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ABSTRACT

Information theory provides a formal framework within which information processing

and its disorders can be described. However, information theory has rarely been applied to
modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article

is to highlight the benefits of an approach based on information theory, including its recent
extensions, for understanding several disrupted neural goal functions as well as related
cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that
foundational concepts from information theory—such as Shannon information, entropy,

data compression, block coding, and strategies to increase the signal-to-noise ratio—can

be used to provide novel understandings of cognitive impairments in schizophrenia and
metrics to evaluate their integrity. We then describe more recent developments in
information theory, including the concepts of infomax, coherent infomax, and coding with
synergy, to demonstrate how these can be used to develop computational models of
schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual
organization, thought organization, selective attention, context processing, predictive coding,
and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain
both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we
demonstrate that there is consistency between some information-theoretic concepts and
recent discoveries in neurobiology, especially involving the existence of distinct sites for the
accumulation of driving input and contextual information prior to their interaction. This
convergence can be used to guide future theory, experiment, and treatment development.

INTRODUCTION

Schizophrenia is a disabling psychiatric disorder that is characterized by perceptual distor-
tions, hallucinations, delusions, disorganized thinking, bizarre behavior, loss of motivation,
and declines in role functioning. It typically has an onset in late adolescence or early adult-
hood, and it is associated with significant medical comorbidities (e.g., hypertension, diabetes,
inflammation); reduced lifespan; marked impairments in educational, vocational, and so-
cial functioning; high rates of unemployment; high treatment costs; and psychological and
economic burdens for families. Despite the accumulation of massive amounts of research
findings, however, treatment outcomes and lifespan have not improved significantly, as has
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been the case with many other illnesses (e.g., cancer, heart disease; Insel, 2010). One reason
for the lack of progress is the lack of a cohesive theoretical framework within which to under-
stand the available data. Due to this, it has been proposed that computational modeling could
be useful for clarifying the core biobehavioral processes inherent to the disorder (Silverstein,
Moghaddam, & Wykes, 2014).

The goal of computational psychiatry is to provide a bridge between findings from neuro-
science and our understanding of macro-level mental dysfunctions and behaviors (Montague,
Dolan, Friston, & Dayan, 2012). This emerging field is focused on clarifying, via computational
models, the nature of the brain’s work (Phillips & Singer, 1997), as opposed to merely describ-
ing the regions or patterns of brain activity that are correlated with cognitive and behavioral
functions. Computational models formally describe neural processes in terms of mathemati-
cal relationships (Friston, Stephan, Montague, & Dolan, 2014), which allows for the effects of
multiple hypothesized parameters and their interactions to be rapidly tested. Through these
efforts, it is hoped that a fuller understanding of the molecular, cellular, and microcircuit bases
of altered cognitive and behavioral phenomena will be gained (Adams, Huys, & Roiser, 2016).
This is critical, because it has been argued that, at present, we do not fully understand these
bases for even a single symptom of a single psychiatric disorder (Wang & Krystal, 2014). By
generating and rapidly testing hypotheses ex vivo for their likely validity, we may also hope
to gain, on average, both a greater yield from follow-up in vivo experimental studies and a
reduced time from discovery, on the one hand, to clinical interventions, on the other.

The primary goal of this article is to highlight an approach based on information theory,
including its recent extensions, for understanding several disrupted neural goal functions and
the related behavioral phenomena in schizophrenia. This viewpoint has not been discussed in
recent reviews of computational psychiatry, but it may be as powerful as the prevailing com-
putational approaches to schizophrenia, and it is more centered than they are on impaired
neural information-processing capabilities. The text here is divided into five parts. Each of these
covers a different set of concepts from information theory, although the concepts from earlier
sections are necessary for understanding the later sections. Moreover, the sections are ar-
ranged so that, as they progress, each deals with an increasingly complex aspect of schizophre-
nia. In the following two sections, we present the basic concepts of information theory and
demonstrate their relevance to reconceptualizing several phenomena in schizophrenia, in-
cluding slowness of processing, reduced attentional capacity, and reduced sensory gating.
In the third section, we discuss the concept of infomax and how this is relevant to understand-
ing increased stimulus intensity and broadened sensory tuning in schizophrenia. In the fourth
section, we present the concept of coherent infomax and describe its utility for explaining
failures in perceptual organization, thought organization, context processing, selective atten-
tion, and lexical disambiguation, as well as disorganized symptoms, in schizophrenia. The
fifth section covers a recent extension of information theory called partial information de-
composition. This framework is described, and we discuss its relevance to understanding the
normal operation of two neural goal functions (coding with synergy and predictive coding)
and cognitive control, as well as their impairments in schizophrenia. A final section provides
a brief summary of the major themes of the article and highlights several additional issues
regarding the application of information theory to understanding schizophrenia, including a
comparison to other computational models that have been useful for studying the disorder.
Throughout the discussion, every effort is made to emphasize the concepts and to minimize
the use of mathematical detail, which can be found in the original articles cited. One of our
goals is to have this article serve as an introduction to information theory for schizophrenia
researchers who might otherwise not be familiar with this perspective.
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INFORMATION THEORY BASICS

Information theory, or communication theory as it was originally called, was developed by
Shannon (1948), who was influenced by the prior work of Nyquist (1924) and Hartley (1928)
on the issues affecting message communication in telegraphy. However, information theory
concepts can be used to understand any system wherein messages are sent from one place
to another (Campbell, 1982). In this theory, information does not refer to the meaning of a
message, but rather to the degree to which the message reduces uncertainty regarding the
state of the sender or the world. A key concept in information theory is Shannon infor-
mation, which is a measure of the extent to which the possibilities for future states of the
world are constrained after one receives a message or signal. For example, think of receiving a
message, one letter at a time, and that message starts with the letter “D.” Having read that
first letter, the universe of possible messages has now been reduced from all possible mes-
sages to only those that start with the letter “D.” Stated differently, reading the first letter has
reduced the uncertainty (i.e., reduced the remaining possibilities) about the message one is re-
ceiving. The extent of reduction in uncertainty provided by information received up to a given
point in time can be measured by the uncertainty before receiving the message divided by the
uncertainty afterward, as measured by probabilities p(.) [e.g., 1/p(D)]. The value of Shannon
information is obtained by deriving the logarithm of the above quantity: h(D) = log [1/p(D)]1.
This logarithm is formulated in base 2 by convention, and this gives the Shannon information
in bits (see below). The average of the Shannon information over all possible outcomes (e.g.,
all possible first letters of the message) is the Shannon entropy of a variable (e.g., the first letter
of the message), referred to simply as the entropy from here on.

Entropy has some highly intuitive properties. For example, for equiprobable messages
or signals, the Shannon information of a specific signal is just the number of yes/no questions
that would have to be asked before the value of the signal can be arrived at. For example, if the
message is communicating the outcome of a fair coin toss, there are two equiprobable values,
so the information can be communicated as the answer to one yes/no question, or one binary
digit, called a bit. If there are four equiprobable values of the signal that is communicated,
then two bits are necessary to convey the outcome. With eight equiprobable values, three bits
are required; with 16 possible equiprobable values, four bits are required; and so on. Thus,
the number of bits required to communicate one of N equiprobable values is the log base 2 of
that number N of values (i.e., the exponent to which 2 must be raised to achieve that value).
For cases with N possible outcomes, all with probability 1/N, the entropy is

H=—EN | & logy() = =N & -log; (%) = logy(N).
In the case of a fair coin toss, this is
H = -[(/-logy ) + (/- logy )] = —=[(/2 - =1) 4+ (/2 - =1)] = 1 bit per toss,

as we noted above.

If the outcomes are not equiprobable, the entropy is a function of the respective proba-
bilities of the individual outcomes. For example, if we consider a coin that is built to come up
s heads and % tails, we obtain H = —[(Ya logy a) + (/alogy ¥)] = —[(/a - =2) + (%4 - -0.415)] =
0.811 bit per toss. This example shows that less Shannon information is available on average
here than for the case of equiprobable outcomes. In other words, this means that the out-
comes of the biased coin toss are more predictable, so fewer bits are needed to encode them. In
general, we can encode messages using fewer bits by communicating more frequent outcomes
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with short bit sequences, while allowing longer sequences for the rare outcomes. Entropy can
thus be understood as the limit of compression achievable (using the above method or others),
and therefore the “true” incompressible information content. If one tries to communicate with
fewer bits than are dictated by this limit, errors are certain to arise.

Although these examples may seem far from schizophrenia, they are relevant in terms of
understanding the information-processing challenges experienced by many patients with this
disorder. For example, the more statistically regular the driving input (whether from sensory
regions or memory), the smaller the number of likely values for the next signal (given the pre-
vious one), thereby reducing entropy, channel capacity requirements, and processing speed
requirements (the latter two of which are also key information theory concepts). An example
of how entropy goes down as probabilities become less random (i.e., more determined) can
be seen in the sequence given by x,.1 = x, + 2 (e.g., 2, 4, 6, 8, . . . X, when starting with
xp = 2). In this case, the entropy associated with x,, given x,, _1 is far less than if the sequence
was one in which values were drawn at random from the natural numbers at each step, such as
3,17,12,61,... X. Similarly, with the phrase “How are you /" the final word is highly
likely to be “doing” or “today,” rather than a word chosen at random from the English lexicon.
An implication of this for schizophrenia is that the reduced exploitation of available statistical
regularities that has been observed in this disorder for processing in multiple cognitive do-
mains (e.g., perception, language, learning; Brown & Kuperberg, 2015; Todd, Michie, Schall,
Ward, & Catts, 2011; Weiler, Bellebaum, Brune, Juckel, & Daum, 2009) will lead to missed
opportunities for compression down to the true entropy. This will impair processing efficiency
and effectiveness, and likely will lead to a subjective experience of being overwhelmed by
processing requirements. This would also increase the probability of errors (in stimulus identi-
fication and the assessment of meaning) and increase the probability of statistically rare mental
representations being generated.' This scenario is also relevant to the findings of widespread
context-processing deficits in schizophrenia (Cohen, Barch, Carter, & Servan-Schreiber, 1999;
Cohen & Servan-Schreiber, 1992; Phillips, Clark, & Silverstein, 2015; Phillips & Silverstein,
2003). This is because a consequence of reduced context processing is a reduction in the abil-
ity to decrease uncertainty in incoming signals by exploiting their statistical dependencies
on context, or, again, an increase in the number of possibilities that must be considered (i.e.,
processed) at any one time. Because schizophrenia can also be viewed as being characterized
by noisy processing channels (see below) as well as alterations in arousal level (and intense
emotions) (de Lecea, Carter, & Adamantidis, 2012), the increase in processing demands adds
a significant burden to an already overly taxed system.

