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Abstract

Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small
molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for
secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the
beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the
membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand
connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does
not, however, explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to
address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with
analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to
homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across
a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example,
a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.
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Introduction

Gap junctions are clusters of intercellular channels between cells

formed by the membrane proteins connexins (Cx), that mediate

rapid intercellular communication via direct electric contact and

diffusion of metabolites [1]. In excitable cells such as neurons,

cardiac myocytes and smooth muscles, gap junctions provide

efficient low-resistance pathways through which membrane

voltage changes can be shared across the tissue. Besides excitable

cells, gap junctions are found between cells in almost every solid

tissue [1]. Gap junctions are thus central to multicellular life [2],

with numerous diseases linked to connexin disorders [3], including

type 2 diabetes mellitus [4–6]. The islets of Langerhans in the

pancreas are clusters of largely alpha-, beta- and delta-cells that

respectively control secretion of the hormones glucagon, insulin

and somatostatin central to energy regulation. Gap junctions form

direct connections between beta-cells [6,10,11] in islets, and are

important for normal glucose-stimulated insulin secretion (GSIS)

[7–9]. Gap junctions are generally believed to be important for

coordinating the beta-cell electrical oscillations known as bursting,

which in turn, can then support pulsatile insulin secretion

[6,10,12]; this view is supported by theoretical studies [13–15] as

well. The conductance strength of gap junctions evolves by the

insertion or deletion of connexin proteins (Fig. 1) into junctional

plaques, and by altering the single-channel conductance and

probability of channel opening [1]. Whether these molecular

changes constitute a systematic adaptive response of the endocrine

tissue to its metabolic environment remains to be investigated, in

particular from a theoretical point of view.

As with many other excitable cells, the information content of

bioelectric signals [16] in islets is yet unclear. The mechanisms

underlying bursting are well understood [17,18]; however, how

those temporal properties regulate energy homeostasis is not.

While slow (5–15 minute period) bursts are generally thought to

drive secretion at stimulatory concentrations of glucose, faster

(periods less than 5 minutes) oscillations are also found, typically at

sub-stimulatory (basal) glucose levels; the average calcium signal,

however, is comparable in either case (such as in simulations from

[17], not shown). The hypothesis that a synchronous bursting of

beta-cells [10,12,19] is essential to GSIS is guided by the

observation of pulsatile insulin secretion from islets [20] and

in vivo [21]. Gap junctions can certainly mediate synchrony in

principle, as shown in both simulations [12,13] and experiments

[5,22]. Whether this is their role in vivo is debatable. In general,

in vitro studies do not address this question completely, because

they are typically carried out with glucose perifusion. Since glucose

is microscopically delivered to beta-cells via a rich blood vessel

supply in the islet in vivo, oscillator entrainment by junction

coupling may be far less important than expected from exper-

iments on isolated islets, especially if the beta-cells are not too

heterogeneous in frequency [23]. In fact, Rocheleau et al. [24]

have performed experiments using a microfluidic chip taking care

to see that glucose stimulates an islet only partially; they find

partially propagated waves but not synchrony. Their result shows

that gap junctions are limited in their ability to support uniform
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synchronization across the entire islet in the presence of a glucose

gradient in the islet. It is possible that even with glucose micro-

delivery as in vivo, synchronization may be a more local

phenomenon than has been previously appreciated. Stozer et al.

[25] have recently demonstrated that in islet slices only local

synchronization is seen across groups of beta-cells. Another theory,

different from one that anticipates gap junctions serve to

synchronize an islet uniformly, thus appears to be necessary to

explain some of the phenomena associated with insulin secretion,

and it is this that we attempt in the rest of this paper.

A paradigm that is gaining increasing recognition is that

bioelectric and (epi-)genetic signaling are related as a cyclical

dynamical system [16]: membrane voltage activity induces

changes in mRNA expression and transcriptional regulation,

which in turn leads to altered membrane channel proteins. Here

we develop a theory to study an adaptive response of gap junctions

to islet firing activity. Bioelectric cues are encoded as bursting,

these determine junctional conductance states, and junctions

respond in turn by translation modifications that alter firing rates.

