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Super-Enhancer-Associated Long
Non-Coding RNA LINC01485
Promotes Osteogenic Differentiation
of Human Bone Marrow
Mesenchymal Stem Cells by
Regulating MiR-619-5p/RUNX2 Axis
Wenli Gu1†, Xiao Jiang1, Wei Wang1, Prabhakar Mujagond2, Jingpeng Liu1, Zhaoyi Mai1,
Hai Tang1, Simin li 1, Hui Xiao1*‡ and Jianjiang Zhao3*‡

1 Stomatological Hospital, Southern Medical University, Guangzhou, China, 2 Regional Centre for Biotechnology, Faridabad, India,
3 Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China

Objective: To investigate the mechanisms of super-enhancer-associated LINC01485/
miR-619-5p/RUNX2 signaling axis involvement in osteogenic differentiation of human
bone marrow mesenchymal stem cells (hBMSCs).

Methods: Osteogenic differentiation of hBMSCs was induced in vitro. The expression
levels of LINC01485 and miR-619-5p during osteogenesis were measured using
quantitative real-time polymerase chain reaction (qRT-PCR). Osteogenic differentiation
was examined by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, ALP
activity measurement, and Alizarin Red S (ARS) staining assays. Thereafter, the effects of
LINC01485 and miR-619-5p on osteogenic differentiation of hBMSCs were evaluated by
performing loss- and gain-of-function experiments. Subsequently, a fluorescence in situ
hybridization (FISH) assay was employed to determine the cellular localization of
LINC01485. Bioinformatics analysis, RNA antisense purification (RAP) assay, and dual-
luciferase reporter assays were conducted to analyze the interactions of LINC01485, miR-
619-5p, and RUNX2. Rescue experiments were performed to further delineate the role of
the competitive endogenous RNA (ceRNA) signaling axis consisting of LINC01485/miR-
619-5p/RUNX2 in osteogenic differentiation of hBMSCs.

Results: The expression of LINC01485 was up-regulated during osteogenic
differentiation of hBMSCs. The overexpression of LINC01485 promoted osteogenic
differentiation of hBMSCs by up-regulating the expression of osteogenesis-related
genes [e.g., runt-related transcription factor 2 (RUNX2), osterix (OSX), collagen type 1
alpha 1 (COL1A1), osteocalcin (OCN), and osteopontin (OPN)], and increasing the activity
of ALP. ALP staining and ARS staining were also found to be increased upon
overexpression of LINC01485. The opposing results were obtained upon LINC01485
interference in hBMSCs. miR-619-5p was found to inhibit osteogenic differentiation. FISH
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assay displayed that LINC01485 was mainly localized in the cytoplasm. RAP assay results
showed that LINC01485 bound to miR-619-5p, and dual-luciferase reporter assay
verified that LINC01485 bound to miR-619-5p, while miR-619-5p and RUNX2 bound
to each other. Rescue experiments illustrated that LINC01485 could promote
osteogenesis by increasing RUNX2 expression by sponging miR-619-5p.

Conclusion: LINC01485 could influence RUNX2 expression by acting as a ceRNA of
miR-619-5p, thereby promoting osteogenic differentiation of hBMSCs. The LINC01485/
miR-619-5p/RUNX2 axis might comprise a novel target in the bone tissue engineering
field.
Keywords: LINC01485, miR-619-5p, RUNX2, super-enhancers, bone marrow mesenchymal stem cells,
osteogenesis, osteogenic differentiation
INTRODUCTION

Critical-sized bone defects in oral and maxillofacial regions
occurring due to tumor resection, trauma, congenital
malformation, or alveolar bone resorption after teeth loss
remain a significant challenge in oral reconstruction (1).
Currently, autologous bone grafts have been considered the
gold standard for the repair and reconstruction of maxillofacial
bone defects, including critical-sized bone defects (2, 3).
However, their clinical application is limited by disadvantages
such as additional trauma at the donor site and limited bone
availability (1, 4). Because of the limitations of autologous bone
transplantation and other currently applied methods, bone tissue
engineering that organically combines seed cells, bioactive
factors, and biomaterials scaffolds is expected to provide an
effect ive al ternative approach for bone repair and
reconstruction (5–7). Marrow mesenchymal stem cells
(MSCs)-based therapies are considered viable alternatives with
promising advantages for restoring the structure and function of
damaged bone (5, 8). Bone marrow mesenchymal stem cells
(BMSCs) are adult stem cells with high regeneration and
multidirectional differentiation potential, which makes them
ideal seed cells. Notably, research addressing the potential
application of long non-coding RNAs (lncRNAs) in bone
tissue engineering constructs for repair of bone defects is
scarce. While the use of lncRNAs in combination with
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scaffolding has been reported in a few recent studies (8, 9),
accumulating evidence shows that lncRNAs are involved in the
osteogenic differentiation of various types of cells (9–12).
Therefore, exploring the regulatory mechanisms related to
lncRNAs’ roles in osteogenic differentiation could provide a
theoretical basis for target discovery in applications within
bone tissue engineering.

lncRNAs are a class of little or no protein-coding transcripts
longer than 200 nucleotides (9). Improvements in sequencing
technologies have led to the identification of thousands of
IncRNAs in different cell types, including cells of cartilage and
bone (13). Accumulating evidence has shown that lncRNAs are
involved in the osteogenic differentiation of various types of cells,
and several lncRNAs such as H19 (14, 15), MALAT1 (16, 17),
MEG3 (18), and HOTAIR (19) have been found to regulate the
osteogenesis of MSCs. lncRNAs are believed to regulate
osteoblastic differentiation by mechanisms such as combining
with RNA binding protein (RBP), interacting with sense
transcripts, binding with EZH2, chromatin modification,
binding to transcription factors, and acting as competitive
endogenous RNA (ceRNA) (9, 11).

Super-enhancers (SEs) have been attracting attention since
their concept was first proposed by Hnisz et al. in 2013 (20). SEs
are a large cluster of enriched transcriptional activity enhancers
that drive the expression of genes controlling cell identity.
Compared with typical enhancers (TEs), SEs enrich a greater
number of factors related to enhancer activity, such as Mediator1
(Med1), H3K27ac, H3K4me1, H3K4me2, and chromatin factors
such as cohesin, p300, and CBP, RNA polymerase II (RNAPII),
and therefore SEs display stronger transcriptional activation
ability (21). Moreover, SEs can increase the transcription and
production of enhancer-associated ncRNAs (eRNAs, elncRNAs)
(21, 22).