The maximization of efficiency in encoding as a function of signal probability can be
achieved via several techniques. Here we demonstrate this effect with one well-known method,
although we note that it is not known what data compression algorithms are used by the brain.
Because it is generally agreed that data compression does take place, however, we believe
it is useful to consider the consequences of data compression failure for schizophrenia. A
classic example of data compression can be seen using the technique known as Huffman cod-
ing (Huffman, 1952). This example involves the number of bits used to code the letters of
the alphabet plus blank space. Rather than encoding every letter as if it had an equal prob-
ability of occurring, it is more efficient, as we noted above, to encode the most frequently
occurring value (“blank space”) with the shortest code, and then to use increasingly longer

T When normally rare responses occur, entropy is increased, because the range of likely values in the sub-
sequent input is immediately and greatly expanded.
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codes for letters with smaller and smaller probabilities. This is indeed very similar to what is
done in Morse code, in which the symbol for the letter “e” (which is the letter most fre-
quently used in the English language) is one dot (followed by a pause in signaling that also
consumes capacity). Different versions of Huffman coding of the English alphabet have been
proposed, based on slightly different frequency calculations of each letter, and on whether a
code for a blank space was included. In an example of a code using a blank space, the blank
is encoded as 01, and “e” is encoded as 1100. Other frequently occurring letters, such as
“t/ (1111), “a” (0000), and “i” (1001), can also be encoded using four bits. However, letters
that occur with decreasing frequency, such as “g” (001001), “k” (1010000), “v” (11010001),
“g” (110100001), and “j” (1101000000), are encoded using six, seven, eight, nine, or ten
bits, respectively (MacKay, 2003). It can be shown that coding using this strategy leads to a
reduced processing requirement (i.e., fewer bits per message, on average) relative to when
each possible value is encoded on the basis of its proportion of the total values. That is, as
in the example of the fair and unfair coin tosses described earlier, the average number of bits
required to process English letters during reading is less if Huffman coding is used than if each
letter were represented as having a 1/26 probability. In the latter case, six letters can be coded
with four bits, and the other 20 letters coded in five bits, for an average of 4.7 bits per letter.
With Huffman coding, in the examples above, the most common letters or symbols can be
coded in four bits, and the average number of bits per letter is 4.15, which represents a 12%
improvement in efficiency (and a corresponding reduction in processing demands; MacKay,
2003). Although the existence of Huffman coding in biological neural networks has not been
demonstrated, such coding has been used to model aspects of cognition, such as memory
function (Boguslawski, Gripon, Seguin, & Heitzmann, 2014). We believe, therefore, that it
would be useful to determine the extent to which this and other data compression algorithms
approximate the processing characteristics of healthy subjects, and the extent to which pertur-
bations in these algorithms generate data that approximate what is observed in people with
schizophrenia. Information theory provides a basis for formally expressing data compression
mechanisms, for facilitating their translation to modeling and experimental studies, and for
understanding the consequences of a breakdown in these mechanisms. A major point here is
that the previously mentioned impairment in detecting and representing probabilistic relation-
ships in schizophrenia would be expected to have the effect of increasing encoding require-
ments, which would, among other consequences, impose a burden on attention, working
memory, and other cognitive processes.

It is known from much prior work on information theory that communication require-
ments can be reduced by encoding information in longer units (i.e., block coding). This re-
duces the uncertainty within and between message units by creating relatively few highly
frequent, or “typical,” units, in comparison to an overwhelmingly large number of extremely
infrequent units. It can be seen, therefore, that an important effect of the reduced ability to bind
information into larger units, as is found in perception, attention, working memory, and lan-
guage in schizophrenia (Haenschel et al., 2007; Phillips, Clark, & Silverstein, 2015; Phillips &
Silverstein, 2003; Silverstein & Keane, 2011; Uhlhaas & Silverstein, 2005; see also the Coher-
ent Infomax section below), is that the demands on information transmission will be increased
(i.e., increased further above the demands of reduced probabilistic effects, as noted above).
This would lead to the requirement for greater downstream processing capacity and enhanced
processing speed to maintain adequate adaptation. Because people with schizophrenia do
not have superior processing capacity and processing speed, they will often appear to be char-
acterized by reduced processing capacity and slower information processing, as has been
demonstrated many times (Leonard et al., 2013; Nuechterlein & Dawson, 1984).
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An important aspect of the argument above is that characterizing schizophrenia in terms
of deficits alone (e.g., reduced processing capacity, slowed processing, or broadened neuronal
tuning—see below) may provide an incomplete view of the disorder. Rather, the impaired
ability to keep internal entropy at normal levels that is caused by reduced sensitivity to proba-
bilistic relationships, reduced grouping of mental representations, and reduced context
processing leads to increased processing demands, which may be interpreted erroneously as
primary capacity or processing speed limitations. Clarifying the extent to which capacity and
speed are reduced as a primary effect of the illness versus that to which increased demands
overwhelm available capacity is an important question for future research, and one in which
information theory metrics may have practical utility in terms of generating a reliable and valid
biomarker.

We can think of at least three ways that research can progress in this direction. First is
that tasks and experiments can be designed to manipulate probabilistic relationships in the
stimulus set, and the data can be quantified in terms of entropy and Shannon information to
determine the sensitivity of patients to these manipulations and any changes in this sensitivity
in response to treatment. Second, data can be modeled to determine the extent to which com-
pression is being used (and via which algorithms), and patients and controls can be compared
on this metric and/or patient change over time can be assessed. Third, experimental data can
be analyzed using newer statistical techniques that are based on information theory, such as
the maximal information coefficient (MIC; Reshef et al., 2011), which quantifies the level of
association and overlap between variables, regardless of whether these relationships are linear
or nonlinear.” Metrics such as the MIC, which involve the concept of mutual information—or
the amount of Shannon information that can be obtained about one variable by knowing about
a second variable—are especially useful for studies quantifying the effects of spatial, temporal,
and semantic contexts on neural and behavioral responses and the impairments in such pro-
cessing caused by schizophrenia. The MIC can also be used to examine connectivity patterns
within brain activity from fMRI studies (Zhang, Sun, Yi, Wu, & Ding, 2015), which can help
determine whether both behavior and neural activity fit information-theory-derived hypothe-
ses. Mutual information, and information theory metrics in general, have already demonstrated
their utility for modeling multiple aspects of functioning that are impaired in schizophrenia,
including perception (Zhaoping, 2014) and cognitive control (Fan, 2014; see below).

APPLICATIONS OF INFORMATION THEORY TO NEURAL SYSTEMS

Information processing in neural systems is conceptually constrained by the fact that (almost
all) neurons have a clear distinction between their inputs, registered at synapses located on
dendrites, and outputs, sent via their axons. In other words, information passes through a
neuron in one direction only. We will therefore discuss neural information processing in terms
of local processors that take inputs and produce outputs. In passing through such a processor,
the total information from the inputs may be fully relayed, when the output bandwidth allows
for this, or (in nearly all cases) reduced, when the output bandwidth is smaller than that of the
inputs considered jointly. In the latter case, the output information may be selected to come
from one of the inputs more than from others, or it may be information that is provided by
several inputs coherently, or it may be a synthesis of the input information that can only be
understood when considering all relevant inputs together (see Wibral, Priesemann, Kay, Lizier,

2 The MIC is particularly useful for understanding datasets in which the relative influences of multiple sources
of influence on the output need to be determined, as with coherent infomax and coding with synergy, which
are discussed in later sections of this article.
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& Phillips, 2015). All of these types of output information can also coexist simultaneously if
there is enough output bandwidth. These operations on the input information can be formally
expressed in terms of various neural goal functions, which will be described in increasing
order of complexity in each of the following sections. Importantly, due to the potentially noisy
operation of biological neural processors, a part of the output information may not come from
the inputs at all; that is, it may be considered noise generated within the processor itself, and
this factor must also be taken into account when formally modeling neural processing.

Our first, and most basic, application of information theory to schizophrenia involves a
consideration of information transmission through a noisy neural processor, without addressing
how inputs specifically contribute to the outputs. To improve accuracy regarding information
transmission through a noisy channel, various strategies for encoding or representing informa-
tion have been devised. In several cases these strategies are relevant to schizophrenia, since
this disorder has long been considered to be characterized by excessive noise during infor-
mation processing (Christensen, Spencer, King, Sekuler, & Bennett, 2013; Spitzer & Neumann,
1996). There are likely to be several sources of excessive neuronal noise in schizophrenia, in-
cluding excessive background (i.e., stimulus-independent) synchronization (Silverstein, All,
et al., 2012) and other forms of hyperconnectivity (Anticevic et al., 2015) in cortical process-
ing; reduced increases in synchronization during the processing of relevant stimuli (Uhlhaas
& Singer, 2010); and cortical hypodopaminergia, leading to a greater-than-normal spread of
neural activation (e.g., excessive activation within semantic networks corresponding to thought
disorder), as opposed to the more typical, focused zones of activation (Spitzer & Neumann,
1996). The relative effects of noise can also be magnified in schizophrenia if the signals
are weaker than normal. The latter effect has been proposed to occur in visual processing
in schizophrenia, due either to a loss of retinal ganglion cells and/or their axons that compose
the optic nerve, as measured by optical coherence tomography, or to weaker photorecep-
tor, bipolar, and ganglion cell firing, as measured by electroretinography (Celik et al., 2016;
reviewed in Silverstein & Rosen, 2015). Reduced signal can also result from a loss of neu-
rons in visual cortex, which has been observed in schizophrenia but not in bipolar disorder
(Mitelman & Buchsbaum, 2007; Reavis et al., 2017). It is also possible, of course, that both
weaker signaling and excessive baseline noise are present in the disorder.