In this way, electric and genetic components ‘‘learn’’ from each

other, iteratively. While learning is integral to neural systems and

functionally beneficial at the level of a single individual, many

studies have focused on the collective effects of [simple forms of]

individual learning and decision-making, e.g. in populations of

interacting individuals, or agents. Such distributed systems,

exemplifying social or ecological group behavior, also share

similarities with interacting systems of statistical physics, in the

nature of the local ‘‘rules’’ followed by the individual units as well

as in the emergent behavior at the macro level. Game-theoretic

approaches [26–28] are sometimes brought to bear on such issues,

their underlying idea being that the behavior of an individual (its

‘‘strategy’’) is to a large extent determined by what the other

individuals are doing. The strategic choices of an individual are

thus guided by those of the others, through considerations of the

relative ‘‘payoffs’’ (returns) obtainable in interactive games. In this

context, a stochastic model of strategic decision-making was

introduced in [29], which captures the essence of the above-stated

notion, i.e. selection from among a set of competing strategies based

on a comparison of the expected payoffs from them. Depending

upon which of the available strategic alternatives (that are being

wielded by the other agents) is found to have the most favorable

‘‘outcome’’ in the local vicinity, every individual appropriately

revises its strategic choice.

Competition between prevalent strategies and adaptive changes

at the individual level characterize the sociologically motivated

model of [29]. Given that these two features of competition and

adaptation also generally occur across the framework of activity-

induced synaptic plasticity, a translation of the notions in [29] to

the latter context was attempted in [30] and [31]. A model was

delineated in ref. [30] along these lines, with the types or weights

of a plastic synapse taking the place of strategies. In the next

subsections, we will extend these concepts to formulate a theory of

‘competing’ gap junctions in a network.

Figure 1. Gap junctions between cells permit intercellular communication. Figure credit: Mariana Ruiz LadyofHats, http://en.wikipedia.org/
wiki/File:Gap_cell_junction_en.svg.
doi:10.1371/journal.pone.0070366.g001

Gap Junction Loss in Diabetes Is Adaptive
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Voltage Gating of Junctional Conductance and
Homeostatic Adaptation

Gap junctions are known to adapt on at least two timescales:

trans-junctional currents are gated on a fast timescale of the order

of a few milliseconds to seconds in response to a trans-junctional

voltage difference (DV ) [1]. Voltage gated currents of Cx36

channels (the connexin isoform relevant to islets [5]), expressed in

Xenopus oocytes and transfected human HeLa cells, were

recorded in [32] (Fig. 2). Haefliger et al. [33] have shown

hyperglycemia decreases Cx expression in adult rats. Paulauskas

et al. [34] have recently described a 16-state stochastic model of

gap junctional currents that are voltage gated by altering, amongst

other things, unitary single channel conductance and the

probability of opening [1,35]. On much slower timescales of

hours to days, gap junctions are regulated by the events that alter

the insertion and deletion of channels in the junctional plaque,

connexin proteins synthesis, trafficking to the membrane and

degradation. We propose to study adaptation in gap junction

strength on slow timescales; this is the natural setting for a mean

field theory of gap junction modification, that is, over suitably long

periods that averages over cellular firing rates can be treated as

adiabatic.

Interestingly, the voltage-gated gap junction appears to conform

to a homeostatic principle with respect to transjunctional current,

Igap~ggap DV : when DV is small, such as during synchronous

bursting for example, gap junctional conductance is large, while a

large DV , as in anti-synchrony, is compensated with a small ggap.

That is, firing patterns DV result in changes in ggap that stabilize

Igap. We extrapolate from this argument to construct a homeostatic

learning rule for (slow) modification of gap junctions, as described

below.