SEs have been a particular focus of research in cell
development and differentiation, and tumorigenesis. In recent
years, accruing data has demonstrated a role of SEs in bone tissue
regulation. Studies have reported that SEs are associated with
various bone-related diseases, including osteosarcoma, Ewing
sarcoma, chordoma, multiple myeloma, cartilage dysplasia,
osteoporosis, rheumatoid arthritis, and osteoarthritis (23).
These studies have typically identified disease-specific SEs and
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their target genes using bioinformatics, and then analyzed the
functions of the target genes through experimental approaches
(23). In conjunction, BRD4 and CDK7 based drugs targeting
critical components of SEs have been developed to treat
os teosarcoma, Ewing sarcoma, mult ip le myeloma,
osteoarthritis, and other bone-related diseases (24–27).
Specifically, Zhang et al. (24) have reported that the specific
CDK7 inhibitor THZ2 could suppress the phosphorylation of
RNAPII CTD and selectively suppress super-enhancer-related
genes, leading to anti-osteosarcoma effects. Considering
osteogenic differentiation, Yu et al. (28) have reported that the
single-nucleotide polymorphisms (SNP)-unique ankylosing
spondylitis (AS) SNP-adjacent SEs (SASEs)-mRNA network
participated in the pathological osteogenesis of AS and
enhanced the osteogenic differentiation ability of MSCs from
AS patients (ASMSCs). Overall, research regarding the role of
SEs in bone-related diseases and osteogenic differentiation has
mainly focused on SEs-associated mRNAs but few studies have
addressed SEs-associated lncRNAs. Thus, the function of SEs-
associated lncRNAs (SE-lncRNAs) involved in osteogenic
differentiation remains largely unknown.

SE-lncRNAs are typically transcribed from SE genomic
regions or their adjacent regions which harbor specific
chromatin states of activation senators, H3K4me1, H3K27ac,
and related co-factors (such as P300, etc.) or interact with SEs
(21, 29). Multiple functional studies have shown that elncRNAs
are required for enhancer activity and target promoter
transcriptional activity (30–33). In addition, Yan et al. (34)
have applied genome-wide analysis and shown that in mouse
embryonic stem cells (mESCs), lncRNA genes were preferentially
located next to SEs, and consumption of SE-lncRNAs transcripts
dysregulated the activity of nearby SEs. Many studies have
highlighted the critical roles of SE-lncRNAs in tumorigenesis,
cell development, and differentiation (22, 35–39). For example,
LINC00162, an SE long non-coding RNA, was shown to bind to
THRAP3 to inhibit the expression of PTTG1IP and promote the
proliferation of bladder cancer cells (37). A super-enhancer-
regulated lncRNA UCA1 in epithelial ovarian cancer (EOC) is
shown to enhance the interaction between AMTO and YAP,
activating YAP dephosphorylation and nuclear translocation,
and promoting binding to TEAD to promote the expression of
pro-oncogene signatures (38). CARMEN, an enhancer-
associated lncRNA, was shown to cis-regulate the expression of
miR-143/145 in adult cardiac precursor cells (CPCs) by
producing CARMEN7, thereby regulating the differentiation of
adult CPCs into smooth muscle cells (39). These findings
highlight the basis for investigating the roles of SE-lncRNAs in
the process of osteogenic differentiation.

In our previous studies, the SEs expressed before and after
osteogenic differentiation D0 group (before osteogenic induction)
and D14 group (day 14 after osteogenic induction) of human
bone marrow mesenchymal stem cells (hBMSCs) were identified
by chromatin immunoprecipitation sequencing (ChIP-seq) of
H3K27ac (40). The associated genes of the specific SEs in the
D14 group were analyzed using bioinformatics and quantitative
real-time polymerase chain reaction (qRT-PCR), and the SE-
Frontiers in Endocrinology | www.frontiersin.org 3
lncRNA LINC01485 was found to show significant differences in
expression levels before and after osteogenic differentiation.
Therefore, the role and regulatory mechanisms of LINC01485
involvement in the differentiation of hBMSCs were considered to
merit further research and are addressed in the present
investigation.
MATERIALS AND METHODS

Annotation and Prediction of
SE-Associated Genes
SEs were assigned to the expressed transcripts, and the
transcription start site (TSS) closest to the center of the
enhancer was used to identify neighboring genes (20, 24, 41).
AnnotatePeaks.pl, a Hypergeometric Optimization of Motif
EnRichment (Homer, version 4.11) application for peak
annotation, was used to link peaks to the neighboring genes
(42, 43).

Culture and Osteogenic Differentiation
of hBMSCs
hBMSCs were purchased from Procell Life Science & Technology
(CP-H166, Wuhan, China) and Cyagen Biosciences (HUXMA-
01001, Guangzhou, China) and cultured in MSC medium
(Cyagen, China) supplemented with 10% fetal bovine serum
(FBS), 1% penicillin, and streptomycin, 1% glutamine (Cyagen,
China) in humidified air of 5% CO2 at 37°C. The purchased cells
were accompanied by quality reports, including flow cytometry
identification, which revealed that the hBMSCs were positive for
CD29, CD44, CD73, and CD105, and negative for CD34, CD11b,
and CD45. The purchased hBMSCs could differentiate into
osteoblasts, adipocytes, and chondrocytes under specific
inductive conditions. When cells reached 80-90% confluence,
subculture was performed at a ratio of 1:2 or 1:3, and the medium
was replaced every 2 days. After being cultured to P2-P4, the cells
were plated in a 6-well plate at a density of about 1×105 cells/well.
When cell confluence reached roughly 70%, hBMSCs osteogenic
induction medium (Cyagen, China) containing dexamethasone,
vitamin C, and b-sodium glycerophosphate was added, and was
changed every 3 days.

qRT-PCR
Total RNA was extracted from the cells using TRIzol reagent
(Accurate Biotech, Hunan, China). RNA purity and concentration
were assessed by NanoDrop 2000 instrument (Thermofisher, US).
For the qRT-PCR quantification of mRNAs and lncRNAs, 1000 ng
RNAwas reverse transcribed into cDNA using the EvoM-MLV RT
kit with gDNA Clean for qPCR (Accurate Biotech, China). Reverse
transcription of miRNAs was performed using Bulge-Loop SCRIPT
Reverse Transcription Kit (RiboBio, Guangzhou, China). qRT-PCR
was performed using SYBR Green Premix PCR kit (Accurate
Biotech, China) on a CFX Connection Real-Time System (Bio-
Rad, California). According to the manufacturer’s protocol, the
qRT-PCR reaction program for mRNAs and lncRNAs was set as
follows: initial activation at 95°C for 30 s, followed by 40 cycles at
May 2022 | Volume 13 | Article 846154
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95°C for 5 s and 63°C for 30 s, while the cycling conditions for
miRNAs were as follows: initial activation at 95°C for 10 min,
followed by 40 cycles at 95°C for 2 s, 60°C for 20 s, and 70°C for 10 s.
GAPDH was used as an endogenous reference for lncRNAs and
mRNAs, while U6 was used to normalize the expression of
miRNAs. The 2−DDCT method was used to calculate the relative
expression level of each gene. All reactions were performed in
duplicate to ensure reliability and validity. All primers were obtained
from Tsingke (Beijing, China) or RiboBio (Guangzhou, China). The
sequences of the primers used are listed in Supplementary Tables
S2, S3.

