by directly signalling via their receptors, the integrins.

The integrins are the major family of ECM receptors [58]

and are highly expressed in the developing nervous system.

In the developing mouse neocortex, the major integrin sub-

units to be expressed are integrin beta 1 (b1) and its dimer

partner integrin alpha 6 (a6). Integrin b1 was shown to be

expressed throughout the early neuroepithelium [59,60],

while the dimer of integrin b1 and alpha 6 (a6b1) was

more highly expressed along the ventricular surface in the

developing mouse neocortex (E14.5) [51,59]. Expression of

integrin a6b1 in neural development is highly conserved.

Thus, integrin a6b1 was also shown to be expressed in the

early chick neuroepithelium [61] and to be a marker of

NSCs in the developing human neocortex [55,62].

In the developing mouse neocortex, increased expression

of integrin b1 resulted in increased generation of neuro-

spheres, while, conversely, loss of integrin b1 resulted in

the generation of smaller neurospheres [59]. This effect of

integrin b1 was due to its regulation of MAPK signalling,

with lower levels of integrin b1 resulting in a reduction in sig-

nalling [59]. Similar results were obtained from experiments

using neurospheres and an integrin b1 conditional knockout.

Loss of integrin b1 again resulted in a reduction of progenitor

proliferation, resulting in the generation of smaller neuro-

spheres [63]. Additionally, these neurospheres also showed

a reduced response to EGF, FGF and nerve growth factor sig-

nalling [63]. These data indicated that integrins can regulate

neural progenitor proliferation by mediating the activity of

major signalling pathways.

Integrin a6b1 is not the only integrin dimer to have such

an effect on cortical progenitor proliferation. Activation of
another integrin, avb3, in the developing mouse neocortex

also resulted in an increase in progenitor proliferation [64]

(figure 1a–c,e). Specifically, administration of activating anti-

bodies to E14.5 mouse neocortex increased the proliferation

of basal progenitors (BPs). This is particularly interesting, as

the proliferative capacity of BPs is thought to be partly

responsible for the evolutionary expansion of the neocortex.

The avb3-mediated increase in proliferation was due to an

increase in both cell cycle re-entry and in the number of sym-

metric proliferative divisions of BPs. Interestingly, these

effects of integrin avb3 activation required the binding of

thyroid hormones to integrin avb3, providing a possible

explanation for the impairment of cortical development

upon lack of thyroid hormones during pregnancy [64].

These data suggest that the regulation of cortical progeni-

tor proliferation by integrins may have contributed to the

expansion of the neocortex. Two studies in the developing

chick and ferret provided further support for this. Compared

with mouse, the ferret has an increased number of prolifera-

tive BPs, and therefore a more expanded and folded

neocortex. Addition of echistatin, a disintegrin, to developing

ferret neocortex slice cultures reduced the proliferation of

these BPs [66], suggesting integrin signalling was required

to maintain their high proliferative capacity. The second

study was in the developing chick neuroepithelium. The

expression of a constitutively active integrin b1 in this

system led to an increase in the proliferation of the neuroe-

pithelial cells [61]. This resulted in the generation of basally

dividing progenitors (not usually found in the chick neuroe-

pithelium), increased both the number of progenitors and

neurons generated, and subsequently led to a radial expan-

sion of the neuroepithelium [61]. These are all key

characteristics of mammalian species with an expanded neo-

cortex, suggesting that integrins may play an important role

in regulating neocortical size.

2.1.3. Role of extracellular matrix in neocortex expansion

Many of the functions of ECM components and receptors on

progenitor proliferation appear to be evolutionarily conserved.

However, recent transcriptomic studies have indicated an

increase in ECM expression in the developing human neo-

cortex compared to the mouse [67–71]. This is especially

true for those areas and progenitors with an increased prolif-

erative potential in the human: the OSVZ and the BPs that

reside within it. Together with the data showing a role of

integrin signalling in BP expansion, these data suggest that

the changes in ECM expression observed in the developing

human neocortex may have contributed to its evolutionary

expansion via the regulation of progenitor proliferation.

