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Abstract 

Background:  Assessments of source reconstruction procedures in electroencepha-
lography and computations of transcranial electrical stimulation profiles require verifi-
cation and validation with the help of ground truth configurations as implemented by 
physical head phantoms. For these phantoms, synthetic materials are needed, which 
are mechanically and electrochemically stable and possess conductivity values similar 
to the modeled human head tissues. Three-compartment head models comprise a 
scalp layer with a conductivity range of 0.137 S/m to 2.1 S/m, a skull layer with conduc-
tivity values between 0.066 S/m and 0.00275 S/m, and an intracranial volume with an 
often-used average conductivity value of 0.33 S/m. To establish a realistically shaped 
physical head phantom with a well-defined volume conduction configuration, we 
here characterize the electrical conductivity of synthetic materials for modeling head 
compartments. We analyzed agarose hydrogel, gypsum, and sodium chloride (NaCl) 
solution as surrogate materials for scalp, skull, and intracranial volume. We measured 
the impedance of all materials when immersed in NaCl solution using a four-electrode 
setup. The measured impedance values were used to calculate the electrical conduc-
tivity values of each material. Further, the conductivities in the longitudinal and trans-
verse directions of reed sticks immersed in NaCl solution were measured to test their 
suitability for mimicking the anisotropic conductivity of white matter tracts.

Results:  We obtained conductivities of 0.314 S/m, 0.30 S/m, 0.311 S/m (2%, 3%, 4% 
agarose), 0.0425 S/m and 0.0017 S/m (gypsum with and without NaCl in the com-
pound), and 0.332 S/m (0.17% NaCl solution). These values are within the range of the 
conductivity values used for EEG and TES modeling. The reed sticks showed anisotropic 
conductivity with a ratio of 1:2.8.

Conclusion:  We conclude that agarose, gypsum, and NaCl solution can serve as stable 
representations of the three main conductivity compartments of the head, i.e., scalp, 
skull, and intracranial volume. An anisotropic conductivity structure such as a fiber track 
in white matter can be modeled using tailored reed sticks inside a volume conductor.

Keywords:  Conductivity, Anisotropy, Impedance spectroscopy, EEG, TES, Agar 
hydrogel
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Background
Technologies such as transcranial electric stimulation (TES), transcranial current 
density imaging (CDI), and neuronal source imaging based on electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) require methodologies for verifi-
cation and validation. The evaluation of new measurement and analysis chains can 
be addressed by (i) computational modeling and simulation [1] and (ii) metrological 
inspections [2, 3]. Computational modeling and simulations provide a convenient way 
of assessing the above technologies. However, only metrological inspections allow the 
inclusion of real-world environmental influences and allow the validation of compu-
tational modeling and simulations based on ground truth.

For EEG/MEG, the spread of electromagnetic fields caused by intracranial genera-
tors is of high importance for the identification of bio-electric sources [4]. For TES, 
dosage considerations require exact knowledge of the spread of the electromagnetic 
field inside the head [5]. In both applications, the computation of the electromagnetic 
field requires a thorough knowledge of the volume conductor, i.e., the 3D conductiv-
ity profile within the human head. The geometry is commonly segmented from mag-
netic resonance imaging data sets [6] and the conductivity values are derived from 
literature. These values demonstrate large variations resulting from inter- and intra-
individual variations [7] and differences in experimental methodology [8] and do not 
necessarily match the individual conductivity profiles [7, 8].

For evaluating the methodologies introduced above, using a physical phantom of the 
head as a volume conductor can overcome most uncertainties that occur. The geom-
etry of the phantom is predefined by the design and manufacturing processes and the 
conductivity properties of the phantom materials can be measured in advance.