Western Blot
Total protein was extracted by RIPA lysate (Cwbio, Jiangsu, China)
containing protein inhibitors and phosphatase inhibitors (Cwbio,
China) and was quantified by bicinchoninic acid (BCA) protein
assay kit (Cwbio, China). A total of 20 µg protein from each sample
was separated by 10% SDS-PAGE gel at 80V (stacking gel)/120V
(resolving gel) for about 2 h and transferred onto polyvinylidene
fluoride (PVDF)membranes (Millipore, US) with a diameter of 0.45
um at 250 mA for 150 min. The membrane was blocked with 5%
non-fat milk at room temperature for 1 h, washed with TBST (0.1%
Tween-20 in Tris-buffered saline (TBS)) and incubated overnight in
the primary antibody at 4°C. The primary antibodies were as
follows: RUNX2 (1:1000, Cell Signaling Technology, Cat#
12556s), Osterix (1:1000, BOSTER, Cat# A02077-1), COL1A1
(1:1000, BOSTER, Cat# BA0325), OPN (1:1000, Abcam, Cat#
ab8448), and GAPDH (1:20000, Proteintech, Cat# 60004–1-Ig).
The membrane was washed with TBST three times for 10 min each
and then incubated with an HRP-conjugated secondary antibody
(Goat Anti-Mouse IgG, 1:5000, Proteintech, Cat # SA00001-1; Goat
Anti-Rabbit IgG, 1:5000, Proteintech, Cat# SA00001-2) at room
temperature for 1 h followed by washing with TBST three times for
10 min each. Immune complexes were detected using an ECL kit
(Merck Millipore, Germany) with a chemiluminescence imaging
system (Bio-Rad, US). The density data of each specific protein was
normalized to that of GAPDH and analyzed using Image J software
(Media Cybernetics, US).

Alkaline Phosphatase (ALP) Staining and
ALP Activity Detection
hBMSCs plated in 6-well plates were subjected to osteogenic
induction for 7 days, then washed twice with phosphate-buffered
saline (PBS), and fixed with 4% paraformaldehyde (PFA) for 15min.
After washing with PBS, the cells were stained with ALP staining
solution (Beyotime, Shanghai, China) according to the
manufacturer’s instructions. After 24 h of staining, the cells were
photographed under a microscope (Leica, DMIRB, Germany). In
addition, the cells were added with lysates (Beyotime, China), which
were collected and used to detect ALP activity using an ALP activity
test kit (Beyotime, China). The absorbance at 450 nmwas examined.

Alizarin Red S (ARS) Staining and ARS
Quantification Assay
hBMSCs were subjected to osteogenic induction for 14 days,
washed twice with PBS, and fixed with 4% PFA for 15 min. Next,
Frontiers in Endocrinology | www.frontiersin.org 4
they were washed with diH2O and stained with 40 mM ARS
(ScienCell, US) at 37°C for 15 min. After dyeing, the cells were
washed with diH2O, and images were obtained under the
microscope (Leica, DMIRB, Germany). The stained cells were
added with 10% acetic acid and 10% ammonium hydroxide from
an Alizarin Red S staining quantification assay kit (ScienCell,
US). The absorbance at 405 nm was determined and used to
analyze the ARS concentration.
Lentivirus Construction and
Cell Transduction
The full-length sequences of LINC01485, LINC01485 short
hairpin (sh) RNA targeting LINC01485 (sh-LINC01485), and
scrambled control shRNA (sh-NC) were inserted into the GV
vector, and the three target plasmid vectors and an empty
plasmid vector were transfected into 293T cells with plasmids
Helper 1.0 and Helper 2.0, respectively. The cell supernatant was
collected to obtain the virus, and the virus was concentrated,
purified, and detected. The inserted sequence was confirmed by
sequencing analysis. This work was done by GeneChem
(GeneChem, Shanghai, China). hBMSCs were plated in a 6-
well plate at a density of 6×104 cells/well. When the cells became
adherent to the wall about 24 h later, and the confluence reached
approximately 50%, the cells were infected with lentiviruses at an
MOI of 40 for 2-3 days. Then, 3 mg/mL puromycin (Solarbio,
Beijing, China) was utilized for screening for 2 days. Finally, the
cells were collected to test the overexpression and interference
efficiency of LINC01485 and used for further experiments. The
sequence of LINC01485 RNAi is listed in Supplementary
Table S4.

Bioinformatics Analysis of Targeting
Relationship Between lncRNA-miRNA
and miRNA-mRNA
lncRNA-bound miRNAs and miRNA-targeted mRNAs were
predicted using TargetScan and Miranda databases, and the
predicted results of the two databases were intersected. First,
the target mRNAs of miRNA associated with osteogenesis were
selected from the relationship pairs with the highest binding
score. Then the RNA antisense purification (RAP) assay was
performed to determine the miRNA that was finally interacting
with LINC01485.

MiRNA Transfection
hBMSCs were seeded in the 6-well plate at a density of 6×104,
and the cells reached 70% confluence after about 48 h. According
to the manufacturer’s instructions, miR-619-5p mimic and
miRNA mimic NC (RiboBio, Guangzhou, China) were
transfected with Lipofectamine 3000 transfection reagent
(Invitrogen, US) at a concentration of 50 nM, and miR-619-5p
inhibitor, miRNA inhibitor NC (RiboBio, Guangzhou, China) at
a concentration of 100 nM. RNA was extracted 24 h after
transfection, the protein was extracted 48 h for detection, and
osteogenic induction solution was added for osteogenic
induction differentiation. Transfection was performed again
May 2022 | Volume 13 | Article 846154
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after 3 days. MiR-619-5p mimic and miR-619-5p inhibitor
sequence are listed in Supplementary Table S5.