One way in which information transmission can be improved in an intrinsically noisy
processor is to increase the intensity of the signal (i.e., to increase the signal-to-noise ratio).
This raises the intriguing possibility that the hyperintense perceptual experiences often found
in schizophrenia (Bunney et al., 1999; Chapman, 1966; Klosterkotter, Hellmich, Steinmeyer,
& Schultze-Lutter, 2001; McGhie & Chapman, 1961), especially early in the course of the
illness, could represent a compensatory response to increased noise. To our knowledge, this
hypothesis has never been examined, and the consensus opinion appears to be that increases
in perceived stimulus intensity, as well as reduced sensory gating, are primary phenomena
in schizophrenia (Rapin et al., 2012; Swerdlow & Geyer, 1998). However, this issue war-
rants further investigation because, if the increased signal intensity in schizophrenia is indeed
compensatory, this would suggest that treatments could be developed to intervene at this level
(i.e., in addition to reducing increased noise, reducing compensatory signal intensification
could be viewed as a separate treatment target).

A second way to preserve the nature of the signal in a noisy channel is to increase the
redundancy in the output in order to reduce errors in signal interpretation. However, in cases
in which output redundancy is excessive, the richness of content is reduced; that is, the rate
of Shannon information transmission is reduced. Such a compensatory mechanism might be
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involved in poverty of content, superficiality, and perseveration, all of which are common
aspects of thought disturbance in schizophrenia. Finally, extreme manifestations of reduced
activity, such as alogia, psychomotor retardation, and catatonia, may also represent compen-
satory responses to increased noise in schizophrenia. If this is true, then these and other neg-
ative symptoms may be best reconceptualized not as deficit symptoms, in the original sense
of Hughlings—Jackson, as is often assumed (but see Berrios, 1985, and Sass & Parnas, 2003,
for critiques of this position that are consistent with the view expressed here), but rather as
adaptive attempts to reduce processing errors in the face of excessive noise.

A third method to increase the signal-to-noise ratio in a noisy channel is to increase
the length of neuronal refractory periods. For example, it has been shown in computational
models of visual cortex function that with longer periods between firing, the effects of noise are
essentially washed out (Miikkulainen, Bednar, Choe, & Sirosh, 2005). This raises the intriguing
hypothesis that what has been conceptualized as slowness of processing in schizophrenia
could be due in part to compensatory efforts to isolate relevant signals.

With most of the clinical phenomena noted up to this point, it is not possible to determine
whether the hypothesized information-theory-derived mechanisms should be considered as
explanatory or merely descriptive. In addition, we have noted that the hypotheses refer to
compensatory processes rather than to the primary impairments. In all of these cases, however,
metrics that quantify information-theory-derived concepts such as entropy, information, and
mutual information could still be very useful for assessing the state of information-processing
disruption in schizophrenia, as well as for use in clinical monitoring and prediction and in
treatment development studies. We now turn to more recent developments in information
theory and their relevance to cognition. These developments invoke mechanisms that appear
to be candidates for the core primary neurobiological disturbances in schizophrenia.

INFOMAX

Infomax is a hypothesized neural objective function whose goal is to maximize the informa-
tion in the output Y of a processor with regard to its input X under the constraint of severe
data reduction [H(Y) < H(X)]. In its original conceptualization, this function was used to
demonstrate the effects of cells in the second layer of a network optimally preserving the infor-
mation contained in the input units (Linsker, 1988). It has been used to model, among other
things, the self-organization of receptive fields (Linsker, 1988), and has become a standard
preprocessing step in machine learning (Lee, Battle, Raina, & Ng, 2006). A key focus of early
work on infomax was the effects of noise. In light of the strategy of increasing redundancy
as a means to reduce the effects of noise, described above, Linsker demonstrated that, in the
simple case of two input cells (L) and two second-layer cells (M), when the variance in noise
values (B) arising from the M cells themselves (i.e., not in the input) is high and the correlation
or covariance (q) in the input between two L cells is high, then the system adapts by having
adjacent M cells encode increasingly similar linear combinations of the input.® Stated differ-
ently, when the processor-specific noise variance is large, M cells adapt by maximizing their
activity variance, and this leads either to output redundancy (via overlapping RFs) or to overly
broad neural tuning. This scenario describes what has been observed in schizophrenia, in

3 B will increase as the noise in the M cells is increasingly uncorrelated. When B is high and the input from
L cells is highly correlated, then the noise variance is high relative to the signal variance, and the system has
to compensate in order to increase the signal strength. Specifically, when Bg/(1 — 4%) > 1, both M cells will
encode the same combination of L cell activity, creating redundancy, or overly broad neural tuning. As this value
decreases from 1, overlap in the M cell outputs decreases, and the tuning becomes narrower or more precise.
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which studies from multiple paradigms in multiple sensory domains have indicated less pre-
cise neuronal tuning than among healthy controls (Green, Lee, Wynn, & Mathis, 2011; Harvey
etal., 2011; Javitt, Strous, Grochowski, Ritter, & Cowan, 1997; Rokem et al., 2011; Schallmo,
Sponheim, & Olman, 2013). This adaptive strategy increases the probability that signal, and
not noise, will be encoded, even if that signal is more coarsely represented than would be the
case in a less noisy processor.

In the context of understanding schizophrenia, two issues raised by the equation pre-
dicting the degree of output redundancy (see footnote 3) are (1) the origin of the noise and
(2) the presence of other factors that could contribute to redundancy in output processing.
Regarding the former issue, we have already mentioned the effects of increased background
synchrony and reduced stimulus-induced synchrony on noise levels in schizophrenia. An ad-
ditional potential contributor is abnormal sensory transduction. For example, multiple studies
have now indicated retinal and other ocular dysfunctions in schizophrenia and in children at
risk for the disorder (Silverstein & Rosen, 2015), as well as reduced visual acuity in adult pa-
tients (Viertio et al., 2007). Regarding the latter issue, factors such as reduced cortical volume
(Williams et al., 2009) and reduced dendritic branching (Moyer, Shelton, & Sweet, 2015) in
schizophrenia could also contribute to coarser representations. The combination of these fac-
tors increasing noise and coarsening representations is a particularly potent setting condition
for the increased output redundancy and reduced precision of perception and cognition in
schizophrenia. Whatever the causes, the mathematical infomax theory developed by Linsker
and others has provided a means of modeling and quantifying the extent to which schizophre-
nia is characterized by a reduced ability to maximize information transmission.

COHERENT INFOMAX

The fundamental limitation of the infomax objective is that it simply seeks to transmit all the
information in the input without any attempt to distinguish between the information that is cur-
rently relevant and that which is not. The theory of coherent infomax shows explicitly how this
limitation can be overcome by assuming that local processors receive contextual inputs that
modulate the transmission of information about the driving inputs so as to amplify the transmis-
sion of currently relevant information and suppress the transmission of irrelevant information.
This contextual field (CF) input must therefore be clearly distinguished from the feedforward-
driving receptive field (RF) input.* CF input can arise from multiple sources, including visual
information outside the classical receptive field, attentional signals, memory, and so forth.
Within the original framework of coherent infomax, the entropy in an output unit, H(Y'), was
decomposed into four sources of information (I): (1) information in the output that is also in
the RF but not in the CF, conceptualized by I(Y : RF |CF); (2) information in the output that is
in the CF but not in the RF, or I(Y : CF |RF); (3) information in the output that is shared by both
RF and CF, I(Y : RF; CF); and (4) information in the output that is in neither the RF nor the CF,
H(Y |RF, CF).> The neural goal function of coherent infomax is to maximize the transmission
of information that is predictably related to its current context. Therefore, the weights assigned

4 Although we use the term receptive field input here and provide many examples from vision, the issues we
discuss are relevant to any processor that receives afferent (RF) input as well as input from lateral connections
(CF) and feedback from higher-level processors (CF).

5 Note that in these expressions, anything to the left of a vertical bar could also be expressed as the entropy
in the output [H(Y)] minus the mutual information shared between the output and everything to the right of
the vertical bar [e.g., H(Y) - I(Y; X)]. This quantity—reflecting, in this case, entropy in the output that is
independent of another variable or set of variables (e.g., RF and/or CF and/or noise)—is known as conditional
entropy. An alternative way to view conditional entropy is that it is the amount of uncertainty in Y after X is
known (Shannon, 1948).
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to each of the four terms listed above are positive or zero, but unequal, and can be expressed
as [1-¢,0,1,0], with 0 < e << 1; € here serves to weight the goal of transmitting information
that is in the RF but not in the CF slightly less than the goal of transmitting information found
in both the RF and CF inputs. That is, the goal of coherent infomax is to maximize information
in the RF that is predicted by the CF and, to a lesser degree, to increase the salience of novel
or unique RF input, while at the same time minimizing the output effects of context that are
not related to the RF input and reducing the output of information that is in neither the RF nor
the CF, which can be considered to be noise. Stated differently, the goal is to evolve systems
in which the global output entropy is large, while transmitting coherently related subsets of
the input information. The existence of processing mechanisms that meet the criteria of co-
herent infomax is supported by computational, psychophysical, and neurobiological studies
(Kay & Phillips, 2011; Phillips & Singer, 1997). For example, psychophysical studies of vision
have indicated that the detection of autocorrelation (e.g., in element orientation) in arrays of
visual features is a method by which second-order structure and shape information is detected
(Barlow & Berry, 2011).