Model and Results

Model – A Learning Theory of Gap Junctional Adaptation
Our starting point is a model of competitive learning introduced

in [29] and applied, in [30] and [31] to look at the optimisation of

learning via a model of competing synapses. Proceeding by

analogy, we consider a network consisting of b-cells connected by

gap junctions, where the latter are treated as mutual neighbors if

they are connected by a b-cell. In a one-dimensional formulation,

each gap junction will thus be associated with two gap junctional

neighbors. For simplicity the b-cells can be represented by binary

threshold units, and the two states of the binary gap junction,

which are inter-convertible by definition, are assumed to have

different weights, which we label as ‘strong’ and ‘weak’ types. A

weak gap junction is characterized, for example, by fewer

connexin proteins in the junctional plaque. When the middle

gap junction is under consideration for a state update, the b-cells A

and B (Fig. 3) share this middle gap junction in common; thus, in

comparing how often the two b-cells are found activated, one can

factor out the influence of the common gap junction, when

considering averages, and effectively treat the time-averaged

activation frequency of either b-cell as being determined only by

the single, other gap junction that the b-cell is connected to. This

essentially implies that the state of b-cell A, say, can be considered

quite reasonably as an ‘‘outcome’’ to be associated with gap

junction n{1, and similarly with b-cell B and gap junction nz1;

thus, b-cells can be thought of as taking on the identities of the

respective gap junctions.

There are few general principles that can organize an argument

to discuss plastic behavior in excitable cells; Hebb’s postulate is

one such. In common colloquialism this learning rule is stated as

‘‘cells that fire together, wire together’’; in other words, temporal

association between pairs of firing neurons is successively encoded

in synaptic coupling between those neurons. A Hebbian philos-

ophy asserts that the direction of adaptation is such as to reinforce

coordinated activity between cells. One can now set forth some

rules governing the above weight changes, which may have a

Hebbian or anti-Hebbian flavor as the situation demands, and

depend on the outcomes of the surrounding b-cells. Hebbian rules

in the case of synaptic plasticity favour synchrony, so that e.g. a

synapse is strengthened if its surrounding neurons fire or do not

fire together; the opposite is the case with anti-Hebbian rules. In

the present context, we use this concept analogously: for Hebbian

rules, synchronous activity causes a strengthening of conductance

while anti-synchronous activity causes a weakening of conductan-

ce.Thus, loosely speaking, two gap junctions adjacent to any given

gap junction ‘‘compete’’ to decide its type, and this continues to

happen repeatedly across the entire network. Let us now consider

the update dynamics of a single effective gap junction, that in some

sense represents the average state of the whole network. To begin

with, in such a picture, the outcomes are assumed to be

uncorrelated at different locations, and treated as independent

random variables, with the probability for activation being

obtainable from the time-averaged activation frequency of the b-

cell. Consistent with the situation described in the previous

paragraph, that the effect of the common gap junction can be left

out on average in comparing the outcomes of its connected b-cells,

we associate, with each b-cell, a probability for activation at any

instant that is only a function of the other neighboring gap junction,

being equal to pz (p{) for a strong (weak) type gap junction.

We now consider a mean-field version of the model. The idea

behind the mean-field approximation is that we look at the

average behavior in an infinite system. This, at one stroke, deals

with two problems: first, there are no fluctuations associated with

Figure 2. Voltage gating of Cx36 gap junctions, adapted from
[32]. Steady-state junctional currents from HeLa-Cx36 cell pairs indicate
conductance, Gj , varies with transjunctional potential difference, DVj . If
two neighboring coupled cells fire nearly together, or do not
simultaneously fire, trans-junctional conductance is high, but when
one fires and the other does not conductance is low. This compensatory
behavior inspires our homeostatic learning rule, see text.
doi:10.1371/journal.pone.0070366.g002
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system size, and second, the approximation that we have made in

ignoring the ‘‘self-coupling’’ of the gap junction is better realized.