The skull serves as the major conductivity barrier in the human head. Consequently, 
there are three compartments of particular interest: scalp (soft tissue outside of the 
skull), skull, and intracranial volume [9]. The soft tissue compartments with higher con-
ductivity encase the skull compartment with low conductivity. A widely used conductiv-
ity value for the intracranial volume is 0.33 S/m [10]. According to literature, the ratio for 
the skull-to-soft tissue conductivity ranges from 1:120 [11] to 1:5 [12]. A further feature 
of interest for physical representation is conductivity anisotropy, which occurs mainly in 
the fiber tracts of white matter. The anisotropy ratio between the longitudinal and trans-
verse direction in white matter was varied from 1:2 to 1:100 in modeling studies [13, 14]. 
Nicholson found an anisotropy ratio of approximately 1:9 in impedance measurements 
of the white matter in cats [15].

Previous approaches used head phantoms based on post-mortem human skulls for the 
assessment of EEG source reconstruction procedures [16, 17], doped saline solution for 
the verification of TES simulations [18, 19], and human torso built from guar gum for 
the modeling of conductive anisotropy [20]. These phantoms incorporated saline solu-
tions with different electrolyte concentrations to obtain different conductivity values. 
Interfacing multiple compartments with different saline solutions introduces concentra-
tion gradients leading to diffusion processes. The time-dependent electrolyte diffusion 
limits the stability of the respective conductivity configurations in such phantoms.

Our goal is to establish a stable and well-characterized setup for physical head phan-
tom measurements. In this study, we aim to establish and characterize suitable synthetic 
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materials that allow the fabrication of a multi-compartmental and realistically shaped 
human head phantom with inherently different conductivities that has a homogeneous 
electrolyte concentration within compartments and will not be affected by diffusion of 
ions between compartments. The skull, which serves as a major structural conductivity 
barrier is based on a material that is plastically formable during manufacturing to rep-
licate a realistic geometry. This material should be mechanically stable enough to serve 
as a support structure for adjacent compartments. Similarly, the material for the scalp 
should provide mechanical stability, allowing the attachment of electrodes for measure-
ments or stimulation. For the intracranial volume, we required a material that allows for 
easy insertion of structures for signal generation (dipoles) or measurements (electrode 
arrays).

Results
Sodium chloride solution

The 0.17% NaCl solution provided conductivities of 0.299  S/m ± 0.005  S/m (mean 
μ ± standard deviation σ) on the ProfiLine Cond 3310 (0.5% uncertainty) at tempera-
tures of 20.04  °C ± 0.70  °C. With temperature compensation to 25  °C at the ProfiLine 
Cond 3310, conductivities of 0.333 S/m ± 0.001 S/m were measured in 0.17% NaCl solu-
tions, in line with previously published data [21]. Considering an inner electrode dis-
tance of 25 mm and a tube diameter of 58 mm in the experimental setup (Fig. 8), the 
reference impedance of the 0.17% NaCl solution was calculated from the conductivity to 
be 31.69 Ω at 20 °C and 28.45 Ω at 25 °C (Z25ref). The measured impedance of the refer-
ence 0.17% NaCl solutions in the four-electrode [22] setup was 31.41 Ω ± 0.14 Ω (Zmeas) 
which resulted in a conductivity value of 0.301 S/m ± 0.002 S/m (cf. Eq. 2). During these 
measurements, the temperature in the 0.17% NaCl solutions was 21.04  °C ± 0.18  °C 
(ϑmeas). We determine the cell constant α for the four-electrode setup to -0.026. The cell 
constant was calculated from Eq.  1 using Z25ref, Zmeas, and ϑmeas from the impedance 
measurements with only 0.17% NaCl solution in the cell.

After applying Eq.  1 to adjust for the differences in the temperature at the 
time of measurement, the impedance of 0.17% NaCl solution was equivalent of 
28.39 Ω ± 0.19 Ω at 25  °C, which is a conductivity of 0.332 S/m ± 0.003 S/m. These 
values were found to be consistence for frequencies of 0.1 Hz to 100 kHz (Fig. 1 top) 
and at 1 Hz over 10 min (Fig. 1 bottom).