2.2. Differentiation
Various ECM components have also been shown to promote

the differentiation of neural progenitors. Neuroepithelial cells

in the developing chick retina proliferated and differentiated

into neurons when plated on laminin-1, and expressed the

specific laminin chain alpha 1 at the time of neuronal differ-

entiation [72]. This specific chain appears to be required for

differentiation, as plating of the neuroepithelial cells onto

laminin lacking the alpha 1 chain only promoted proliferation

of these cells [72]. This effect of laminin was also observed

with early neural tube progenitors in the chick embryo.
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Figure 1. ECM, integrins and progenitor cell behaviour. (a) Images showing E14.5 mouse neocortex after 24 h of whole hemisphere (HERO) culture with either
control IgG antibody (left panels) or the integrin avb3 activating antibody, LIBS-6 (right panels), with DAPI staining (blue, upper panels) and immunofluorescence
for the mitotic marker PH3 (white, lower panels). White dashed lines delineate the ventricular zone (VZ) and subventricular zone (SVZ) boundary. Scale bar rep-
resents 50 mm. Adapted from [64]. (b,c) Quantification of PH3 positive (mitotic) cells in the (b) VZ (APs) and (c) SVZ (BPs). Adapted from [64]. (d ) Images showing
GFP in the neocortex of E11 wild-type (left) and Itgb1flox/flox (knockout) (right) mice that were electroporated with CRE-IRES-eGFP and analysed after 24 h. White
dashed lines delineate the basal surface. White arrowheads delineate detached radial glia processes. Scale bar represents 100 mm. Adapted from [65]. (e) Schematic
summarizing the effects of blocking, knocking out or activating ECM and integrins on neuroepithelial and radial glial cell behaviour.
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Plating these cells onto laminin permitted neuronal differen-

tiation, and cells preferentially extended neurites towards the

laminin coating, as opposed to collagen [73]. These effects

were blocked by addition of an anti-laminin antibody,

suggesting that laminin was required for the promotion of

neuronal differentiation [73]. This effect of laminin was not

limited to chick neural progenitors, as plating both mouse

and human NSCs onto laminin also promoted neuronal

differentiation (mouse [53]; human [56]).

This differentiative effect of laminin appears to contradict

its pro-proliferative effects, suggesting there is a more com-

plex network of signals that maintain the balance between

laminin-induced proliferation and differentiation. Within

the developing neural tissue, this would allow cells in a simi-

lar ECM environment to have opposing behaviours. Such a

complex network has been shown in the developing chick

neuroepithelium. Expression of a constitutively active integ-

rin b1 in the early neuroepithelium resulted in an increase

in proliferation of integrin b1-expressing cells, but promoted

the differentiation of neighbouring cells lacking the active

integrin b1 [61]. This involved a complex network of ECM

components and signalling factors. The active integrin b1

drove increased proliferation via focal adhesion kinase

(FAK) signalling. These proliferating cells increased

expression of Wnt7a, which when secreted reinforced pro-

liferation of these cells and promoted the expression of the

ECM component decorin in neighbouring cells. Secretion of
decorin then interacted with the TGFb receptor on the non-

expressing cells, promoting their differentiation into neurons

[61]. Interestingly, decorin is not normally expressed in the

chick neuroepithelium at this stage (it is expressed during

neural tube formation [21]). This suggests that the tissue

may have responded to the increased proliferation caused

by integrin b1 activity by secreting decorin to promote differ-

entiation, in an effort to restore the balance between the two.

Within this simple system, the ECM was able to drive

proliferation and differentiation in neighbouring cells using a

network of ECM components, signalling factors and receptors.

In more complex mammalian systems, with more progenitor

cell types and germinal zones, it is highly likely that the

ECM uses an even further complex network, in coordination

with signalling factors and receptors, to regulate progenitor

behaviour. Notably, the response of any cell to a specific

ECM component will be greatly affected by the other factors

and receptors acting on it. Together, this suggests that the pic-

ture of ECM regulation of progenitor behaviour within neural

tissues is far more intricate than initially imagined.