FISH Assay
Before and after osteogenic induction, hBMSCs in 6-well plates
were fixed with 4% PFA for 15 min upon reaching a cell density
of 70-80%. The cells were washed with DEPC water twice for 5
min each time, then added protease K and incubated at 55°C for
5 min for digestion. At room temperature, the cells were fixed
again with 1% PFA for 10 min and washed three times with pre-
cooled alcohol at -20°C. Pre-hybridization was performed with a
100 mL pre-hybridization solution dropped onto slices at 37°C
for 30 min. The prepared LINC01485 probe (Axl-bio,
Guangzhou, China) was denatured at 73°C for 8 min. The
probe and hybrid solution mixture was added to the sections
and hybridized overnight at 42°C. After washing with
hybridization solution and PBS, according to the instructions
of the FISH test kit (Axl-bio, Guangzhou, China), 4,6-diamidino-
2-phenylindole (DAPI) was added for staining, in light avoid
conditions for 10 min, followed by washing with PBS 3 times, 5
min each. Then, anti-fluorescence attenuated tablets were used to
seal the tablets, and the images were obtained with laser scanning
confocal microscopy (Carl Zeiss AG, Germany). LINC01485
FISH probe is listed in Supplementary Table S6.

RAP Assay
For this experiment, the RAP kit (Axl-bio, Guangzhou, China)
was employed.

RAP uses biotinylated probes that bind to target RNAs and
miRNAs, which may subsequently be extracted, reverse
transcribed to cDNA, and detected by qRT-PCR. A total of 107

hBMSCs were washed in PBS and UV irradiated at 254 nm (0.15
J cm-2) for cross-linkage, 1 mL lysis buffer was used to lyse the
cells, and a 0.4-mm syringe was used to homogenize them
completely. The lncRNA-RAP system received two separate
25-bp biotinylated antisense probes (0.2 nmol), as well as one
26-bp biotinylated antisense probe (0.2 nmol) targeting the
adapter sequence. The probes were denatured at 65°C for 10
min and hybridized at room temperature for 2 h. There were
200mL streptavidin-coated magnetic beads added, washing was
employed to remove non-specifically bound RNAs, and Trizol
reagent was used to extract miRNAs directly interacting with
LINC01485. The miRNAs were reverse transcribed and binding
strength was determined using qRT-PCR. The LINC01485 RAP
probe sequence is listed in Supplementary Table S7.

Luciferase Assay
HEK293T cells were purchased from ATCC cell bank, cultured,
and amplified with DMEM (Gibco, US) complete medium
containing 10% FBS (Gibco, US). HEK293T cells were plated
in 6-well plates at a density of 2×106 cells/well. After 16 h, the cell
confluence reached about 80%. The possible binding sites of
LINC01485 and miR-619-6p were predicted using
bioinformatics tools, and the predicted LINC01485 binding
sequence and mutated sequence were constructed into
psicheck2 reporter plasmid. At the same time, the full-length
Frontiers in Endocrinology | www.frontiersin.org 5
sequence of LINC01485 was inserted into the pcDNA3.1
plasmid. The plasmids and miR-619-5p mimic or miRNA NC
were co-transfected into HEK293T cells with Lipofectmin 3000
transfection reagent (Invitrogen, US). The medium was changed
6 h after transfection, and the culture was continued until 48 h
after adding the complete medium. The medium was removed,
washed twice with PBS, and 1×PLB lysate (Promega, US) was
added for incubation at room temperature for 15 min. A total of
20 mL lysate, 100 µL LARII, and 100 µL stop Glo buffer
(Promega, US) were added to a 96-well plate, and luciferase
activity was detected using a microplate reader (BioTek, US).

Statistical Analysis
All experiments were carried out three times independently.
Data were presented as mean ± standard deviation (SD) based on
three replicates. Unpaired two-tailed Student’s t-test was used to
examine differences between groups. All data were statistically
analyzed using GraphPad Prism 8.0 (GraphPad Software, US).
Statistical significance was defined as a value of p<0.05
(two-sided).
RESULTS

LncRNAs in Specific SE-Associated Genes
in the D14 Group
Using HOMER software analysis, the genes closest to the SEs
were selected as the SE-associated genes. Supplementary Table
S1 shows lncRNAs in the D14 group specific SE-associated
genes. qRT-PCR results showed that the expression levels of 4
lncRNAs were significantly increased after osteogenic
differentiation (Supplementary Figure S1).

LNC01485 Expression Was Up-Regulated
During Osteogenic Differentiation of
hBMSCs
At first, the osteogenic differentiation of hBMSCs was confirmed
by ALP activity assay and ALP and ARS staining. ALP staining
(Figure 1A) on Day 7 after induction and ARS staining
(Figure 1B) on Day 21 after induction showed positive
staining results. The ALP activity was significantly enhanced
after osteogenic induction on the seventh day (Figure 1C).
Alizarin Red semi-quantitative analysis showed that the content
of Alizarin Red bound to calcium nodules increased significantly
14 days after osteogenesis induction (Figure 1D). Western blot
and qRT-PCR assays were used to determine the expression levels
of runt-related transcription factor (RUNX2), collagen type I alpha
1 chain (COL1A1), osterix (OSX), osteocalcin (OCN), and
osteopontin (OPN) during the process of osteogenic induction
of hBMSCs. Western blot results showed that protein levels of
RUNX2 (Figures 1E, F), COL1A1 (Figures 1E, G), OSX
(Figures 1E, H), and OPN (Figures 1E, I) were up-regulated
after osteogenic induction as compared to uninduced cells. The
qRT-PCR results revealed that RUNX2 (Figure 1J), OPN
(Figure 1K), and OCN (Figure 1L) increased gradually during
May 2022 | Volume 13 | Article 846154
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14 days of osteogenic induction, and COL1A1 (Figure 1M) and
OSX (Figure 1N) reached their peak on the tenth day. Compared
with the uninduced cells, the expression levels of these osteogenic
factors were significantly up-regulated (p<0.05). These results
revealed that the osteogenic induction of hBMSCs in vitro was
achieved successfully.

The mRNA expression levels of LINC01485 were determined
by qRT-PCR during the osteogenic differentiation of hBMSCs.
The expression of LINC01485 gradually increased over time
during 14 days of osteogenic induction (Figure 1O). The
expression trend of LINC01485 was consistent with that of
osteogenic genes RUNX2, OPN, and OCN; therefore, the
Frontiers in Endocrinology | www.frontiersin.org 6
correlation between LINC01485 and osteogenic-related genes
was analyzed using Spearman’s correlation analysis. LINC01485
was evident as significantly positively correlated with RUNX2
(Figure 1P), OPN (Figure 1Q), and OCN (Figure 1R),
sugges t ing that LINC01485 might be involved in
osteogenesis regulation.