In the mean-field representation, every gap junction is assigned a

probability (uniform over the lattice) to be either strong (fz) or

weak (f{), so that spatial variation is ignored, as are fluctuations

and correlations. This single effective degree of freedom allows for

a description of the system in terms of its fixed point dynamics.

The rate of change of the probability fz, say, (which in the limit of

large system size is equivalent to the fraction of strong units) with

time, is computed by taking into account only the nearest-

neighbor gap junctional interactions, via specific rules.

To design a transition rule for gap junctions that is consistent

with a Hebbian theory, and at the same time tunes gap junctional

plasticity to voltage activity in the network, we mimic the

homeostatic adaptation implicit in (fast) voltage-gating of conduc-

tance (Fig. 2): to reinforce synchronous activity conductance,

changes must be directed towards a maximal state of conductance,

while anti-synchronous activity is best served by a weakening of

conductance. The homeostatic learning rule is summarised as follows: if

b-cells (Fig. 3) fire simultaneously DVAB is zero and gap junction,

g, strengthens to one, while if one b-cell fires but not the other,

DVAB is one and junction strength weakens to zero.

We write equations for the probability fz(tz1) that the

intermediate gap junction (Figure 3) is in the strong state, say, at

time tz1 in terms of the same probability at time t, fz(t), the

(complementary) probability that it was in the weak state at time t,

f{(t) and Prob(DF ), the probability of a change in strength of a

given magnitude:

fz(tz1)~fz(t)|Prob(DF~1)zf{(t)|Prob(DF~1) ð1Þ

The first term on the right hand side represents the probability

that the strong state at time t stays strong at time tz1; since the

gap junctions are binary, a strong junction cannot get any

stronger. Since fz(t)zf{(t)~1, this reduces to the equation

fS(tz1)~Prob(DF~1), independent of the initial state of the

gap junction.

We now write down all possible scenarios for Prob(DF~1): in

words, these correspond to the sum of the following probabilities:

(Prob that both gL and gR are in the strong state)6(Prob that A

and B both fire, AND both don’t fire)+(Prob that both gL and gR

are in the weak state)6(Prob that A and B both fire, AND both

don’t fire)+(Prob that gL and gR are in disparate states)6(Prob.

that A and B both fire, AND both don’t fire).

For example: if gL and gR (see Fig. 3) are both strong – with

probability f 2
z – the firing pattern that leads to a strong middle

junction, g, according to the homeostatic learning rule is when

DVAB~0, i.e. either when both A and B fire simultaneously

(probability, p2
z), or both do not fire (probability, (1{pz)2). All

such combinations are enumerated in Table 1, this leads to an

equation for the evolution of g:

fz(tz1)~f 2
z(t) (p2

zz(1{pz)2)

z f 2
{(t) (p2

{z(1{p{)2)

z 2fz(t)f{(t) (pzp{z(1{pz)(1{p{)

ð2Þ

This evolution equation thus embodies that if b-cells (Fig. 3) fire

simultaneously, DVAB is zero and gap junctions strengthen, while

if DVAB is one, junction strength weakens.

Results – the Steady State Distribution of Gap Junctions
The steady-state distribution of weak and strong junctions is

obtained as the fixed point solution of Eq. (2):

f �z~

{4p{(pz{p{)z2(pz{p{)z1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{4(p2

z{p2
{)z4(pz{p{)z1

q

4(pz{p{)2
:
ð3Þ

Figure 3. The bonds formalism of an islet. b-cells, A and B, are dominated by gap junctions gL and gR respectively. Each junction (gL and gR) can
be in either strong (with probability fz) or weak state (with probability f{). A weak (strong) junction is likely to fire with a probability p{ (pz). The
central gap junction g is altered in response to the average potential difference of cells A and B, DVAB , across it, according to a specified learning rule,
such as the homeostatic rule of Fig. 2 that is considered here. For example, if cell A (red) here is assumed to fire in response to a strong gL (this occurs
with probability pz) while cell B is silent (the probability with which it could have been active is p{) in response to a weak gR, then the bond, g, will
be weakened since DVAB~1.
doi:10.1371/journal.pone.0070366.g003