2.3. Cell shape

2.3.1. Progenitors

In addition to regulating proliferation and differentiation,

ECM can also alter the shape of neural progenitors and
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neurons. A common theme among many studies is the role of

the basement membrane for structural support of the devel-

oping nervous system and maintaining cell shape [65,74].

This is evident in the developing neocortex, where attach-

ment of the apical radial glia (aRG) endfeet to the basement

membrane via integrin b1 is important for the bipolar

shape of these progenitors. Knockout of integrin b1 in the

developing mouse CNS resulted in the detachment of

the aRG basal processes from the pial basement membrane

in the neocortex, causing subsequent apoptosis of these

progenitors [65] (figure 1d,e). This detachment was also

caused by knockout of the two laminin chains alpha 2 and

4 from the basement membrane, and the removal of the

meninges, which greatly reduced the level of laminin

within the basement membrane [65].

A similar effect was also observed when an integrin b1

blocking antibody was injected into the ventricle of the devel-

oping mouse neocortex, resulting in detachment of the aRG

apical process from the ventricular surface [60] (figure 1e).

Loss of the laminin alpha 2 chain from these aRG also

induced detachment of the apical process [60], suggesting

that both integrin b1 and laminin alpha 2 are required to

maintain attachment of both the apical and basal process of

aRG in the developing mouse neocortex.

In both of these examples, attachment of the aRG pro-

cesses to either the apical or basal ECM, via integrin b1, is

required for aRG to maintain their characteristic bipolar

shape. This raises the open question as to whether attachment

of basal radial glia (bRG, a more basally located progenitor in

the neocortex that lacks an apical process) to the basement

membrane is also required to maintain their basal process

and overall morphology.

2.3.2. Neurons

Later in neural development, ECM also modulates neuronal

shape, such as neurite extension (reviewed in [7]). In particu-

lar, laminin has long been associated with promoting neurite

outgrowth [75]; reviewed in [76]). More recent work showed

that plating both mouse and human NSCs onto laminin

resulted in an increase in neurite extension and an increase

in the complexity of neurites formed, in comparison to fibro-

nectin or Matrigel (a soluble basement membrane extract)

[55]. This was also the case for differentiating neurons from

human ESCs; neurite extension was again increased when

plated on laminin compared to various other ECM substrates

[56]. The effect of laminin was partially disrupted by the

addition of an integrin a6 or integrin b1 blocking antibody

[56]. This function of laminin is further supported by knock-

out of the laminin chain gamma 1 in developing mouse

cerebral cortex, which led to reduced neurite outgrowth

and abnormal axon pathfinding in vivo [77].

This function of laminin in regulating neurite growth is

also present in other neural tissues. Retinal neurons were

able to prolong their ability to extend neurites when plated

on laminin after the activation of both integrin a6b1

and a3b1 [78]. These data suggested that the activation

state of integrins may be an important factor in responding

to the ECM environment [78], and could potentially pro-

vide a way of the cell to regulate its own response to the

ECM environment.

Laminin is not the only ECM component to regulate neur-

ite growth. Blocking the hyaluronic acid (HA) receptor
RHAMM (receptor for HA-mediated motility, also known

as CD168) with function-blocking antibodies resulted in a

reduction in neurite movement and migration in both rat

and human primary neurons in culture [79]. This study also

highlighted that the ECM can not only aid in the regulation

of cell shape but also of the movement of cells; a vital process

in the development of connections within the brain.
3. Extracellular matrix and cell migration
The most well-known ECM component that regulates neur-

onal migration is the glycoprotein Reelin [80–82]. However,

in addition to this, many other ECM components have also

been shown to influence the migration of both progenitors

and newborn neurons during cortical development.