We have previously reviewed much evidence suggesting that coherent infomax is in-
volved in a wide range of perceptual and cognitive processes in which coherent sets of in-
formation must be detected, bound together, and segregated from other sets. These processes
include figure—ground segregation, perceptual organization, selective attention, lexical dis-
ambiguation, working memory, cognitive control, and some forms of learning (Kay & Phillips,
2011; Phillips & Singer, 1997). Moreover, we have demonstrated that each of these functions
is deficient in schizophrenia (Phillips et al., 2015; Phillips & Silverstein, 2003). For example,
over 50 studies of schizophrenia have demonstrated impaired perceptual organization, or the
ability to group separate elements that belong to a shape or contour into a unified percept
(Silverstein, 2016; Silverstein, All, et al., 2012; Silverstein et al., 2009; Silverstein & Keane,
2011; Uhlhaas & Silverstein, 2005). Because normal perceptual organization involves increas-
ing the salience of elements that are predictably related to their context, the impairments of
perceptual organization found in schizophrenia provide strong evidence for a reduction in the
effects of context on processing.

Formal thought disorder (e.g., fragmentation in thinking and loose associations) has
also been interpreted as a weakening of the normal predictive constraints that words or ideas
have on the activation of subsequent words and ideas (Spitzer, 2000; Spitzer, Beuckers, Beyer,
Maier, & Hermle, 1994). Moreover, multiple studies (reviewed in Phillips & Silverstein, 2003;
Silverstein & Keane, 2011; Uhlhaas & Silverstein, 2005) have indicated that reduced organi-
zation of visual information is significantly related to reduced thought organization in schizo-
phrenia, supporting the hypothesis of a shared basis for these illness-related features.

Although the goal of discovering relationships is important for both learning and predic-
tion, the signaling of relationships that are weak would not be adaptive. That is, if the thresh-
old for signaling a relationship is too low, the normally dominant responses to stimuli will be
given less prominence than other potential response options, and normally weak responses
will become more likely to enter consciousness, function as context, and guide behavior. An
example of this relative equalization of all possible contexts, as it occurs in schizophrenia,
was reported by a patient who described how objects had begun to seem unconnected
to their environmental contexts, and therefore meaningless. At the same time, he noted that
“out of these perceptions came the absolute awareness that my ability to see connections had
been multiplied many times over” (Matussek, 1952, 1987). Psychological models based on
learning theory have used this idea of a reduction in the range of signal strength, corresponding
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to the continuum from nondominant to dominant responses, to explain disorganized behavior
in schizophrenia (Spaulding, Storms, Goodrich, & Sullivan, 1986; Storms & Broen, 1969). We
suggest, therefore, that it would be useful to operationalize dependent variables in studies of
perception and cognition in schizophrenia in terms of coherent infomax. One way this could
be done would be to use the MIC to assess the overlap between RF and CF inputs, on the
one hand, and the output information (e.g., behavior, neural activation), on the other. Doing
so could further advance our understanding of multiple but theoretically related aspects of
schizophrenia, especially those involving reduced organization within and between mental
representations.

Earlier work on the biological basis of the coherent infomax mechanism emphasized
the role of N-methyl-D-aspartate (NMDA) receptors in implementing the modulatory effects
of context on driving input (Phillips & Singer, 1997) and in impairment of this process in
schizophrenia (Phillips & Silverstein, 2003). A problem with this view is that coherent infomax
assumes that CF information and RF information come from different sources and that they are
integrated separately prior to their interaction (Kay & Phillips, 2011). However, NMDA recep-
tors are colocalized with a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) re-
ceptors (involved in driving input), so these requirements cannot be met (Phillips et al., 2015).
A first step out of this impasse was provided by a network model that unconfounded syn-
aptic plasticity and neuronal activation, and that assumed two sites of synaptic integration,
with each site responsible for one of these two roles (Kording & Konig, 2000). Both this model
and coherent infomax are supported by recent discoveries in neurobiology. For example, it is
now known that neocortical pyramidal cells have separate integration sites for input of driving
versus contextual information. Specifically, pyramidal cells in Layers 3 and 5 receive feed-
forward RF input via their basal dendrites in those layers, but modulatory CF input via their
apical dendrites in Layer 1 (Larkum, 2013; Larkum, Nevian, Sandler, Polsky, & Schiller, 2009;
Larkum, Zhu, & Sakmann, 1999; Phillips, 2017). Depolarizing inputs to the apical dendrites
amplify the effects of driving (RF) input to the cell; hyperpolarizing inputs produce disampli-
fication (Phillips, 2017). In cortical Layer 5 pyramidal cells, repeated driving input to the cell
soma leads to a backpropagation of sodium, which increases the likelihood that calcium spikes
will be initiated in the apical dendrite (leading to plasticity), a situation that is most likely to oc-
cur when the apical (contextual) and somatic (driving) inputs are correlated in terms of timing
and/or the content being signaled (Larkum, 2013; Larkum et al., 2009; Larkum etal., 1999). As
a result of this backpropagation-activated calcium spike (BAC) firing, the frequency of action
potentials is increased and burst firing is more likely to occur, both of which are important
in signaling the salience of stimuli or sets of stimuli (e.g., as in contour integration). More-
over, contextual inputs to the apical dendrite are initially kept segregated through the action
of potassium channels (Harnett, Xu, Magee, & Williams, 2013; Hoffman, 2013) and then are
integrated at the apical dendritic trunk. These data demonstrate the neurobiological plausi-
bility of coherent infomax as a goal for neocortex. They further point toward means by which
top-down, lateral, and bottom-up signals may interact in vision and other modalities (Brosch
& Neumann, 2014; Gilbert & Sigman, 2007; Muckli et al., 2015; Piech, Li, Reeke, & Gilbert,
2013). Evidence also suggests that the mechanisms of apical amplification and disamplifica-
tion are themselves influenced by factors such as whether stimuli are attended to (Li, Piech,
& Gilbert, 2008), and perhaps also by arousal level (Larkum & Phillips, 2016), two functions
that are often impaired in people with schizophrenia.

Finally, we reemphasize the point made earlier that a reduction in the signaling of
true relationships between stimuli and an increase (especially in early schizophrenia) in the sig-
naling of coherence among weakly related stimuli would be expected to increase the entropy
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associated with any single mental representation (e.g., visual feature, word, etc.). This would
occur because the number of likely associations to that stimulus in the current context would
increase, thereby loosening constraints on the perceived nature of, and the response require-
ments associated with, that stimulus. As we noted above, this is likely to have several effects,
including massively increasing the processing demands for any given stimulus, slowing pro-
cessing, increasing distractibility, increasing the likelihood that an irrelevant stimulus or as-
sociation would be paired with relevant information, and generating behavior that appears
unrelated to the current context (i.e., bizarre or disorganized behavior).

PARTIAL INFORMATION DECOMPOSITION

The discussion of coherent infomax above emphasized that mutual information between input
and output modules can be viewed as being of one of four types: unique to the RF, unique
to the CF, shared by the RF and CF, or not present in either the RF or the CF (i.e., noise).
Recent developments in information theory, however, suggest that a fifth type of information
must be considered. This has been termed complementary or synergistic mutual information,
which can be defined as information that can be obtained only by knowing both inputs. Stated
differently, this is information in the output (Y) that we cannot obtain by evaluating the input
variables (X1, X5) separately (Wibral et al., 2015). Note that according to this view, X; and
X, can each be single inputs or sets of inputs, and that in pyramidal cells they will always be
sets composed of many inputs. Synergistic information is transmitted by “exclusive or” (XOR)
decisions (see below for an example). It is also involved in coordinate transformations. The
framework that includes synergistic information in its parsing of information types is known
as partial information decomposition (PID; Bertschinger, Rauh, Olbrich, Jost, & Ay, 2014).
In this framework, the output information in a neuron can be decomposed generically into
a combination of information unique to each input source, information shared between the
input sources, information that can only be known after evaluating both input sources, and
information not in either input source, as noted above—that is,

H(Y) = Lunq(Y : X1 |X2) + Lunq(Y : X2 [X1) + Lpa (Y : X1; X2) + Lsyn (Y 1 X1; X2)
+ H(Y | X1, X2).

Note that the term denoting shared information, Ig,q(Y @ Xi; X2), is the information
type most heavily weighted in coherent infomax, whereas the term Iyn (Y : Xj; X3) is most
important for processes dependent on synergistic information, as detailed below.

Coding with Synergy (CWS)

Many forms of information processing are of a type for which the joint information provided
by two or more inputs is essential to determine the output, whereas the information from any
input alone, or a small subset of it, does not provide any information about the output. One
prototypical example of this type of processing is the computation of an explicit mismatch
between external input information and internal, contextual input information (e.g., predic-
tions). If one knows only the external or the internal input, one cannot know whether or not
a mismatch will arise, because this requires knowledge of the input from both sources. Thus,
in this situation none of the inputs in isolation carries any information about the output, only
the set considered jointly does. Coding with synergy (CWS) as a neural goal function strives
to maximize the type of output information that requires considering the inputs jointly, as in
the example above. This goal function is likely to be implemented at least somewhere in sys-
tems that perform processing based on internal predictions that are updated on the basis of
the explicit signaling of mismatches between predictions and external inputs. CWS as a goal
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function can be at least approximately implemented within the neural network implementation
and learning rules originally suggested for coherent infomax (Kay & Phillips, 2011; Phillips,
Floreano, & Kay, 1998; Phillips & Singer, 1997), yet with a different choice of weights for the
information-theoretic goal function (Wibral et al., 2015).