LINC01485 Regulates Osteogenic
Differentiation of hBMSCs
To explore the effects of LINC01485 on osteogenic
differentiation of hBMSCs in vitro, we infected cells with
LINC01485 overexpression and LINC01485 knockdown
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FIGURE 1 | LNC01485 expression was up-regulated during osteogenic differentiation of hBMSCs. (A, C) ALP staining (A) and ALP activity assay (C) of hBMSCs
before osteogenic induction and 7 days after induction. (B, D) hBMSCs were stained with Alizarin Red S (B) before osteogenic induction and at 14 days after
induction, and the staining results were analyzed semi-quantitatively (D). (E-I) The protein expression levels of RUNX2 (E, F), COL1A1 (E, G), OSX (E, H), and OPN
(E, I) level on Days 0, 7, 14, and 21 of osteogenic induction were detected by Western blot and quantified analysis by normalized to GAPDH. (J-O) The mRNA
expression levels of RUNX2 (J), OPN (K), OCN (L), COL1A1 (M), OSX (N), and LINC01485 (O) before and after osteogenic differentiation were determined by qRT-
PCR. (P-R) Expression correlation analysis between LINC01485 and osteogenic genes RUNX2 (P), OPN (Q), and OCN (R) during osteogenic differentiation. *p <
0.05, **p < 0.01, ***p < 0.001.
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lentivirus to maintain continuous expression levels of
LINC01485. qRT-PCR was performed to examine the
overexpression and interference efficiency of LINC01485. The
results verified that the level of LINC01485 expression in the
LINC01485-overexpression group was significantly higher than
that in the negative control group after transduction
(Figure 2A). In contrast, LINC01485 was down-regulated
after transduction of sh-LINC01485, as compared with the
scrambled group (Figure 2B). Subsequently, qRT-PCR and
western blot assays were used to determine the expression
levels of osteogenic specific factors in the infected groups at
Frontiers in Endocrinology | www.frontiersin.org 7
mRNA and protein levels after 14 days of osteogenic induction.
As shown in Figures 2C–K, LINC01485 overexpression
markedly enhanced the expression of RUNX2 (Figure 2C),
COL1A1 (Figure 2D), OSX (Figure 2E), and OCN (Figure 2F)
at the mRNA level and promoted the expression of RUNX2
(Figures 2G, H), COL1A1 (Figures 2G, I), OSX (Figures 2G,
J), and OPN (Figures 2G, K) at the protein levels. In contrast,
LINC01485 knockdown produced the opposite effects
(Figures 2C–K). Furthermore, ALP activity detection and
ALP staining revealed that the up-regulation of LINC01485
enhanced ALP staining (Figure 2L) and the ALP activity
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FIGURE 2 | LINC01485 regulates osteogenic differentiation of hBMSCs. (A, B) The overexpression (A) and interference (B) efficiency of LINC01485 was
determined by qRT-PCR in hBMSCs after transduction with LV-LINC01485 and sh-LINC01485. (C–F) The mRNA levels of RUNX2 (C), COL1A1 (D), OSX (E), and
OCN (F) after 14 days of osteogenic induction in hBMSC infected with lentivirus by qRT-PCR. (G, H) Western blot analysis of the RUNX2 (G, I), COL1A1 (G, I), OSX
(G, J), and OPN (G, K) protein expression in hBMSCs infected with lentivirus after osteogenic induction 14 days later and the corresponding gray value quantitative
analysis. (L, M) ALP staining (L) and ALP activity (M) of hBMSC cells infected with lentivirus after 7 days of osteogenic induction. (N, O) Alizarin Red S staining (N)
and semi-quantitative analysis (O) of infected hBMSCs with lentivirus after 14 days osteogenic induction. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figure 2M), while the down-regulation of LINC01485 reduced
ALP staining (Figure 2L) and inhibited ALP activity
(Figure 2M). ARS staining with LINC014845 overexpression
led to increase in the mineralized bone matrix as compared to
the control group (Figures 2N, O), whereas sh-LINC01485
decreased calcium nodules (Figures 2N, O). These results
manifested that LINC01485 could promote osteogenic
differentiation of hBMSCs in vitro.
LINC01485 Acts As A Sponge of miR-619-
5p in the Osteogenesis of hBMSCs
To investigate the molecular mechanisms of LINC01485 regulation
of osteogenic differentiation of hBMSCs, we first evaluated the
cellular localization of LINC01485. FISH assay results determined
that LINC01485 was mainly expressed in the cytoplasm
(Figure 3A). This finding is consistent with the results reported
by Zhou et al. (44) showing LINC01485 as primarily located in the
Frontiers in Endocrinology | www.frontiersin.org 8
cytoplasm of gastric cancer cells. In addition, FISH results also
suggested greater LINC01485 fluorescence in hBMSCs after
osteogenic induction as compared with uninduced
cells (Figure 3A).

Recent research (12) has shown that lncRNA located in the
cytoplasm plays a role in the osteogenic differentiation of
MSCs through cross-talk with miRNA. Thus, we used
Miranda and TargetScan databases to predict miRNAs that
might bind to LINC01485. A Venn diagram depicted the
intersection. To further screen target miRNAs, an RAP assay
of LINC01485 was conducted to determine the expression
levels of several miRNAs that displayed high predicted
scores. RAP results showed that among 5 miRNAs with high
scores, miR-619-5p was evident in the AP group as compared
with the Input group without RAP probe, while the other
miRNAs showed negative results in the AP group (Figure 3B).
The electrophoretic patterns of qRT-PCR products in the RAP
experiment also confirmed this result (Supplementary Figure
A B

DC

FIGURE 3 | LINC01485 acts as a sponge of miR-619-5p in the osteogenesis of hBMSCs. (A) FISH assay for LINC01485 before and after osteogenic induction in
hBMSCs. (B) Percentage of purified miRNAs identified in the RAP assay relative to the input group detected by qRT-PCR. (C) Binding site prediction of LINC01485
and miR-619-5p. (D) Luciferase activity of LINC01485-WT and LINC01485-Mut upon transfection of miRNA NC or miR-619-5p mimic into HEK293T cells. ns, no
significance. *p < 0.05, ***p < 0.001.
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S2). Thus, the RAP results indicated that LINC01485
efficiently pulled down miR-619-5p but did not bind to
several other miRNAs.