Table 1. The probability of a gap junction adapting to a
strong, high conductance state is determined by the current
state of the bonds gL and gR (Fig. 3).

gL gR P

Strong Strong f 2
zfp2

zz(1{pz)2g

Strong (Weak) Weak (Strong) 2fzf{fpzp{z(1{pz)(1{p{)g
Weak Weak f 2

{fp2
{z(1{p{)2g

doi:10.1371/journal.pone.0070366.t001
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f �z is stable in the entire 0v(p{, pz)v1 domain. Perturbations

from f �z relax at a rate l~1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4p2

zz4pz{4p{z4p2
{

p
.

The physically reasonable condition on the firing probabilities is

p{vpz. The minimum f �z is 0:5 which occurs for p{zpz~1

(Fig. 4). That is, the theory predicts that in vivo at least half of the

gap junctions in an islet will be of the strong type. It is possible for

strong junctions to dominate the islet completely, f �z&1, but this is

seen to be an extreme scenario and requires either: pz is very low

and p{ as well, or pz is very high and p{ is greater than about

half. For the large part of the (p{, pz) parameter space f �z is

predominantly between 0.5 and 0.7.

For low firing probabilities, such as for example

(p{, pz)~(0:1, 0:15) the beta-cells A and B (Fig. 3) seldom fire

and DVAB is invariably close to zero; g therefore adapts towards

the strong state. Likewise, when p{ and pz are both high, such as

for example at (0:85, 0:9) beta-cells A and B fire with a high rate

and DVAB is again close to zero and g adapts towards the strong

state. When the probabilities p{ and pz are considerably

different, however, for example when (p{, pz)~(0:1, 0:9) four

possibilities arise: either A and B are both associated with weak

(strong) junctions and g adapts towards 1; or one of A or B is

associated with a weak (strong) junction, but since one beta-cell

then fires with a probability much larger than the other, g adapts

towards 0. Thus f �z is close to half in this case (g equally likely to

be 0 or 1), as is the firing rate (Fig. 5).

We see thus that similar behaviour for the two gap junctions

induces strengthening, while dissimilar behaviour induces weak-

ening, in line with the Hebbian viewpoint adopted above.

Discussion

One major interest in developing a theory of gap junction

adaption is to understand the changes in junctional conductance

that take place in type 2 diabetes. It has been suspected from

animal studies that loss of Cx36 is phenotypically similar to a

prediabetic condition characterized by glucose intolerance,

diminished insulin oscillations and first and second phases of

insulin secretion, and a loss of beta-cell mass [6,36–38]. Head

et al. [11] have recently confirmed this in vivo via the observation

that Cx36 conductance loss induces postprandial glucose intoler-

ance in mice. These observations suggest that a loss of electrical

connectivity in islets may underlie type 2 diabetes by disrupting

insulin oscillations and reducing first-phase insulin secretion

[6,11]. Benninger et al. [39] have found yet another effect that

could be relevant to diabetes, that a loss of gap junctions in islets

leads to increased basal (i.e. when minimally stimulated by glucose)

insulin release. If this were to hold in vivo it could explain

hyperinsulinaemia as a result of gap junction loss as well, when

steady state levels of circulating plasma insulin in diabetics

continue to be high even in fasting conditions.