Agar hydrogel

The 2  wt% agar hydrogel in 0.17% NaCl solution (n = 3) has a conductiv-
ity of 0.284  S/m ± 0.009  S/m at 21.05  °C ± 0.23  °C, which is equivalent of 
0.314  S/m ± 0.01  S/m at 25  °C (adjusted using Eq.  1). The 3  wt% agar (n = 3) has a 
conductivity of 0.272  S/m ± 0.005  S/m at 20.99  °C ± 0.19  °C, which is equivalent of 
0.302  S/m ± 0.005  S/m at 25  °C (adjusted using Eq.  1). The 4  wt% agar (n = 3) has 
a conductivity of 0.281 S/m ± 0.02 S/m at 20.88  °C ± 0.41  °C, which is equivalent of 
0.311 S/m ± 0.018 S/m at 25 °C (adjusted using Eq. 1). These values were found to be 
consistent for frequencies of 0.1 Hz to 100 kHz (Fig. 2 top) and at 1 Hz over 10 min 
(Fig. 2 bottom).
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Even though measurements were conducted in a grounded Faraday cage, the spike 
at 50 Hz in the spectra (Fig. 2 top) was likely due to power-line interference.

The 2 wt% agar was also tested for an extended frequency range of 0.01 Hz to 100 kHz 
(Fig. 3 top) and duration of 60 min at 10 Hz (Fig. 3 bottom). The conductivity was found 
to stay consistent in this extended range, with 0.276 S/m ± 0.006 S/m at 20.76 °C ± 0.1 °C, 
equivalent of 0.306 S/m ± 0.007 S/m at 25 °C (adjusted using Eq. 1).
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Fig. 1  The average conductivity data (n = 3) at 25 °C of 0.17% NaCl solution (top) for 0.1 Hz – 100 kHz and 
(bottom) at 1 Hz for 10 min. The dashed line shows the average for each sample taken over three series of 
measurements taken with 30 min in between. The shaded regions show µ ± σ (purple) and µ ± 0.01µ (blue) 
for comparison

Fig. 2  The average conductivity of 2 wt% (n = 3), 3 wt% (n = 3), and 4 wt% (n = 3) agar in 0.17% NaCl solution 
adjusted to 25 °C for (top) frequencies of 0.1 Hz to 100 kHz and (bottom) 1 Hz for 10 min. Three series of 
measurements were done for each sample with 30 min in between. The shaded regions show µ ± σ
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Gypsum

Three series of measurements (sample immersed in 0.17% NaCl solution) were made on 
one sample of Stewaform gypsum without NaCl in the casting compound (Fig. 4). The 
sample was let rest in ambient air for 20 h between measurements.

The gypsum sample demonstrated a capacitive character with increasing con-
ductivity for frequencies above 1  kHz, such that the phase decreased from 
−  8 degrees at 1 kHz to −  50 degrees at 100 kHz. For quantitative evaluations, the 
frequency range up to 1 kHz was considered. The sample has an average conductiv-
ity of 0.0016  S/m ± 0.0009  S/m at 25  °C for frequency up to 1  kHz. Given the dry 
initial condition of the gypsum, the first series of measures was an outlier with 
0.0008 S/m ± 0.0001 S/m at 25 °C while the following two series of measures averaged 
to 0.0017 S/m ± 0.00004 S/m at 25 °C.

Three series of measurements (sample immersed in 0.17% NaCl solution) were 
made on one sample of Stewaform gypsum with NaCl in the casting compound 
(Fig. 5). The sample was let rest in ambient air for 20 h between measurements. This 
gypsum sample has a conductivity of 0.037  S/m ± 0.0012  S/m at 18.85  °C ± 0.19  °C, 
which is equivalent of 0.043 S/m ± 0.0015 S/m at 25 °C (adjusted using Eq. 1).