3.1. Progenitors
A key characteristic of neuroepithelial cells and aRG is the

movement of the nucleus and cell body during the cell

cycle—a process called interkinetic nuclear migration (INM).

During INM, the nucleus and cell body of the progenitor

migrate towards the basal side of the neuroepithelium to

undergo S-phase. They then migrate down to the apical, ven-

tricular surface to undergo mitosis [83–86]. Laminins have

been suggested to play a role in this process in the zebrafish

neural tube. Mutation of tab, a gene encoding laminin

gamma 1, causes disruption of INM, resulting in mitoses of

neuroepithelial cells in basal locations [87] (figure 2a,d). This

function of laminin gamma 1 required signalling via FAK, as

a morpholino targeting FAK also resulted in basal mitoses.

Strikingly, neither cell shape nor polarity was affected,

although the mitotic cleavage plane became randomized

[87]. This suggests that this disruption of INM was an effect

on the movement of the cell, and was not caused by the

disruption of cell attachment to the basal or apical surface.

Other ECM components have also been shown to effect

progenitor migration earlier in development, regulating the

migration of neural crest cells (reviewed in [9]). The HA

receptor RHAMM was shown to be expressed by cranial

neural crest cells in Xenopus [88] and quail [89]. In the devel-

oping quail embryo, high concentrations of HA increased the

number of neural crest cells generated from neural tube

explant cultures [89]. HA promoted this generation of

neural crest cells by reducing the cell–cell contacts between

them, allowing a looser organization of the cells and their

migration away from the neural tube [89]. This role of HA

in neural crest cell migration is consistent with the notion

that the higher level of HA observed in development,

compared to the adult brain, aids the migration of new-

born neurons by increasing the water content within the

developing brain [90].

Several proteoglycans have also been reported to regulate

neural progenitor migration, in particular, the lecticans, the

major family of soluble CSPGs within the developing CNS

[18,25]. They include brevican, neurocan, versican and aggre-

can, of which versican has been shown to inhibit neural crest

cell migration in Xenopus embryos [91]. This is consistent

with findings in the developing chick embryo that both

versican and aggrecan regulate neural crest cell migration [92].

Neural crest cells have also been shown to modulate their

ECM environment to affect their own migration. Enteric
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50 mm (b0,c0). Adapted from [77]. (d ) Schematic summarizing the effects of ECM on neural progenitor and neuronal migration.
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neural crest cells (the cells that make up the enteric nervous

system in the gastrointestinal tract) within the developing

chick embryo were shown to initially express collagen XVIII,

which promoted their migration [93]. However, later in devel-

opment, towards the end of neural crest cell migration, these

cells then switched to express the proteoglycan agrin, which

inhibited neural crest cell migration [93].

3.2. Neurons
The classical example of ECM regulating neuronal migration is

the role of Reelin in neocortex development. Reelin is secreted

by Cajal-Retzius cells within the marginal zone of the develop-

ing neocortex [81,94], where its loss results in abnormal

neuronal migration and defective cortical lamination [81].

Reelin is thought to mediate neuronal migration by promoting

the branching of migrating neurons, allowing greater interaction

with the ECM and radial glial scaffold [95]. Reelin has also been

shown to be involved in the switch of neuronal migration from

locomotion, when neurons migrate radially along radial glial

processes up to the cortical plate, to terminal translocation,

when neurons migrate quickly and independent of radial glial

processes [96,97]. Reelin is thought to regulate these processes

via the activation of integrin a5b1, allowing the neurons to

bind the local ECM ligand fibronectin [97]. Reelin has also

been shown to regulate neuronal migration via the classical

pathway; binding to the transmembrane receptors apolipopro-

tein E receptor 2 (ApoER2) and the very low-density
lipoprotein receptor (VLDLR), leading to phosphorylation of

the downstream adaptor protein Disabled-1 [98].