A word about dimensionalities – while we recognise that the

geometries of real synaptic networks are complex and that they are

Figure 4. The f �z contour plot in the p{ – pz plane. The physically relevant (p{vpz) region is the triangle ABC above the line pz~p{. f �z~0
along BD, pzzp{~1. The region near A where f �z is close to 1 represents healthy individuals while diabetics are assumed to lie along BD where
f �z~0:5.
doi:10.1371/journal.pone.0070366.g004
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embedded in three dimensions, our choice of working in one

dimension is based as much on simplicity as on the absence of a

reason to choose a more complex geometry. Working on a three-

dimensional lattice would only increase the complexity of our

algebra, while not really getting closer to the real geometry of

synaptic networks, which are, as the name suggests, probably

embedded on abstract graphs. However, the fact that we have

worked in mean field (ignoring correlations and going to the limit

of infinite systems) in a one-dimensional embedding makes our

results less reliant on the embedding geometry than they otherwise

might have been. We mean by this that while specific quantitative

estimates might well be affected by the inclusion of more

neighbours in higher dimensionalities, the qualitative outlines of

our calculations will remain very similar. Our choice of mean field

dynamics both in this case (as well as in the original learning model

of [30])was very purposeful: in both cases, the exact geometries/

connectivities of islets/synapses are imprecisely known, and

infinitely variable. Under these conditions mean field theory is

the tool most widely resorted to by modellers, since it is able to

predict general features based on minimalistic assumptions.

The game-theoretic formalism presented here provides a high-

level explanation why a loss of junctional conductance would be

necessary in diabetes. In the healthy individual insulin secretion

occurs relatively sparingly, for a few hours at regularly spaced

intervals following glucose ingestion (breakfast, lunch and dinner).

The low firing rates in a healthy individual are accompanied by a

high proportion of strong gap junctions (that is, near the region

marked by A, Fig. 4, where f �z is close to 1). Diabetes is associated

with overnutrition among various other factors [40], and

invariably involves combating an increased glucose load [41,42].

Several authors that proposed that a substantial loss of Cx36 could

ocur in type 2 diabetes (reviewed for example in [37]). Much of the

evidence that connexins expression or signaling are altered in

models of type 2 diabetes comes from rodents; however, because

Cx36 is present in human islets, this gives rise to the speculation

(see e.g. [11]) that a loss of Cx36 gap junction conductance may

occur in type 2 diabetes. Thus, based on glucose intolerance

measured in the conscious mouse Head et al. [11], as well as

others [5,6,43,44], have estimated that a loss of nearly 50% in

junctional conductance could occur in diabetes. In Fig. 4 the locus

of a 50% connectivity loss is the line pzzp{~1, where the

fraction of strong gap junctions is halved (f �z~0:5) but the firing

rates are higher (Fig. 5). That is, the islet stressed by an increase

glycemic stimulation is forced to respond with an increase in its

firing and insulin secretion rate, which it does by degrading strong

gap junctions to weaker ones.

In this way, the islet is able to accommodate a stimulus stronger

than that for which its physiology had evolved. A change in f �z is

accomplished largely through altering the probabilities of junction-

induced firing, pz and p{. As mentioned in the introduction, the

classical view of diabetes is that it results from gap junction

dysfunction. Instead, the game-theoretic theory we have presented

relates a conductance decrease to an adaptive response of an islet that

sacrifices strong gap junctions in order to maintain insulin control over

hyperglycemia.

At the heart of our game-theoretic theory is its use of

stochasticity in gap junction synchronisation. Classically, strong

gap junctions entrain beta-cells to fire, the entire assembly is

assumed to be fairly homogeneous in gap junction strength, and

the resultant synchronous bursting is seen to be essential to GSIS.

Figure 5. Evolution of gap junctions with network activity. Beta-cells were initialized as firing (1) or not (0), and gap junctions as weak (0) or
strong (1) with equal probability. 5000 beta-cell–gap junction pairs (Fig. 3) were iterated according to the learning rules described in the text. The
legend indicates the (p{, pz) values for a computation. The top panel shows the evolution of the fraction of strong gap junctions, f �z, in the network.
The bottom panel shows the corresponding fraction of beta-cells that are active. Note that f �z as well as firing rate in the simulation are both 0.5
along p{zpz~1 as expected from the theory, Fig. 4. A transition from health with low firing and high proportion of strong gap junctions (black
curves) to diabetes takes place with degrading the gap junctions to increase firing rates (red curves).
doi:10.1371/journal.pone.0070366.g005
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Our theory on the other hand, introduces the possibility that beta-

cells coupled even to strong gap junctions may not fire, and

likewise, weak gap junctions may induce simultaneous firing.