Three samples of gypsum with NaCl in the casting compound were tested for 
an extended frequency range of 0.01  Hz to 100  kHz (Fig.  6 top) and duration of 
60  min at 10  Hz (Fig.  6 bottom). The conductivity was found to stay consistent in 
this extended range, with 0.037 S/m ± 0.002 S/m at 19.75 °C ± 0.26 °C, equivalent of 
0.042 S/m ± 0.003 S/m at 25 °C (adjusted using Eq. 1).

Conductivity anisotropy

Five series of measurements (sample immersed in 0.17% NaCl solution) were made 
on the tube cell configuration (Fig. 8 bottom) holding 80 reed sticks for frequencies of 
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Fig. 3  The average conductivity of 2 wt% agar in 0.17% NaCl solution adjusted to 25 °C for the (top) 
extended frequency range of 0.01 Hz to 100 kHz and (bottom) extended duration of 60 min at 10 Hz. The 
dashed line shows the data for each sample as color-coded. The shaded regions show µ ± σ (purple) and 
µ ± 0.05µ (blue) for comparison
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0.1 Hz to 100 kHz (Fig. 7a) and duration of 60 min at 10 Hz (Fig. 7b). Series of measure-
ments were repeated with 6 h between series 1 and 2, 24 h between series 2 and 3, and 
series 3 and 4, and 36 h between series 4 and 5.

The conductivity in longitudinal direction was found to stay consistent, 
with 0.32  S/m ± 0.003  S/m in the frequency range of 0.1  Hz to 100  kHz and 
0.32 S/m ± 0.02 S/m at 10 Hz over 60 min at 25 °C. The conductivity in transverse direc-
tion was found to stay consistent, with 0.12 S/m ± 0.003 S/m in the frequency range of 
0.1 Hz to 100 kHz and 0.12 S/m ± 0.001 S/m at 10 Hz over 60 min at 25 °C. These con-
ductivity differences between longitudinal and transverse direction resulted in a conduc-
tivity anisotropy ratio of 1:2.7 ± 0.05 in the frequency range of 0.1 Hz to 100 kHz and 
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Fig. 4  The conductivity of the gypsum sample without NaCl in the casting compound a average over 
all three series of measurements (color-coded dashed lines) in 0.17% NaCl solution adjusted to 25 °C and 
b average with the outlier (series 1) removed is shown on the right. The conductivity is shown for (top) 
frequencies of 0.1 Hz to 100 kHz and (bottom) 1 Hz for 10 min. The shaded regions show µ ± σ (purple) and 
µ ± 0.5µ (blue) for comparison on the left and µ ± 0.05µ (blue) for comparison on the right
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Fig. 5  The average conductivity of the gypsum sample with NaCl in the casting compound from three series 
of measurements (color-coded dashed lines) in 0.17% NaCl solution adjusted to 25 °C for (top) frequencies of 
0.1 Hz to 100 kHz and (bottom) 1 Hz for 10 min. The shaded regions show µ ± σ (purple) and µ ± 0.05µ (blue) 
for comparison
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1:2.8 ± 0.02 at 10 Hz over 60 min. Again, the spike at 50 Hz in the spectra (Fig. 7b) was 
likely due to power-line interference. The noise level was generally higher for frequencies 
above approximately 300 Hz.

Discussion
In this study, we investigated the feasibility of establishing a realistically shaped and 
multi-compartmental head phantom, incorporating realistic electrolyte conductivity 
levels based on a 0.17% NaCl solution using agar hydrogel, gypsum, and reed sticks.

The 0.17% NaCl solution demonstrated a conductivity of 0.33 S/m at 25  °C which 
corresponds to the value that is widely used to model the conductivity of intracranial 
volume [10]. Consequently, this saline solution established the fundamental electro-
lyte concentration that prevailed throughout all compartments. In a closed phantom 
design, the saline solution itself can be used to model the intracranial volume. Interior 
structures for signal generation (dipoles) or measurement (electrodes) can be inserted 
into the aqueous solution without interfering with the structure of this compartment.