The effects of schizophrenia on synergistic processing are largely unknown. However,
some evidence suggests that people with this disorder are characterized by problems with
coordinate transformation—an operation that requires precise knowledge of both inputs in
order to determine the result exactly, and that, therefore, has at least a certain amount of
synergistic information between inputs and outputs. A problem with coordinate transformation
in schizophrenia is suggested by increased variability and randomness, as compared to control
subjects, in deliberate reaching movements (where synergistic information between perceptual
information about the target location and kinesthetic information about arm/hand position is
required), but not in spontaneous arm retraction after such movements (Nguyen, Majmudar,
Papathomas, Silverstein, & Torres, 2016). This hypothesis is also suggested by abnormalities
in eye movements in both laboratory (Lencer et al., 2015) and naturalistic (Dowiasch et al.,
2014) environments, where synergistic information involving the intended location of spatial
attention and eye position is required. Important questions for future research on schizophrenia
are to clarify whether these examples are best explained as failures of CWS and whether other
phenomena appear to be manifestations of altered CWS in schizophrenia.

Predictive Coding

Predictive coding refers to the view that a basic function of the brain is to rapidly and efficiently
predict the nature of recent inputs on the basis of a stored model of the world. Predictions are
conveyed as top-down inputs that interact with feedforward signaling (Rao & Ballard, 1999).
When there is a mismatch between input and prediction, a feedforward prediction error signal
is generated that contributes to an updating of the stored world model and the generation of
a more accurate prediction. A goal in such a system is to reduce prediction error signaling as
much as possible. Much work by Friston, Frith, Corlett, and others (Adams, Stephan, Brown,
Frith, & Friston, 2013; Corlett, Frith, & Fletcher, 2009; Corlett, Honey, & Fletcher, 2007; Cor-
lett, Honey, Krystal, & Fletcher, 2011; Friston et al., 2014) has discussed the possibility of
altered predictive coding in schizophrenia. These articles have focused primarily on the in-
volvement of impaired predictive coding in the genesis of psychotic symptoms (e.g., hallucina-
tions, delusions). However, the model is also useful for understanding perceptual impairments
(Keane, Silverstein, Wang, & Papathomas, 2013; Wacogne, 2016), as well as smooth-pursuit
eye-tracking deficits (as noted above) in schizophrenia.

From the perspective of PID, the goal of predictive coding can be viewed as that of pre-
dicting the most recently occurring input, Xi(t), using information from a vector of inputs
that have occurred in the past, X1 (t-1). Stated differently, the goal is to maximize the mutual
information between the most recent input and prediction. In terms of the generic goal func-
tion noted in the section on coherent infomax, and substituting X; (¢) and X1 (t-1) for X; and
X, respectively, the goal function for an error unit Y when coding prediction error can be
expressed as

Gpce = Lung[Y : X1 () [Xq(t=1)] + Lung[Y : X (t=1) [ X1 (£)] + Lgha[Y : X3 (t); X1 (t-1)]
+ IynlY : X1(t); X1 (&=1)] + H(Y |X),

with the weights associated with these terms being [0, 0, 0, 0, —1]. That is, the goal function
pursued in predictive coding is to minimize entropy in the error unit. More specifically, in PID,

94



Implications of Information Theory for Computational Modeling of Schizophrenia Silverstein, Wibral, Phillips

Computational Psychiatry

predictive coding is assumed to involve a comparison between input and a representation of
a model of the world (from memory) that is processed using an XOR-like function to yield,
at a neuronal-spike level, an output indicating either a match (e.g., 0) or a mismatch (i.e., a
prediction error, indicating that the two input states are incompatible), which is used to update
the world model. Thus, computing a prediction error amounts to a coordinate transformation
(and thus a CWS-like operation, as well): inputs are transformed into prediction errors via
computing their distances to predictions.

An advantage of the PID conceptualization of predictive coding is that it allows this
coding to be formally compared to the infomax and coherent infomax perspectives. This for-
malization can help accelerate modeling of the relative contributions of impairments in each
of these goal functions to aspects of schizophrenia.

Cognitive Control

A recent information theory perspective on cognitive control (Fan, 2014) can help extend the
PID model to the widely demonstrated impairment in this function in schizophrenia. In this
view, the frontoparietal network, including anterior cingulate cortex (ACC) and anterior in-
sular cortex, is not conceptualized, as it usually is, as a monitor of response conflict (Carter
et al., 1998). Rather, these structures are seen as processing entropy, or uncertainty, and re-
sponse conflict is viewed as a special case of increased uncertainty. If the key ideas of this
model are combined with PID, this allows for cognitive control to be seen as involving a
processing unit wherein potential response options are compared against stored information
about the extent to which similar responses were (or were not) effective in past similar sit-
uations. This “effective-or-not” comparison can be processed using the inverse-AND (i.e.,
NAND)-like function to yield an output indicating either a “go” (i.e., 0, indicating that the
current response option and the response stored in memory as being most effective in the
current situational context are the same, so there is no need to generate another response) or
a “no-go” (i.e., 1, generate another response option) decision. The consequences of the re-
sulting action are then used to update the stored model of the probabilities of success of dif-
ferent responses in different contexts. This reconceptualization of one of the key roles of the
frontoparietal network emphasizes its importance in processing and transmitting information
under conditions of uncertainty. This theory is supported by data from multiple imaging studies
(reviewed in Fan, 2014) and is consistent with recent data on altered frontoparietal network
activity during efforts at cognitive control in people with schizophrenia (Fornito, Yoon, Zalesky,
Bullmore, & Carter, 2011). Related to the issue of uncertainty, there is evidence for increased
functional connectivity between frontoparietal network nodes and sensory and default-mode
network regions in schizophrenia (Tu, Lee, Chen, Li, & Su, 2013). This finding suggests that
cognitive control may be further reduced by introducing statistically rare representations into
the processor. This would have the effect of increasing uncertainty and the number of response
options that need to be evaluated, leading to a higher risk of inappropriate responses and/or
an overall slowing of responses.

SUMMARY

The major theme of this article has been the utility of concepts from information theory to guide
computational modeling of phenomena associated with schizophrenia. We began by demon-
strating that basic concepts from information theory, such as Shannon information, entropy,
data compression, block coding, and methods to increase signal-to-noise ratio, can be used
to provide both novel understandings of cognitive impairments in schizophrenia (e.g., slowed
processing, reduced attentional capacity, sensory gating) and precise quantitative metrics for
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use in future studies. Moreover, these insights also can help explain aspects of symptom-
atology in schizophrenia, thereby providing a mathematically precise basis from which to
clarify symptom—cognition relationships. We then described more recent developments in
information theory, such as the concepts of infomax, coherent infomax, and CWS, to dem-
onstrate how these can be used to develop computational models of schizophrenia-related fail-
ures in tuning of sensory neurons, noise reduction, perceptual organization, thought
organization, context processing, predictive coding, and cognitive control. As with the ear-
lier discussion of basic information theory concepts, these reconceptualizations of aspects of
schizophrenia allow for precise metrics that can be used to test our hypotheses against those of
other models. These hypotheses also raise many new questions that remain to be investigated.
Given the current lack of understanding of the mechanisms involved in schizophrenia-related
symptoms (Wang & Krystal, 2014), and given that the approach we espouse is consistent with
the mechanism-driven recommendations of the NIMH Research Domain Criteria approach
(Cuthbert & Insel, 2010), we suggest that this perspective warrants further consideration.

Because the biological basis of the implementation of goal functions such as coherent
infomax is now starting to emerge (e.g., in the form of apical amplification), this provides a
powerful framework for formal modeling of various phenomena. These findings suggest that
pyramidal neurons are most realistically conceptualized as having separate sites for the accu-
mulation of driving (RF) and contextual information (Larkum et al., 2009; Larkum & Phillips,
2016). Therefore, relevant aspects of schizophrenia can now be realistically modeled in terms
of alterations in the use of these different types of information. To date, however, no formal
modeling of schizophrenia-related features using this approach has been undertaken. There
is also no evidence, as yet, of disrupted apical amplification in schizophrenia, although there
is much evidence for altered neuronal connectivity in general (van den Heuvel, Scholtens, de
Reus, & Kahn, 2015). Thus, this project, like much of computational psychiatry, is at an early
stage.® Nevertheless, we believe the yield from applying information-theory-based models
will be great, especially given the previously demonstrated correspondence between predic-
tions based on information-theoretic concepts and psychophysical findings in multiple percep-
tual and cognitive domains in schizophrenia (Phillips et al., 2015; Phillips & Silverstein, 2003).

Finally, several models have already shown success in modeling aspects of schizo-
phrenia. This means, at the very least, that models and modeling approaches need to be com-
pared in order to determine which ones produce the best fits to existing data and the most useful
new insights and hypotheses. In addition, there is always the possibility that some models
will be more appropriate than others for certain aspects of schizophrenia. For example, im-
pairments in reward-based learning and reversal learning have been modeled in schizophrenia
(Schlagenhauf et al., 2014), and these ideas have also been used to explain anhedonia, which
is a frequently observed negative symptom in the disorder (Huys, Pizzagalli, Bogdan, & Dayan,
2013). Although the information theory concepts we have emphasized can, in theory, account
for learning and its impairments, thus far they have been used primarily to explain functions
such as perception, selective attention, lexical disambiguation, and synchronization, as well
as their impairments in schizophrenia. The utility of these concepts for understanding reward-
learning deficits, anhedonia, and other negative symptoms has not yet been explored. Thus,
although, as we discussed earlier in this article, our view provides a potential explanation of
certain negative symptoms—such as poverty of content, perseveration, alogia, psychomotor

6 For example, the neurobiology of coding with synergy needs to be clarified, as does much of the predictive-
coding model (e.g., it is not clear how/whether pyramidal cells signal prediction error).
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retardation, and catatonia—it has not yet been applied to situations in which, presumably,
processing of the affective valence of stimuli is altered.