The cortical delamination defects observed after the loss

of reelin in mice are in-line with the effects of mutations in

reelin (RELN) observed in human patients. First, loss of func-

tion mutations in RELN are associated with lissencephaly

(a reduction in cortical folding) [99], and second, the persist-

ence of reelin-expressing Cajal-Retzius cells was observed in

patients with polymicrogyria (an excess of folding) [100].

These studies indicate that regulating not only the level of

expression of reelin but also the timing of this expression, is

vital for the normal migration of neurons, and consequently

the shape and folding of the developing neocortex.

Although other ECM components have also been

implicated in early neuronal migration, such as the proteo-

glycans [19], it is often difficult to distinguish between the

function of these ECM components in regulating migration

and in maintaining basement membrane integrity. For

example, mutation of the nidogen binding site of laminin

gamma 1 resulted in detachment of RG from the basement

membrane and disruption of cortical plate lamination [74].

It was later found that loss of laminin gamma 1 in cortical

neurons disrupted the migration of neurons up to the

marginal zone (figure 2b–d ) and caused abnormal axonal

pathways [77], a direct effect on migration. However,

mutations in perlecan also show disruption of cortical plate

lamination [38], but this effect is probably caused by the

changes in basement membrane structure and altered
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proliferation observed (which are described above in §2.1). It

is, therefore, difficult to distinguish if many of the ECM com-

ponents studied have a direct or indirect effect on neuronal

migration. In spite of this, it is clear that the correct formation

of the surrounding ECM has a major impact on the migration

of newborn neurons, either directly or indirectly, which leads

to a subsequent effect on tissue shape.
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4. Extracellular matrix and morphogenesis
The regulation of neural progenitor behaviour by the ECM

can indirectly affect the shape of developing neural tissues.

However, more recent studies have shown that the ECM

can directly affect morphogenesis, in both early and late

neural development.

4.1. Early neural development
Many of the studies of morphogenesis in early neural devel-

opment have focused on the neural tube in non-mammalian

systems, such as the developing chick, zebrafish and Droso-
phila. Within the developing chick embryo, the small

leucine-rich proteoglycan decorin was shown to regulate

neural tube development [21]. Addition of a decorin neutra-

lizing antibody to the embryonic neural tube resulted in

disorganization of the neuroepithelium and disruption of

neural tube closure [21]. In addition to this, the neural crest

cells failed to migrate correctly, remaining above the neural

tube [21]. This suggested that decorin plays a role in regulat-

ing both cell polarization and tissue morphogenesis during

chick neural tube formation.

In the developing zebrafish, laminin and fibronectin have

also been shown to regulate tissue movements during neural

tube formation. During neurulation, the developing neural

plate and mesoderm move in a coordinated manner, and are

connected by laminin and fibronectin [22]. Depletion of both

laminin gamma 1 and fibronectin resulted in the neural plate

and mesoderm layers moving independently of each other

[22], suggesting that both ECM components were required

to couple the movements of these sheets of cells. This was

specific to laminin gamma 1 and fibronectin, as depletion of

HA, expressed only by the mesoderm, slowed mesoderm

migration, but did not interrupt the coupled movements of

the mesoderm and neural plate [22]. Combined with the

data on decorin in the chick, this suggests that the ECM

can coordinate the movement of cells and tissues in key

morphogenetic events in neural tube development.

In order for ECM to play a role in tissue morphogenesis, it

must also be modulated to allow cell and tissue movements

to occur. Evidence for this is found in the Drosophila nerve

cord. During development, the surrounding glia secrete the

ECM that forms the neural lamella around the nerve cord.

Disruption of this lamella, by expression of the metallopro-

teases MMP1 and 2, resulted in an abnormal, elongated

shape of the developing nerve cord [101]. Regulation of

CNS shape appears to be a conserved function of the metal-

loproteases. A mutation that reduced the function of the

metalloprotease ADAMTS-A, the runaway mutant, resulted

in migration of neural progenitors out of the developing

nerve cord, dramatically altering its shape [23] (figure 3a,c).