Doping the NaCl solution with agarose as a solidifying agent enabled the formation of 
a mechanically durable scalp layer. The conductivity value of the agar hydrogel decreased 
on average by 7% (2 wt%: 5.5%, 3 wt%: 9.0%, 4 wt%: 6.3%) compared to the pure NaCl 
solution. The variations in conductivity over time and frequency after multiple repeti-
tions were well within µ ± 0.05µ. The average measured conductivity of 0.31 S/m at 25 °C 
is equivalent to 0.4 S/m at 37 °C when linearly extrapolated, which was acceptable per 
Burger and van Milaan [23], reporting a conductivity of 0.435 S/m at 37 °C. Further, our 
measured average conductivity was within the range of 0.137 S/m to 2.1 S/m summa-
rized by McCann et al. [8]. Adapting the agar concentration in the range of 2% to 4% 
allows the modification of its mechanical durability without changing the conductivity 
to values outside of the acceptable range. With an agar concentration of 4%, applications 
such as EEG experiments using dry multi-pin electrodes become feasible [24].
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Fig. 6  The average conductivity of gypsum with NaCl in the casting compound in 0.17% NaCl solution 
at 25 °C for the (top) extended frequency range of 0.01 Hz to 100 kHz and (bottom) extended duration of 
60 min at 10 Hz. The dashed line shows the data for each sample as color-coded. The shaded regions show 
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The tested gypsum material demonstrated a considerable conductivity barrier. The two 
tested material configurations, with 0.17% NaCl in the casting compound and without 
NaCl in the casting compound, covered a wide range of skull conductivities, varying 
from 0.00275 S/m [11] to 0.066 S/m [12] according to literature.

After an initial soaking of the sample in NaCl solution during the first measurement, 
the gypsum produced without NaCl (with deionized water only) in the casting com-
pound provided stable results within a margin of ± 5% of µ over the tested frequency 
range and time interval as well as across measurement repetitions. The measured aver-
age conductivity value of 0.0017 S/m at 25 °C for the gypsum without NaCl in the casting 
compound is equivalent to 0.0024 S/m at 36.5 °C when linearly extrapolated, which was 
in the same order of magnitude with skull conductivity values of 0.0038 S/m at 36.5 °C 
reported by Tang et al. [25], who used a very similar setup with their samples immersed 
in saline solution.

The gypsum samples which were produced with a 0.17% NaCl solution in the cast-
ing compound provided stable results within a margin of ± 5% of µ across multiple 
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measurement series and was reproducible between multiple samples within a margin 
of ± 10% of µ. The measured average conductivity value of 0.0425 S/m at 25 °C is equiva-
lent to 0.063  S/m at 37  °C when linearly extrapolated, which was in good accordance 
with skull conductivity range from 0.03 S/m to 0.08 S/m measured at 37 °C reported by 
Hoekema [26]. This gypsum as skull model and other phantom materials presented here 
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current application, both being connected to the Gamry Reference 600 Plus impedance analyzer. Sealing 
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established a skull-to-soft tissue conductivity ratios of 1:8, in close relation to the ratio of 
1:12 reported by Oostendorp et al. [27].

The anisotropy ratio of approximately 1:3 implemented by the reed sticks is in good 
accordance with the ratio of 1:3 indicated in a diffusion tensor imaging data driven mod-
eling approach [13], even though this ratio is below the white matter anisotropy ratio 
of 1:9 reported from earlier measurements [15]. Within a physical head phantom, reed 
sticks could be used to model white matter anisotropy. The sticks embody a solid model 
material not depending on complex support structures. Thus, they can be placed easily 
inside the compartment of the intracranial volume and used to model an anisotropic 
internal compartment.

A physical head phantom build from the materials characterized in the present study 
can realize the widely used approximation of the head as volume conductor compris-
ing intracranial volume, skull, and scalp [9]. The electrolyte conductivity in all analyzed 
materials is based on a 0.17% NaCl solution. Consequently, the multi-compartmental 
phantom incorporating these materials possesses a practically stationary ion concentra-
tion. Thus, the limitation of transient conductivity configurations due to diffusion pro-
cesses across compartments with varying ion concentration [2, 28, 29] can be overcome.