Regarding what is arguably the other major modeling approach for schizophrenia, the
predictive-coding model (Clark, 2013; Corlett et al., 2009; Corlett et al., 2007; Corlett et al.,
2011; Friston et al., 2014), more can be said about its overlap with information theory. First,
as we noted above, one of the basic principles of this model is the idea that organisms strive to
achieve minimal prediction error (MPE). It has been shown that MPE is equivalent to entropy
in the current stimulus representation that is not captured by the internal model of the world
(Clark, 2013). However, taken to its extreme, the goal of MPE would lead organisms to simply
remove themselves from all stimulation, or what has been called “the dark room dilemma”
(Little & Sommer, 2013). It has therefore been noted that, rather than conceptualizing MPE
in terms of conditional entropy, it is more useful to frame it in terms of maximizing mutual
information between sensory input and the internal model. According to this view, a common
goal of organisms is to seek out conditions in which both entropy and mutual information are
maximized (e.g., by seeking out new experiences as long as there is enough predictability in
stimulation and the outcomes of actions to allow for adaptive behavior; Little & Sommer, 2013).
This goal may be adaptive, in the evolutionary sense, since it leads to continually improved
adaptive fitness, or the maximization of prediction success, in a world in which complexity
and change are implicitly assumed to be ongoing conditions. A view of predictive coding in
which its main goal is to maximize mutual information between outcome and prediction was
developed by Wibral et al. (2015) and described above in the section on partial information
decomposition. Other examples of overlap between predictive coding and information theory,
such as the roles of RF input and CF input in contributing to prior probability distributions and
likelihood estimation, respectively, are discussed in Phillips (2012). These examples demon-
strate that there are areas of overlap between predictive coding and information theory through
which the approaches can mutually inform each other.

However, there are also areas where the two models are not compatible (Phillips &
Silverstein 2013). For example, Phillips, Clark, & Silverstein (2015) reviewed a number of
cases in which phenomena can be accounted for by the type of local interactions emphasized
by the coherent infomax function, without the need to resort to top-down signaling of expec-
tations. In addition, predictive-coding models do not provide a mechanism through which
subsets of the available input could be given priority over other information during processing.
In contrast, information theory concepts such as coherent infomax describe self-organizing
mechanisms through which information related to the current context can be prioritized.
Relatedly, predictive-coding models emphasize combining new and old information to up-
date posterior probabilities, but they do not describe how local processors select relevant
information or how multiple processing streams coordinate their activity (Phillips, 2013). As a
result, at present, predictive-coding models appear best suited for explaining the development
of symptoms such as delusions, but they are not easily applicable to understanding disorga-
nized symptoms, which involve fragmentation of function. On the other hand, the approaches
we have described have not yet been applied to explaining positive symptoms, so it remains to
be seen whether they will add to the insights provided by predictive-coding models regarding
these symptoms.

Finally, much work in schizophrenia, including applications of the predictive-coding
model, has focused on top-down-bottom-up interactions. However, we believe that this frame-
work is inadequate to account for many neural abnormalities and their effects in the disorder.
Much happens locally, and via horizontal connections, and there are many reasons to expect
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local circuit issues with this disorder, including reduced dendritic branching. Therefore, the
view presented in this article complements those involving longer-range interactions that are
typically the focus of work within computational psychiatry (Friston, 2010) and the cognitive
neuroscience of schizophrenia (Sheffield et al., 2015a, 2015b).

AUTHOR CONTRIBUTIONS

S.M.S. conceived of and wrote the majority of the article. Much of the content reflects dis-
cussions over the last 20 years between S.M.S. and W.A.P. on information theory and schizo-
phrenia. W.A.P. wrote a significant portion of the section on coherent infomax and edited and
revised the manuscript as a whole. M.W. wrote much of the section on coding with synergy
and edited and revised the manuscript as a whole.

REFERENCES

Adams, R. A., Huys, Q. J. M., & Roiser, J. P. (2016). Computational
psychiatry: Towards a mathematically informed understanding of
mental illness. Journal of Neurology, Neurosurgery & Psychiatry,
87,53-63. doi:10.1136/jnnp-2015-310737

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston,
K.J. (2013). The computational anatomy of psychosis. Frontiers
in Psychiatry, 4, 47. doi:10.3389/fpsyt.2013.00047

Anticevic, A., Corlett, P. R., Cole, M. W., Savic, A., Gancsos, M.,
Tang, Y., . .. Krystal, J. H. (2015). N-methyl-D-aspartate recep-
tor antagonist effects on prefrontal cortical connectivity better
model early than chronic schizophrenia. Biological Psychiatry,
77, 569-580. doi:10.1016/j.biopsych.2014.07.022

Barlow, H., & Berry, D. L. (2011). Cross- and auto-correlation in
early vision. Proceedings of the Royal Society B, 278, 2069-2075.
doi:10.1098/rspb.2010.2170

Berrios, G. E. (1985). Positive and negative symptoms and Jackson:
A conceptual history. Archives of General Psychiatry, 42, 95-97.

Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014). Quan-
tifying unique information. Entropy, 16, 2161-2183.

Boguslawski, B., Gripon, V., Seguin, F., & Heitzmann, F. (2014).
Huffman coding for storing non-uniformly distributed messages in
networks of neural cliques. In Proceedings of the Twenty-Eighth
AAAI Conference on Atrtificial Intelligence (pp. 262-268). Palo
Alto, CA: AAAI Press.

Brosch, T., & Neumann, H. (2014). Interaction of feedforward
and feedback streams in visual cortex in a firing-rate model of
columnar computations. Neural Networks, 54, 11-16. doi:10.
1016/j.neunet.2014.02.005

Brown, M., & Kuperberg, G. R. (2015). A hierarchical generative
framework of language processing: Linking language perception,
interpretation, and production abnormalities in schizophrenia.
Frontiers in Human Neuroscience, 9, 643. doi:10.3389/fnhum.
2015.00643

Bunney, W. E., Jr., Hetrick, W. P., Bunney, B. G., Patterson, J. V.,
Jin, Y., Potkin, S. G., & Sandman, C. A. (1999). Structured Inter-
view for Assessing Perceptual Anomalies (SIAPA). Schizophrenia
Bulletin, 25, 577-592.

Campbell, J. (1982). Grammatical man. New York, NY: Simon &
Schuster.

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D.,
& Cohen, J. D. (1998). Anterior cingulate cortex, error detec-

Computational Psychiatry

tion, and the online monitoring of performance. Science, 280,
747-749.

Celik, M., Kalenderoglu, A., Sevgi, K. A., Bekir Egilmez, O., Han-
Almis, B., & Simsek, A. (2016). Decreases in ganglion cell layer
and inner plexiform layer volumes correlate better with disease
severity in schizophrenia patients than retinal nerve fiber layer
thickness: Findings from spectral optic coherence tomography.
European Psychiatry, 32, 9-15.

Chapman, J. (1966). The early symptoms of schizophrenia. British
Journal of Psychiatry, 112,225-251.

Christensen, B. K., Spencer, J. M., King, J. P, Sekuler, A. B., &
Bennett, P. J. (2013). Noise as a mechanism of anomalous face
processing among persons with schizophrenia. Frontiers in Psy-
chology, 4, 401. doi:10.3389/fpsyg.2013.00401

Clark, A. (2013). Whatever next? Predictive brains, situated agents,
and the future of cognitive science. Behavioral and Brain Sci-
ences, 36, 181-204. doi:10.1017/5S0140525X12000477

Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999).
Context-processing deficits in schizophrenia: Converging evi-
dence from three theoretically motivated cognitive tasks. Journal
of Abnormal Psychology, 108, 120-133.

Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and
dopamine: A connectionist approach to behavior and biology in
schizophrenia. Psychological Review, 99, 45-77.

Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs
to deprivation: A Bayesian framework for understanding models
of psychosis. Psychopharmacology, 206, 515-530. doi:10.1007/
s00213-009-1561-0

Corlett, P. R., Honey, G. D., & Fletcher, P. C. (2007). From predic-
tion error to psychosis: Ketamine as a pharmacological model of
delusions. Journal of Psychopharmacology, 21, 238-252. doi:
10.1177/0269881107077716

Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011).
Glutamatergic model psychoses: Prediction error, learning, and
inference. Neuropsychopharmacology, 36, 294-315. doi:10.
1038/npp.2010.163

Cuthbert, B. N., & Insel, T. R. (2010). Toward new approaches to
psychotic disorders: The NIMH Research Domain Criteria
Project. Schizophrenia Bulletin, 36, 1061-1062. doi:10.1093/
schbul/sbq108

98


https://dx.doi.org/10.1136/jnnp-2015-310737
https://dx.doi.org/10.3389/fpsyt.2013.00047
https://dx.doi.org/10.1016/j.biopsych.2014.07.022
https://dx.doi.org/10.1098/rspb.2010.2170
https://dx.doi.org/10.1016/j.neunet.2014.02.005
https://dx.doi.org/10.1016/j.neunet.2014.02.005
https://dx.doi.org/10.3389/fnhum.2015.00643
https://dx.doi.org/10.3389/fnhum.2015.00643
https://dx.doi.org/10.3389/fpsyg.2013.00401
https://dx.doi.org/10.1017/S0140525X12000477
https://dx.doi.org/10.1007/s00213-009-1561-0
https://dx.doi.org/10.1007/s00213-009-1561-0
https://dx.doi.org/10.1177/0269881107077716
https://dx.doi.org/10.1177/0269881107077716
https://dx.doi.org/10.1038/npp.2010.163
https://dx.doi.org/10.1038/npp.2010.163
https://dx.doi.org/10.1093/schbul/sbq108
https://dx.doi.org/10.1093/schbul/sbq108