Furthermore, the binding sites of LINC01485 and miR-619-
5p were predicted using bioinformatics (Figure 3C). Thereafter,
we constructed LINC01485 wild-type (WT) and LINC01485
mutant (MUT) luciferase receptor plasmids based on the
putative binding sites. The result of luciferase activity analysis
indicated that the luciferase activity of LINC01485-WT reporter
vector was significantly inhibited by miR-619-5p mimic, while
luciferase activity of LINC01485-MUT type was not affected by
miR-619-5p mimic (Figure 3D).
Frontiers in Endocrinology | www.frontiersin.org 9
MiR-619-5p is Down-Regulated and
Inhibits Osteogenesis During Osteogenic
Induction of hBMSCs
Since LINC01485 could sponge miR-619-5p to promote
osteogenic differentiation, we next studied the expression of
miR-619-5p in the osteogenic process and its effect on
osteogenic differentiation. qRT-PCR analysis showed that the
mRNA level of miR-619-5p decreased gradually during
osteogenic differentiation (Figure 4A), which was negatively
correlated with the expression trend of LINC01485
(Figure 4B). Subsequently, miR-619-5p mimic, miRNA mimic
negative control (miRNAmimic NC), miR-619-5p inhibitor, and
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FIGURE 4 | MiR-619-5p is down-regulated and inhibits osteogenesis during osteogenic induction of hBMSCs. (A) The relative expression levels of miR-619-5p
before and after osteogenic differentiation were determined by qRT-PCR. (B) Correlation analysis of LINC01485 and miR-619-5p expression levels during osteogenic
differentiation. (C, D) The mRNA level of miR-619-5p in hBMSCs transfected with miR-199a-5p mimic (C) and miR-199a-5p inhibitor (D) by qRT-PCR. (E–I) Western
blot analysis of the RUNX2 (E, F), COL1A1 (E, G), OSX (E, H), and OPN (E, I) protein expression in hBMSCs transfected with miR-619-5p mimic, miRNA mimic NC,
miR-619-5p inhibitor, and miRNA inhibitor NC after osteogenic induction and the corresponding gray value quantitative analysis. (J) ALP staining analysis of hBMSCs
transfected with miR-619-5p mimic, miRNA mimic NC, miR-619-5p inhibitor, and miRNA inhibitor NC after osteogenic induction. *p < 0.05, **p < 0.01, ***p < 0.001.
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miRNA inhibitor negative control (miRNA inhibitor NC) were
synthesized and transfected into hBMSCs for osteogenic
induction, followed by western blot and ALP staining assay.
qRT-PCR results showed that the expression level of miR-619-5p
in cells transfected with miR-619-5p mimic increased to about
100-fold higher than that in mimic NC (Figure 4C). In contrast,
the expression level of miR-619-5p in cells transfected with miR-
619-5p inhibitor was about 72% lower than that in inhibitor
NC (Figure 4D). MiR-619-5p mimic significantly reduced
the protein levels of RUNX2 (Figures 4E, F), COL1A1
(Figures 4E, G), OSX (Figures 4E, H), and OPN (Figures 4E, I),
and weakened ALP staining (Figure 4J). At the same time,
inhibition of miR-619-5p led to an increase in RUNX2
(Figures 4E, F), COL1A1 (Figures 4E, G), OSX (Figures 4E, H),
and OPN (Figures 4E–I) protein expression and enhanced ALP
staining (Figure 4J). These results indicated that miR-619-5p
overexpression could inhibit osteogenic differentiation, and
inhibition of miR-619-5p could promote the osteogenesis of
hBMSC. This is contrary to the effect of LINC01485 on
Frontiers in Endocrinology | www.frontiersin.org 10
osteogenic differentiation and adds to the evidence that
LINC01485 promotes osteogenic differentiation through the
LINC01485/miR-619-5p axis.

RUNX2 Is A Direct Target of miR-619-5p
We predicted the target genes of miR-619-5p using Miranda and
TargetScan databases and found that miR-619-5p could bind to
the osteogenic gene RUNX2. The mRNA level of RUNX2
increased gradually during osteogenic differentiation, which
was negatively correlated with the expression of miR-619-5p
(Figure 5A). In addition, Western blot and qRT-PCR analysis
showed that protein and mRNA levels of RUNX2 decreased
when hBMSCs were transfected with miR-619-5p mimic, while
protein and mRNA levels of RUNX2 increased by the treatment
with the miR-619-5p inhibitor (Figures 5B–D). Moreover, the
results of bioinformatic predictions showed that miR-619-5p had
a binding site at the 3’UTR of RUNX2, and the binding sequence
is shown in Figure 5E. The dual-luciferase assay showed that
luciferase activity of RUNX2-WT was significantly down-
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FIGURE 5 | RUNX2 is a direct target of miR-619-5p. (A) Correlation analysis of RUNX2 and miR-619-5p expression levels during osteogenic differentiation. (B) The
mRNA expression of RUNX2 in hBMSCs transfected with miR-619-5p mimic or miR-619-5p inhibitor was determined using qRT-PCR. (C, D) The RUNX2 protein
level in hBMSCs transfected with miR-619-5p mimic or miR-619-5p inhibitor was determined using Western blotting (C) and the gray value quantitative analysis (D).
(E) The putative binding sites of miR-619-5p in wild type and mutant RUNX2 3′-UTR. (F) Luciferase activity of RUNX2-WT and RUNX2-Mut upon transfection of
miRNA NC or miR-619-5p mimic into HEK293T cells. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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regulated by miR-619-5p mimic, but the luciferase activity of
RUNX2-MUT was not affected by miR-619-5p (Figure 5F).
These results confirmed that miR-619-5p targets RUNX2,
inhibiting RUNX2 expression by binding to the 3’UTR
of RUNX2.