Further, synchronous bursting, as well as the simultaneous absence

of bursting, induces stronger junctions, while antisynchrony

weakens them. The result is that gap junctional strengths are

constantly updated as a result of the synchronous or asynchronous

bursting of beta-cells. In other words, the core idea of our paper is

that disparate firing patterns lead to changes in gap junctional

strength – which provides a hitherto unexplored scenario for

synchrony. This then naturally leads to a situation where

heterogeneity prevails in the distribution of gap junctional

strengths in the islet. The heterogeneity of gap junctions in turn

determines more complex patterns of activity in the network,

beyond the simple categories of (anti-)synchronous bursting.

In principle it is possible to explain observations of junctional

strengths such as in [39] individually, without recourse to a general

theory of gap junction function. Typically, a lot of the focus is on

studying the heterogeneity of beta-cells in an islet. Indeed,

Benninger et al. verify that different thresholds exist for calcium

excitations among the beta-cells of a (Cx36 null) islet, and

conclude therefore that beta-cells with high thresholds create

oscillator death [45] through gap junctions to decrease basal

secretion. The other question to ask, however, is: can heteroge-

neous gap junctions within an islet shape the emergent properties

of bursting? Once the heterogeneity of the gap junctions

themselves is recognized as crucial, that leads, ipso facto, to an

alternate view, one in which changes in junctional conductance

are seen as solutions to an optimization problem. The essential

ingredients of a theory of gap junction adaptation include keeping

track of the propensities with which strong and weak junctions

influence firing rates in beta-cells, and transition rules that

determine how gap junctions will respond to local firing patterns.

We have concentrated on learning rules that embody homeostatic

principles, which are a central feature of the energy maintenance

pathways of the body. However our general formalism is certainly

applicable to other forms of adaptation rules that may be

uncovered in future experiments.

We have constructed a theory that offers an alternative

explanation to the classical view that gap junctions primarily

function to synchronize beta-cells in an islet so the entire islet

behaves like a syncytium and a uniform period emerges. When

gap junction adaptation is considered, partial synchronization can

occur even in networks fully coupled with (strong) gap junctions.

This learning framework predicts in a natural fashion that a full

synchrony across the islet is very unlikely, that synchronization is a

local phenomenon and happens across a few groups of cells. Thus

the view that emerges instead is that the islet is sensitive to a

glucose demand in secreting insulin and uses gap junctions as a

tuning parameter in this adaptation. Paradoxically, an increase in

secretion efficiency can come not by strengthening junctions, but

down-regulating them instead. Thus, a lowered conductance need

not necessarily be interpreted as ‘‘failing’’ gap junctions. On the

contrary, they are judiciously adapting to the increased glucose

load to cope with an increased demand for insulin secretion.

At the moment there does not seem to be direct experimental

evidence that a reduction of gap junctions occurs in human type 2

diabetes. Additionally, although it is very attractive from a

theoretical viewpoint, it is not proven that gap junctions are

altered in response to altered islet firing activity in diabetes. Our

model is a complementary line of evidence, albeit theoretical, in

these directions. Further, the model makes another related

prediction, that gap junction expression and coupling strength

are very likely to occur as heterogeneous across the islet, in both

health as well as diabetes. If the naturally heterogeneous nature of

gap junctions is acknowledged, this could be critical in designing

appropriate clinical interventions, since connexins are potential

targets for diabetes therapy. Indeed, we hope that our work will be

helpful to researchers seeking to clarify the adaptive dynamics of

gap junctions in diabetes.
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