Implications of Information Theory for Computational Modeling of Schizophrenia Silverstein, Wibral, Phillips

de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining lighton
wakefulness and arousal. Biological Psychiatry, 71, 1046-1052.
doi:10.1016/j.biopsych.2012.01.032

Dowiasch, S., Backasch, B., Einhduser, W., Leube, D., Kircher,
T., & Bremmer, F. (2014). Eye movements of patients with
schizophrenia in a natural environment. European Archives of
Psychiatry and Clinical Neuroscience, 266, 43-54. doi:10.1007/
s00406-014-0567-8

Fan, J. (2014). An information theory account of cognitive control.
Frontiers in Human Neuroscience, 8, 680. doi:10.3389/fnhum.
2014.00680

Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S.
(2011). General and specific functional connectivity distur-
bances in first-episode schizophrenia during cognitive control
performance. Biological Psychiatry, 70, 64-72. doi:10.1016/j.
biopsych.2011.02.019

Friston, K. (2010). The free-energy principle: A unified brain the-
ory? Nature Reviews Neuroscience, 11, 127-138. doi:10.1038/
nrn2787

Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J.
(2014). Computational psychiatry: The brain as a phantas-
tic organ. Lancet Psychiatry, 1, 148-158. doi:10.1016/52215-
0366(14)70275-5

Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influ-
ences in sensory processing. Neuron, 54, 677-696. doi:10.1016/
j.neuron.2007.05.019

Green, M. F,, Lee, J., Wynn, J. K., & Mathis, K. 1. (2011). Visual mask-
ing in schizophrenia: Overview and theoretical implications.
Schizophrenia Bulletin, 37, 700-708. doi:10.1093/schbul/sbr051

Haenschel, C., Bittner, R. A., Haertling, F, Rotarska-Jagiela, A.,
Maurer, K., Singer, W., & Linden, D. E. (2007). Contribution of
impaired early stage visual processing to working memory dys-
function in adolescents with schizophrenia: A study with event-
related potentials and functional magnetic resonance imaging.
Archives of General Psychiatry, 64, 1229-1240. doi:64/11/1229
[piil10.1001/archpsyc.64.11.1229

Harnett, M. T., Xu, N. L., Magee, J. C., & Williams, S. R. (2013).
Potassium channels control the interaction between active den-
dritic integration compartments in layer 5 cortical pyramidal neu-
rons. Neuron, 79, 516-529. doi:10.1016/j.neuron.2013.06.005

Hartley, R. V. L. (1928). Transmission of information. Bell System
Technical Journal, 7, 535-563.

Harvey, P. O., Lee, J., Cohen, M. S., Engel, S. A., Glahn, D. C.,
Nuechterlein, K. H., . . . Green, M. F. (2011). Altered dynamic
coupling of lateral occipital complex during visual perception
in schizophrenia. Neurolmage, 55, 1219-1226. doi:10.1016/
j.neuroimage.2010.12.045

Hoffman, D. A. (2013). K+ channel regulation of multicompart-
mental signal integration. Neuron, 79, 403-405. doi:10.1016/j.
neuron.2013.07.017

Huffman, D. (1952). A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40, 1098-1101. doi:
10.1109/JRPROC.1952.273898

Huys, Q. J., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013).
Mapping anhedonia onto reinforcement learning: A behavioural
meta-analysis. Biology of Mood & Anxiety Disorders, 3, 12. doi:
10.1186/2045-5380-3-12

Computational Psychiatry

Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468, 187-
193. doi:10.1038/nature09552

Javitt, D. C., Strous, R. D., Grochowski, S., Ritter, W., & Cowan, N.
(1997). Impaired precision, but normal retention, of auditory sen-
sory (“echoic”) memory information in schizophrenia. Journal of
Abnormal Psychology, 106, 315-324.

Kay, J. W., & Phillips, W. A. (2011). Coherent Infomax as a computa-
tional goal for neural systems. Bulletin of Mathematical Biology,
73,344-372. doi:10.1007/s11538-010-9564-x

Keane, B. P, Silverstein, S. M., Wang, Y., & Papathomas, T. V.
(2013). Reduced depth inversion illusions in schizophrenia are
state-specific and occur for multiple object types and viewing
conditions. Journal of Abnormal Psychology, 122, 506-512. doi:
10.1037/a0032110

Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter,
F. (2001). Diagnosing schizophrenia in the initial prodromal
phase. Archives of General Psychiatry, 58, 158-164.

Kording, K. P., & Konig, P. (2000). Learning with two sites of synaptic
integration. Network, 11, 25-39.

Larkum, M. (2013). A cellular mechanism for cortical associations:
An organizing principle for the cerebral cortex. Trends in Neuro-
sciences, 36, 141-151. doi:10.1016/j.tins.2012.11.006

Larkum, M. E., Nevian, T., Sandler, M., Polsky, A., & Schiller, J.
(2009). Synaptic integration in tuft dendrites of layer 5 pyrami-
dal neurons: A new unifying principle. Science, 325, 756-760.
doi:10.1126/science.1171958

Larkum, M. E., & Phillips, W. A. (2016). Does arousal enhance
apical amplification and disamplification? Behavioral and Brain
Sciences, 39, €215. doi:10.1017/S0140525X15001867

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular
mechanism for coupling inputs arriving at different cortical layers.
Nature, 398, 338-341. doi:10.1038/18686

Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2006). Efficient sparse
coding algorithms. In Y. S. Ho, J. Sang, Y. M. Ro, J. Kim, &
F. Wu (Eds.), Advances in Neural Information Processing Systems
(pp- 801-808). New York, NY: Springer.

Lencer, R., Sprenger, A., Reilly, J. L., McDowell, J. E., Rubin, L. H.,
Badner, J. A., ... Sweeney, J. A. (2015). Pursuit eye movements as
an intermediate phenotype across psychotic disorders: Evidence
from the B-SNIP study. Schizophrenia Research, 169, 326-333.
doi:10.1016/j.schres.2015.09.032

Leonard, C. J., Kaiser, S. T., Robinson, B. M., Kappenman, E. S.,
Hahn, B., Gold, J. M., & Luck, S. ). (2013). Toward the neural
mechanisms of reduced working memory capacity in schizo-
phrenia. Cerebral Cortex, 23, 1582-1592. doi:10.1093/cercor/
bhs148

Li, W., Piech, V., & Gilbert, C. D. (2008). Learning to link visual
contours. Neuron, 57, 442-451. doi:10.1016/j.neuron.2007.12.
011

Linsker, R. (1988, March). Self-organization in a perceptual network.
Computer, 21, 105-117.

Little, D. Y., & Sommer, F. T. (2013). Maximal mutual infor-
mation, not minimal entropy, for escaping the “Dark Room.”
Behavioral and Brain Sciences, 36, 220-221. doi:10.1017/
S0140525X12002415

MacKay, D. J. C. (2003). Information theory, inference, and learning
algorithms. Cambridge, UK: Cambridge University Press.

99


https://dx.doi.org/10.1016/j.biopsych.2012.01.032
https://dx.doi.org/10.1007/s00406-014-0567-8
https://dx.doi.org/10.1007/s00406-014-0567-8
https://dx.doi.org/10.3389/fnhum.2014.00680
https://dx.doi.org/10.3389/fnhum.2014.00680
https://dx.doi.org/10.1016/j.biopsych.2011.02.019
https://dx.doi.org/10.1016/j.biopsych.2011.02.019
https://dx.doi.org/10.1038/nrn2787
https://dx.doi.org/10.1038/nrn2787
https://dx.doi.org/10.1016/S2215-0366(14)70275-5
https://dx.doi.org/10.1016/S2215-0366(14)70275-5
https://dx.doi.org/10.1016/j.neuron.2007.05.019
https://dx.doi.org/10.1016/j.neuron.2007.05.019
https://dx.doi.org/10.1093/schbul/sbr051
https://dx.doi.org/10.1001/archpsyc.64.11.1229
https://dx.doi.org/10.1001/archpsyc.64.11.1229
https://dx.doi.org/10.1016/j.neuron.2013.06.005
https://dx.doi.org/10.1016/j.neuroimage.2010.12.045
https://dx.doi.org/10.1016/j.neuroimage.2010.12.045
https://dx.doi.org/10.1016/j.neuron.2013.07.017
https://dx.doi.org/10.1016/j.neuron.2013.07.017
https://dx.doi.org/10.1109/JRPROC.1952.273898
https://dx.doi.org/10.1109/JRPROC.1952.273898
https://dx.doi.org/10.1186/2045-5380-3-12
https://dx.doi.org/10.1186/2045-5380-3-12
https://dx.doi.org/10.1038/nature09552
https://dx.doi.org/10.1007/s11538-010-9564-x
https://dx.doi.org/10.1037/a0032110
https://dx.doi.org/10.1037/a0032110
https://dx.doi.org/10.1016/j.tins.2012.11.006
https://dx.doi.org/10.1126/science.1171958
https://dx.doi.org/10.1017/S0140525X15001867
https://dx.doi.org/10.1038/18686
https://dx.doi.org/10.1016/j.schres.2015.09.032
https://dx.doi.org/10.1093/cercor/bhs148
https://dx.doi.org/10.1093/cercor/bhs148
https://dx.doi.org/10.1016/j.neuron.2007.12.011
https://dx.doi.org/10.1016/j.neuron.2007.12.011
https://dx.doi.org/10.1017/S0140525X12002415
https://dx.doi.org/10.1017/S0140525X12002415

Implications of Information Theory for Computational Modeling of Schizophrenia Silverstein, Wibral, Phillips

Matussek, P. (1952). Untersuchungen lber die Wahnwahrnehmung:
1. Mitteilung. Veranderungen der Wahrnehmungswelt bei
beginnendem, primdren Wahn.  Archiv fir Psychiatrie und
Zeitschrift fir die gesammte Neurologie, 189, 279-319.