LINC01485 Acts As A ceRNA of miR-619-
5p to Regulate RUNX2 and Osteogenic
Differentiation
A series of rescue assays was performed to verify whether there is a
regulatory relationship among LINC01485, miR-619-5p, and
Frontiers in Endocrinology | www.frontiersin.org 11
RUNX2. First, we transfected miR-619-5p inhibitor or miRNA
inhibitor NC into sh-LINC01485 or sh-NC stable hBMSCs
constructed in advance. Western blot results showed that after
osteogenic induction of hBMSCs in the LINC01485 interference
group, the protein levels of RUNX2 (Figures 6A, B), COL1A1
(Figures 6A, C), OSX (Figures 6A, D), and OPN (Figures 6A, E)
were decreased, and ALP staining was reduced as compared with
the control group (Figure 6F). However, miR-619-5p inhibitor
treatment compensated for the effect of LINC01485 knockdown
on osteogenic differentiation, and the protein levels of RUNX2
(Figures 6A, B), COL1A1 (Figures 6A, C), OSX (Figures 6A, D),
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FIGURE 6 | LINC01485 acts as a ceRNA of miR-619-5p to regulate RUNX2 and osteogenic differentiation. (A–E) Western blot analysis of the RUNX2 (A, B),
COL1A1 (A, C), OSX (A, D), and OPN (A, E) protein expression in hBMSCs infected with sh-NC or sh-LINC01485 lentivirus along with miRNA inhibitor NC or miR-
619-5p inhibitor after osteogenic induction and the corresponding gray value quantitative analysis. (F) ALP staining analysis of hBMSCs infected with sh-NC or sh-
LINC01485 lentivirus along with miRNA inhibitor NC or miR-619-5p inhibitor after osteogenic induction. (G) ALP staining analysis of hBMSCs infected with LV-NC or
LV-LINC01485 lentivirus along with miRNA mimic NC or miR-619-5p mimic after osteogenic induction. (H) Luciferase activity of RUNX2-WT upon transfection of
pcDNA3.1, pcDNA3.1-LINC01485, or miR-619-5p mimic into HEK293T cells. ns, none significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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and OPN (Figures 6A, E) were elevated, and ALP staining was
more pronounced (Figure 6F). Then, miR-619-5p mimic or
miRNA mimic NC was transfected into LV-LINC01485 or LV-
NC stable hBMSCs for osteogenic differentiation induction. miR-
619-5p mimic reduced ALP staining as compared with miRNA
mimic NC, but the ALP staining increased after co-transfection of
LV-LINC01485 (Figure 6G). Luciferase assays indicated that miR-
619-5p mimic reduced the luciferase activity of RUNX2-WT,
while the co-transfection of LINC01485 overexpressed plasmid
with miR-619-5p mimic restoring the luciferase activity of
RUNX2-WT (Figure 6H). RUNX2-WT luciferase activity was
higher in the LINC01485 overexpressed plasmid transfection
group than in RUNX2-WT transfected with the empty plasmid
but decreased when miR-619-5p mimic was added (Figure 6H).
Overall, these in vitro results suggest that LINC01485, miR-619-
5p, and RUNX2 constitute a ceRNA network, and LINC01485
competes with miR-619-5p to regulate RUNX2 expression,
thereby regulating the bone formation of hBMSCs.
DISCUSSION

Maxillofacial critical size bone defects caused by several
etiological factors pose challenges in successful reconstruction.
Therefore, exploring the regulatory mechanisms underlying
BMSCs osteogenic differentiation can provide a theoretical
Frontiers in Endocrinology | www.frontiersin.org 12
basis and target discovery for bone tissue engineering. SEs
comprise a genomic region composed of activity enhancer
clusters enriched with many factors related to enhancer
activity. Compared with TE related genes and genomic regions,
SEs are found in all cell lines spanning a highly cell type-specific
genomic domain and are associated with master cell-type-
specific regulatory genes (45–47). Recent studies have shown
that SE-associated genes are involved in multiple bone-related
diseases. For instance, TBXT has been found to play an essential
role in chordoma pathogenesis (48), and was associated with SE,
where transcriptional cyclin-dependent kinase(CDK)inhibitors
could downregulate the expression of brachyury/TBXT.
Similarly, Lin et al. (49) reported that MEIS1, an SE-associated
oncogene, promotes the malignant development of Ewing
sarcoma by synergistic activation of APCDD1 transcription
with EWS-FLI1. These studies indicate that SE-associated
mRNAs can play essential roles in bone regulation. In this
study, we identified the SE-lncRNA LINC01485 through
bioinformatics investigation and found that it was elevated
during the osteogenic differentiation of hBMSCs.

SE-lncRNAs are transcribed from or interact with SEs. A
higher percentage of SEs are reported to generate eRNAs termed
seRNAs compared to TEs (50). LINC01485 is located on
chromosome 5q35.2 and has been shown to be an oncogenic
gene. In earlier work, LINC01485 has been reported to promote
the growth and migration of gastric cancer cells by inhibiting
FIGURE 7 | Production and possible functional mechanism of SE-lncRNA LINC01485. SEs are a genomic region composed of activity enhancer clusters enriched
with many factors related to enhancer activity. SEs can increase the transcription and production of elncRNAs. SE-lncRNA LINC01485 competitively binds to miR-
619-5p in the cytoplasm to promote RUNX2 expression regulating osteogenic differentiation of hBMSCs. (SE, super-enhancer; TE, typical enhancer; ATF, activating
transcription factor; TF, transcription factor; RNAPII, RNA polymerase II; BMSCs, bone marrow mesenchymal stem cells.).
May 2022 | Volume 13 | Article 846154

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Gu et al. LINC01485/miR-619-5p/RUNX2 in Osteogenesis of hBMSCs
EGFR ubiquitination and activating its downstream Akt signal
(44). Additionally, LINC01485 was reported among the 6
lncRNAs that emerged as prognostic indicators for colorectal
cancer (51). However, no studies have explored the role of
LINC01485 in osteogenic differentiation. The present study
demonstrated that the overexpression of LINC01485 could
promote osteogenic differentiation as indicated by increase in
ALP activity and ALP staining, along with enhanced production
of calcified nodules and expression of osteoblast differentiation
markers, while the knockdown of LINC01485 exerted the
opposite effects on osteogenic differentiation. These results
indicated that LINC01485 could positively regulate the
osteogenic differentiation of hBMSCs.