ADAMTS-A is suggested to regulate CNS shape by maintain-

ing the structural integrity of the basement membrane
surrounding the nerve cord. One way in which it does this

is by reducing the level of collagen IV present, which in

turn reduces the stiffness of the ECM. The abnormal CNS

shape caused by the reduced function of ADAMTS-A could

therefore be rescued by depleting collagen IV, or by depleting

its receptor, beta PS-integrin [23]. Together, these data indi-

cate that regulating the stiffness of the ECM may be

important for correct tissue morphogenesis [23].

The majority of the studies on early neural tissue mor-

phogenesis have been conducted using the models outlined

above. However, the recent development of various neural

organoid systems has allowed some of these questions to be

addressed in human tissue [102,103]. One such recent exam-

ple is the function of laminin gamma 1 in human retinal

organoids [104]. Blocking laminin gamma 1 function in these

organoids, with a functional-blocking antibody, resulted in

abnormal lamination and organization of the developing

retina, as well a later degeneration of the shape of the retinal

organoids [104]. Owing to the recent advances in the organoid

field, it is becoming easier to study such morphogenesis

events in early human neural development [103,105,106],

and, given time, we predict further roles for the ECM in these

early morphogenetic events of human neural development

will be discovered.

4.2. Late neural development
Key morphogenetic aspects of late neural development

have been recently shown to also be regulated by ECM,

such as neocortex size and folding. Several studies have

shown that altering either the ECM, or the ECM receptors

integrins, caused changes to overall cortex morphology and

shape [107]. Loss of integrin b1 in the developing mouse neo-

cortex caused microcephaly [65] and disruption of integrin a6

resulted in abnormal cortical plate lamination [74,108,109].

Additionally, mice with various laminin mutations display

a disrupted organization of the basement membrane, an

abnormal lamination of the cortical plate, and the presence

of neuronal ectopias above the basement membrane

[74,77,110,111]. However, in many of these models, it is difficult

to identify if the ECM-induced changes in morphogenesis

are caused by a direct effect on tissue shape, or by abnormal

progenitor proliferation, neuronal migration or basement

membrane structure.

More recently, ECM has been shown to directly alter the

morphology of the developing human neocortex. The specific

ECM components HAPLN1, lumican and collagen I were

shown to induce folding of the cortical plate in human fetal

neocortex explant cultures [24] (figure 3b,c). This folding

was induced by the addition of recombinant HAPLN1,

recombinant lumican and purified collagen I to these neo-

cortex explants cultures as soluble components, and

required this specific combination of all three ECM com-

ponents. Strikingly, this ECM-induced folding occurred

within 24 h of culture of 11–16 gestation week (GW)

human neocortical tissue, an age prior to the onset of physio-

logical folding, and involved a complex network of factors.

These included an increase in the endogenous levels of HA

within the tissue, local changes in ECM stiffness, and the

HA receptor RHAMM (also known as CD168) and its down-

stream ERK signalling. HA was a key component of this

folding, as depleting HA from the human neocortical tissue

cultures could both block and reverse the ECM-induced
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folding [24]. These data suggest that modulating the ECM can

greatly affect the morphology of the developing neocortex. In

further support of this, depleting HA from later stage human

fetal neocortex tissue, at 22 GW—when physiological folding

has begun—reduced the level of folding inherently present,

indicating a physiological role of HA in maintaining folding

in the cortical plate of the developing human neocortex

[24]. In the light of the important role of HA, it would be

interesting to investigate the role of the HA-binding lecticans

in cortical folding, especially as the transcripts of all four—

aggrecan, brevican, neurocan and versican—are expressed

in the developing human neocortex [68].