All materials used to manufacture the samples in this study were commercially avail-
able. Using these products and standardized production procedures, we can ensure 
reproducibility of the phantom production. However, all samples have been manually 
produced and sample properties, i.e., the area A and the thickness/length d, used in 
Eq. 2 had tolerances influencing the calculated conductivity values. Further, the geom-
etry parameters of the measurement cell, reflected in the cell constant, affected the 
results of the temperature compensation according to Eq. 1. Impedance measurements 
were conducted at room temperature in a non-air-conditioned environment, and meas-
ured values were afterwards converted to the reference temperature of 25  °C [30] for 
comparability.

The conductivities resulting from measurements with the four-electrode setup dem-
onstrated high reproducibility with a coefficient of variation (CV) of 0.8% and reliability 
with a difference of 0.2% when compared to values obtained with the ProfiLine Cond 
3310.

The tested materials demonstrate consistent results when measured across several 
days. Consequently, head phantoms assembled with these materials have the potential of 
being stable throughout multi-day experiments.

Conclusion
We investigated the applicability of NaCl solution, agar hydrogel, and gypsum for mod-
eling intracranial volume, scalp, and skull in physical head phantoms. Agar hydrogel and 
gypsum are well-known moldable materials that are available at low cost and inherently 
mechanically stable and permeable for ions. Our measurements showed that gypsum 
provides a stable conductivity barrier that implements physiologically plausible skull 
conductivity values in contact with NaCl solution. With reed sticks, we introduced a 
potential material with conductive anisotropy for physical phantoms. We conclude that 
gypsum is suitable for producing a hollow skull compartment and can be coated with 
agar hydrogel realistically mimicking the scalp layer. Both materials can have varying 



Page 11 of 14Hunold et al. BioMed Eng OnLine           (2020) 19:87 	

thicknesses in the range of 1 mm to 10 mm, supporting realistic phantom construction 
for EEG, MEG, TES, and CDI.

Materials and methods
Sodium chloride solution

For reference purposes, we used NaCl (Sodium chloride ≥ 99%, Carl Roth GmbH + Co. 
KG, Karlsruhe, Germany) to prepare the electrolyte solutions for providing the charge 
carrier in the physical head phantom. The conductivity of the sodium chloride solution 
was tested with a ProfiLine Cond 3310 (Xylem Analytics Germany Sales GmbH & Co. 
KG, Weilheim, Germany).

Agarose

We applied agarose (Agarose Broad Range, Carl Roth GmbH + Co. KG, Karlsruhe, Ger-
many) as a solidifying agent in the NaCl solution with sufficient concentration to yield 
the mechanical strength of synthetic skins. We added 2 wt%, 3 wt%, and 4 wt% agarose 
to the heated electrolyte solution (approx. 65  °C) while stirring constantly. The milky 
dispersion was heated to approx. 80 °C until a clear solution emerged. The agarose elec-
trolyte solution was kept in the liquid state, at around 65 °C, until poured into the cast-
ing mold. After cooling to room temperature, the agarose electrolyte solution formed a 
mechanically stable hydrogel.

Gypsum

In gypsum, the solid crystal embodies a structural conductivity barrier. We selected 
Stewaform (Glorex GmbH, Rheinfelden, Germany) as casting compound in order to 
allow the formation of a realistic skull-shaped compartment. The Stewaform powder 
was mixed with either deionized water or 0.17% NaCl solution in the ratio of 2:1 to form 
a casting compound and poured in negative molds of the desired form and let dry at 
40  °C for 2 h. To protect the gypsum structures from dissolving when coming in con-
tact with the NaCl solution, we infiltrated the gypsum for one minute in a two-compo-
nent epoxy resin XTC-3d (Smooth-On Inc., Macungie, PA, USA) at a ratio of 2:1 (epoxy 
resin:hardener). The gypsum was then dried again at 40 °C for 10 min.