elncRNAs perform regulatory transcriptional functions by
-cis and -trans mechanisms (21). The roles of seRNAs include
chromatin loops stabilization, and transcription factor
recruitment among others, and thus seRNAs mediate various
cellular activities in the cytoplasm (52). To further explore the
molecular mechanism of LINC01485 involvement in osteogenic
differentiation process, we first identified the subcellular
localization of LINC01485 and found that LINC01485 is
mainly localized in the cytoplasm, consistent with the results
reported by Zhou et al. (44). The cellular localization of lncRNAs
is closely related to its mechanism of action. Cytoplasmic
lncRNAs can regulate the stability and transcription of mRNA
and exert their functions mainly through transcription or
translation regulation (53). For instance, in related studies (38,
54) super-enhancer-regulated lncRNA UCA1 has been found to
serve as an endogenous competitive RNA binding miR-193a-3p
to regulate ERBB4, thereby promoting proliferation and colony
formation of lung cancer cells. In yet another finding, Wang et al.
(55) reported that UCA1 could repress the host immune system,
stimulate the proliferation and migration of gastric cancer cells,
and inhibit apoptosis of gastric cancer cells by directly
interacting with miR-26a/b, miR-193a, and miR-214 anti-
tumor miRNAs to up-regulate PDL1 expression. Here, we
predicted the binding of LINC01485 to miR-619-5p using in-
silico approaches and verified this relationship by performing
RAP and luciferase assays. Cross-talk between lncRNA and
miRNA has been found to be involved in a variety of
osteogenic signaling pathways, including TGF/BMP-SMAD
dependent and non-dependent, and the Wnt/b-catenin
pathways (56–58). Specifically, miR-619-5p has been shown to
improve pancreatic cancer sensitivity to gemcitabine by targeting
Pygo2 and activating the Wnt/b-catenin pathway (59). TheWnt/
b-catenin pathway is shown to play a critical role in regulating
the osteogenic differentiation of hMSCs (60, 61). Therefore, here
we hypothesized that miR-619-5p might be involved in
osteodifferentiation of hBMSCs by activating the osteogenesis-
related Wnt/b-catenin pathway and subsequently demonstrated
that miR-619-5p, as a negative regulator of osteogenic
differentiation, could inhibit the protein expression levels of
RUNX2, COL1A1, OSX, and OPN, and reduce ALP staining.

Earlier research has revealed the post-transcriptional
interaction between lncRNA and miRNA as gene expression
regulators in the process of BMSCs osteogenic differentiation
Frontiers in Endocrinology | www.frontiersin.org 13
(12). We predicted the mRNAs binding to miR-619-5p through
bioinformatics. Among these genes, we focused on the
osteogenic transcription factor RUNX2, based on the fact that
Wnt signaling can promote osteogenesis by directly stimulating
RUNX2 gene expression (62). RUNX2 is the primary regulating
gene for the osteoblast phenotype (63) and binds to osteoblasts-
specific cis-acting elements (OSE)-2 in the promoter region of
osteogenic genes (64). RUNX2 has also been well demonstrated
to promote the mineralization of bone nodules by up-regulating
several osteoblast differentiation marker genes (e.g., ALP,
COL1A1, OSX, OCN, and OPN) (65–67). These genes
regulated by RUNX2 were found to be up-regulated when
hBMSCs overexpressed LINC01485, and vice versa, these genes
were downregulated upon interference with LINC01485. These
results indirectly indicated that RUNX2 might be a target gene
associated with LINC01485 during the osteodifferentiation
process of hBMSCs. Previous studies have reported that the
osteogenic promoting role of RUNX2 is regulated by other
ceRNA signaling axes, including lncRNA NTF3-5/miR-93-3p/
RUNX2 (68), LncRNA TUG1/miR-204-5p/RUNX2 (69),
lncRNA MALAT1/miR-30/RUNX2 (17), lncRNA MALAT1/
miR-124/RUNX2 (70), lncRNA MEG3/miR-140-5p/RUNX2
(71), lncRNA KCNQ1OT1/miR-138/RUNX2 (72), lncRNA
MODR/miR-454/RUNX2 (73), and lncRNA DGCR5/miR-30d-
5p/RUNX2 (74). Sponging of miRNAs by lncRNAs has been
demonstrated as a regulatory mechanism in this context. By
sponging miR-93-3p, lnc-NTF3-5 has been found to stimulate
osteogenic differentiation of maxillary sinus membrane stem cells
(68). LncRNATUG1 is shown to promote osteogenic differentiation
by up-regulating RUNX2 in aortic valve calcification through
sponging miR-204-5p (69). Here, a negative relationship between
miR-619-5p and LINC01485, a negative correlation between miR-
619-5p and RUNX2, and a positive correlation between LINC01485
and RUNX2 were each demonstrated. In addition, the binding of
miR-619-5p to RUNX2 was verified by luciferase assay. According
to the competing endogenous RNA (ceRNA) hypothesis proposed
by Salmena et al. (75), lncRNA can bind competitively to miRNAs
and thus further enhance mRNA’s stability, transcription, and
translation. We designed and conducted rescue experiments to
verify the regulatory relationships among LINC01485, miR-619-
5p, and RUNX2. Luciferase assays showed that miR-619-5p mimic
inhibited the luciferase activity of RUNX2-WT, while the
overexpression of LINC01485 promoted luciferase activity. At the
cellular level, Western blot and ALP staining indicated that miR-
619-5p inhibitor countered the effects of LINC01485 interference on
RUNX2 and hBMSCs osteogenic differentiation. MiR-619-5p
mimic also reduced the enhanced ALP staining effect of
LINC01485 overexpression. These findings are consistent with the
ceRNAs hypothesis, confirming the existence of endogenous sponge
competition between LINC01485 and miR-619-5p, highlighting the
role of the ceRNAs axis LINC01485/miR-619-5p/RUNX2 in
regulating bone cell differentiation (Figure 7).

The potential limitations of current research must be
considered. First, this study did not investigate osteogenesis by
performing in vivo experiments to verify the reported in vitro
findings. Animal experiments to confirm whether LNC01485
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promotes osteogenesis by competitively binding to miR-619-5p
are thus warranted. Second, the regulatory relationships
involving SEs and lncRNAs in MSCs osteogenic differentiation
remain to be addressed. The interaction between LINC01485 and
SEs merits deeper exploration in future research. At the same
time, the main findings bear potential implications for future
research. The LINC01485/miR-619-5p/RUNX2 signaling axis
revealed by the current study suggests a novel target for the
genetic and epigenetic modification of hBMSCs. Such an
approach could potentially enhance bone formation and thus
hold promise in the stem cell-based bone tissue engineering area.
CONCLUSION

In conclusion, this study identified that the SE-lncRNA LINC01485
was up-regulated during the osteogenic differentiation of hBMSCs.
The upregulation of LINC015485 was found to promote osteogenic
differentiation of hBMSCs by competitively binding miR-619-5p
and up-regulating RUNX2 expression. The LINC01485/miR-619-
5p/RUNX2 signaling axis emerged as a promising target for
translation in the bone tissue engineering arena.
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Supplementary Figure 2 | Electrophoretic diagram of RAP qRT-PCR products.
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