Taken together, these data strongly indicate that the ECM

plays a key role in regulating the morphogenesis of the
developing nervous system (figure 3c). With the ever-increas-

ing development of new tools and model systems, such as

cerebral organoids, it is highly likely that further roles for

the ECM in these processes will be discovered.
5. Future perspectives
The role of the ECM in shaping the developing nervous

system appears to be highly complex. The same ECM com-

ponent can have multiple, even opposing, roles during

neural development and can affect neighbouring cells in

different ways. The ECM can also affect shape on a variety

of scales, from individual neuronal processes to entire tissues.
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Despite the many advances in recent years, it is clear that we

are yet to understand the full complexity of the functions of

the ECM. However, newly developed culture systems, tools

and techniques are providing promising insight.

5.1. Stiffness
Several recent papers have started to probe how the stiffness of

tissue and ECM can alter neural development. These include

atomic force microscopy (AFM) measurements of stiffness in

the developing mouse neocortex [112], the ECM of the devel-

oping human neocortex [24], and of Xenopus retinal ganglion

cell axons [113]. The latter study showed that these axons pre-

ferentially grow towards an environment that is less stiff.

Reducing the ECM stiffness in vivo, by addition of CSPGs,

caused axons to migrate towards this area and become more

disperse [113]. By contrast, when the environment was made

stiffer, by applying a constant pressure using the AFM

probe, the axons then avoided this area [113].

5.2. Hydrogels
Another promising new tool in which to study the functions of

the ECM are hydrogel systems. Hydrogels have been used to

generate a three-dimensional matrix for the generation of

neural tube organoids, creating a reproducible and accessible

system in which to study morphogenetic events in early

mouse and human neural development [114]. They also allow

for a more controlled environment, as ECM can be tethered to

the gel or even printed into nanotopographic cues [115,116].

An example of the former showed that a HA-modified hydrogel,

with RGD ligands, could promote the outgrowth of neurites in

three dimensions from hippocampal neural progenitor cells

[116]. This outgrowth was effected by the stiffness of the hydro-

gel, with greater outgrowth observed at a lower stiffness [116].

5.3. Nanotopographic extracellular matrix patterns
Hydrogel systems have also been used for more intricate

experiments using nanotopographic printed lines, squares

and grids of ECM components, such as laminin, fibronectin

and collagen [115]. When NSCs were plated onto these nano-

topographic ECM cues, more neurons were generated on the

grid of laminin, whereas more astrocytes were generated on

the lines and squares of laminin [115]. These data indicated

that not only was the composition of the ECM present able

to direct differentiation but also the shape and pattern of

the ECM deposited. Additionally, nanotopographic printed
laminin lines could also orientate neurite outgrowth and pro-

mote neurite extension [117]. More recently, it was shown

that ECM can also be printed in a nanotopographic gradient

[118], opening up further lines of research to investigate how

density and patterns of ECM components can direct neural

cell shape and behaviour.
5.4. Extracellular matrix and neocortex expansion
The density and pattern of ECM composition becomes an

interesting question for neocortex development and expan-

sion. ECM components were reported to be more highly

expressed in the developing human neocortex compared to

the mouse [67]. If the density, pattern and gradient of ECM

components can direct progenitor and neuronal cell behav-

iour, could this play a role in the development and

expansion of the human neocortex? For example, the ECM

microenvironment in the germinal zones could direct pro-

genitor cell fate, direct neuronal migration, or aid the

tangential migration of neurons observed in species with a

folded neocortex [110,119–121].
5.5. Extracellular matrix biophysics
Finally, these functions of the ECM may be highly fluid and

plastic, as the ECM itself is not a static structure, but rather

mobile and dynamic [122]. Adding further complexity, cells

can alter their own ECM environment very quickly, either

by changing the expression of ECM components or by produ-

cing enzymes that degrade the ECM. This raises the question

of how the forces generated by a mobile ECM can affect mor-

phogenesis of the nervous system. Several possibilities are via

signalling through integrins and cell–cell adhesions, forces

generated by pushing and pulling of cells and the ECM,

and by the constraint and promotion of cell and tissue move-

ments (reviewed in [123,124]). With the further development

of these tools, and the generation of new ones, these functions

of the ECM will start to be uncovered, furthering our under-

standing of how the ECM shapes the developing nervous

system.
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