Reed sticks

We fit 80 reed sticks (diffusor sticks, Jörn Poppenhäger, Ottweiler, Germany) into a hol-
low plastic tube with an inner diameter of 29 mm and a length of 170 mm. In the middle, 
the tube incorporated two circular cut-outs with a diameter of 21 mm. Pellet and ring 
electrodes (MedCaT GmbH, Munich, Germany) were attached to the tube in 2.5  mm 
and 30 mm distance to the opening, respectively (cf. Fig. 8 bottom). The tube including 
the electrode configurations was tightly sealed with silicone and the whole volume was 
filled with 0.17% NaCl solution.

Impedance measurements

We tested the electrical properties of the material samples including agar hydrogel, 
gypsum, and reed sticks by means of four-electrode impedance measurements at room 
temperature. The temperature was monitored by a Traceable Excursion-Trac (VWR 
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International bvba, Leuven, Belgium). The impedance of the measurement cell com-
prising the material sample clamped between two NaCl solution compartments with a 
concentration of 0.17% NaCl in deionized water was measured using a Gamry Refer-
ence 600 Plus (Gamry Instruments, Warminster, PA, USA) (Fig. 8). The NaCl solution 
compartments held an outer pair of silver/silver chloride ring electrodes with a distance 
of 160 mm to the sample for impressing an electric current, and an inner pair of silver/
silver chloride electrodes with 4 mm diameter for measuring the resulting potential dif-
ference. A more detailed description of the setup can be found in [31]. The reed sticks 
were tested in the above-mentioned double-tube configuration.

We tested the impedance of 0.17% NaCl solution (n = 3), agarose hydrogels with 2 wt% 
(n = 3), 3 wt% (n = 3), and 4 wt% (n = 3) agarose and each one gypsum sample with and 
without 0.17% NaCl solution in the casting compound. The gypsum samples were also 
tested three times using this procedure after they have been dried at ambient air for at 
least 20 h. Each series of measurements were carried out over the frequencies of 0.1 Hz 
to 100 kHz and for 10 min at 1 Hz. There was a 30-min pause between each series of 
measurements.

Further, we tested three samples of agarose hydrogels with 2  wt% agarose and one 
gypsum sample with 0.17% NaCl solution in the casting compound on an extended fre-
quency range of 0.01 Hz to 100 kHz and for an extended duration of 60 min at 10 Hz. 
There was a 6-h pause between each series of measurements.

Simultaneous to measuring the impedances, we measured the temperature in the cell 
with an electrically insulated stainless steel probe connected to a Traceable® Excursion-
Trac (VWR International bvba, Leuven, Belgium).

Conductivity calculation

The experimental measurements were carried out at ambient temperatures. To compare 
to existing literature values, the measured values were adjusted for the temperature dif-
ference. First, the impedance of the cell containing only NaCl solution, ZNaCl, was meas-
ured to use as the reference. The impedance can then be adjusted using

where Z25 is the impedance adjusted to 25 °C, Zmeas is the measured impedance, ϑmeas in 
°C is the temperature at the time of measurement, and α is the linear factor (also called 
cell constant). The cell constant was determined through measurements of a cell con-
taining 0.17% NaCl solution only. The material conductivity is computed from the tem-
perature-compensated net impedance Z25 using:

where d is the material sample thickness/length and A is the surface area. The tube 
configuration loaded with the reed sticks was measured in longitudinal and transverse 
direction. For both directions, we calculated the conductivity according to (2) with Z25 
obtained from (1). The conductivity anisotropy was calculated as the ratio between lon-
gitudinal and transverse conductivity.

(1)Z25 =
Zmeas − ZNaCl

1+ α · (ϑmeas − 25 ◦C)
,

(2)κ=
d

Z25 · A
,
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