Matussek, P. (1987). Studies in delusional perception: Translated
and condensed. In M. Sheppard & J. Cutting (Eds.), Clinical roots
of the schizophrenia concept: Translations of seminal European
contributions on schizophrenia (pp. 89-103). Cambridge, UK:
Cambridge University Press.

McGhie, A., & Chapman, J. (1961). Disorders of attention and per-
ception in early schizophrenia. British Journal of Medical Psy-
chology, 34, 103-115.

Miikkulainen, R., Bednar, J. A., Choe, C., & Sirosh, J. (2005). Com-
putational maps in the visual cortex. New York, NY: Springer.
Mitelman, S. A., & Buchsbaum, M. S. (2007). Very poor outcome
schizophrenia: Clinical and neuroimaging aspects. International

Review of Psychiatry, 19, 345-357.

Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012).
Computational psychiatry. Trends in Cognitive Sciences, 16,
72-80. doi:10.1016/j.tics.2011.11.018

Moyer, C. E., Shelton, M. A., & Sweet, R. A. (2015). Dendritic spine
alterations in schizophrenia. Neuroscience Letters, 601, 46-53.
doi:10.1016/j.neulet.2014.11.042

Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W,,
Ugurbil, K., . .. Yacoub, E. (2015). Contextual feedback to super-
ficial layers of V1. Current Biology, 25, 2690-2695. doi:10.1016/
j.cub.2015.08.057

Nguyen, J., Majmudar, U., Papathomas, T. V., Silverstein, S. M.,
& Torres, E. B. (2016). Schizophrenia: The micro-movements
perspective. Neuropsychologia, 85, 310-326. doi:10.1016/j.
neuropsychologia.2016.03.003

Nuechterlein, K. H., & Dawson, M. E. (1984). Information process-
ing and attentional functioning in the developmental course of
schizophrenic disorders. Schizophrenia Bulletin, 10, 160-203.

Nyquist, H. (1924). Certain factors affecting telegraph speed. Bell
System Technical Journal, 3, 324-346.

Phillips, W. A. (2012). Self-organized complexity and coherent info-
max from the viewpoint of Jaynes’s probability theory. Informa-
tion, 3, 1-15. doi:10.3390/info3010001

Phillips, W. A. (2013). Neuronal inference must be local, selective,
and coordinated. Behavioral and Brain Sciences, 36, 222-223.

Phillips, W. A. (2017). Cognitive functions of intracellular mech-
anisms for contextual amplification. Brain and Cognition, 112,
39-53. doi:10.1016/j.bandc.2015.09.005

Phillips, W. A., Clark, A., & Silverstein, S. M. (2015). On the func-
tions, mechanisms, and malfunctions of intracortical contextual
modulation. Neuroscience & Biobehavioral Reviews, 52, 1-20.
doi:10.1016/j.neubiorev.2015.02.010

Phillips, W. A., Floreano, D., & Kay, J. (1998). Contextually guided
unsupervised learning using local multivariate binary processors.
Neural Networks, 11, 117-140.

Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biolog-
ical and psychological perspectives on cognitive coordination in
schizophrenia. Behavioral and Brain Sciences, 26, 65-82, disc.
82-137.

Phillips, W. A., & Silverstein, S. M. (2013). The coherent organiza-
tion of mental life depends on mechanisms for context-sensitive

Computational Psychiatry

gain-control that are impaired in schizophrenia. Frontiers in Psy-
chology, 4, 307. doi:10.3389/fpsyg.2013.00307

Phillips, W. A., & Singer, W. (1997). In search of common foun-
dations for cortical computation. Behavioral and Brain Sciences,
20, 657-683, disc. 683-722.

Piech, V., Li, W., Reeke, G. N., & Gilbert, C. D. (2013). Network
model of top-down influences on local gain and contextual inter-
actions in visual cortex. Proceedings of the National Academy of
Sciences, 110, E4108-E4117. doi:10.1073/pnas.1317019110

Rao, R. P, & Ballard, D. H. (1999). Predictive coding in the visual
cortex: A functional interpretation of some extra-classical
receptive-field effects. Nature Neuroscience, 2, 79-87. doi:10.
1038/4580

Rapin, L. A., Dohen, M., Loevenbruck, H., Whitman, J. C., Metzak,
P. D., & Woodward, T. S. (2012). Hyperintensity of functional
networks involving voice-selective cortical regions during silent
thought in schizophrenia. Psychiatry Research, 202, 110-117.
doi:10.1016/j.pscychresns.2011.12.014

Reavis, E. A., Lee, J., Wynn, J. K., Engel, S. A., Jimenez, A. M.,
& Green, M. F. (2017). Cortical thickness of functionally de-
fined visual areas in schizophrenia and bipolar disorder. Cerebral
Cortex, 27,2984-2993. doi:10.1093/cercor/bhw151

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S., McVean,
G., Turnbaugh, P. ., . .. Sabeti, P. C. (2011). Detecting novel
associations in large data sets. Science, 334, 1518-1524.

Rokem, A., Yoon, J. H., Ooms, R. E., Maddock, R. J., Minzenberg,
M. )., & Silver, M. A. (2011). Broader visual orientation tuning in
patients with schizophrenia. Frontiers in Human Neuroscience,
5,127. doi:10.3389/fnhum.2011.00127

Sass, L. A., & Parnas, J. (2003). Schizophrenia, consciousness, and
the self. Schizophrenia Bulletin, 29, 427-444.

Schallmo, M. P., Sponheim, S. R., & Olman, C. A. (2013). Abnor-
mal contextual modulation of visual contour detection in patients
with schizophrenia. PLoS ONE, 8, e68090. doi:10.1371/journal.
pone.0068090

Schlagenhauf, F., Huys, Q. M., Deserno, L., Rapp, M. A., Beck, A,
Heinze, H.-J., . . . Heinz, A. (2014). Striatal dysfunction during
reversal learning in unmedicated schizophrenia patients. Neuro-
Image, 89, 89-90.

Shannon, C. (1948). A mathematical theory of communication. Bell
System Technical Journal, 27, 379-423, 623-656.

Sheffield, J. M., Repovs, G., Harms, M. P,, Carter, C. S., Gold, J. M.,
MacDonald, A. W., lll, . . . Barch, D. M. (2015a). Evidence
for accelerated decline of functional brain network efficiency in
schizophrenia. Schizophrenia Bulletin, 42, 753-761. doi:10.
1093/schbul/sbv148

Sheffield, J. M., Repovs, G., Harms, M. P,, Carter, C. S., Gold, J. M.,
MacDonald, A. W., llI, . . . Barch, D. M. (2015b). Fronto-parietal
and cingulo-opercular network integrity and cognition in health
and schizophrenia. Neuropsychologia, 73, 82-93. doi:10.1016/
j.neuropsychologia.2015.05.006

Silverstein, S. M. (2016). Visual perception disturbances in schizo-
phrenia: Toward a unified model. Nebraska Symposium on
Motivation, 63, 77-132.

Silverstein, S. M., All, S. D., Thompson, J. L., Williams, L. M.,
Whitford, T. )., Nagy, M., . .. Gordon, E. (2012). Absolute level
of gamma synchrony is increased in first episode schizophrenia

100


https://dx.doi.org/10.1016/j.tics.2011.11.018
https://dx.doi.org/10.1016/j.neulet.2014.11.042
https://dx.doi.org/10.1016/j.cub.2015.08.057
https://dx.doi.org/10.1016/j.cub.2015.08.057
https://dx.doi.org/10.1016/j.neuropsychologia.2016.03.003
https://dx.doi.org/10.1016/j.neuropsychologia.2016.03.003
https://dx.doi.org/10.3390/info3010001
https://dx.doi.org/10.1016/j.bandc.2015.09.005
https://dx.doi.org/10.1016/j.neubiorev.2015.02.010
https://dx.doi.org/10.3389/fpsyg.2013.00307
https://dx.doi.org/10.1073/pnas.1317019110
https://dx.doi.org/10.1038/4580
https://dx.doi.org/10.1038/4580
https://dx.doi.org/10.1016/j.pscychresns.2011.12.014
https://dx.doi.org/10.1093/cercor/bhw151
https://dx.doi.org/10.3389/fnhum.2011.00127
https://dx.doi.org/10.1371/journal.pone.0068090
https://dx.doi.org/10.1371/journal.pone.0068090
https://dx.doi.org/10.1093/schbul/sbv148
https://dx.doi.org/10.1093/schbul/sbv148
https://dx.doi.org/10.1016/j.neuropsychologia.2015.05.006
https://dx.doi.org/10.1016/j.neuropsychologia.2015.05.006

Implications of Information Theory for Computational Modeling of Schizophrenia Silverstein, Wibral, Phillips

during face processing. Journal of Experimental Psychopathology,
3,702-723.

Silverstein, S. M., Berten, S., Essex, B., Kovacs, I., Susmaras, T., &
Little, D. M. (2009). An fMRI examination of visual integration in
schizophrenia. Journal of Integrated Neuroscience, 8, 175-202.

Silverstein, S. M., & Keane, B. P. (2011). Perceptual organization
impairment in schizophrenia and associated brain mechanisms:
Review of research from 2005 to 2010. Schizophrenia Bulletin,
37,690-699. doi:10.1093/schbul/sbr052

Silverstein, S. M., Moghaddam, B., & Wykes, T. (2014). Research
strategies and priorities to improve the lives of people with
schizophrenia: Executive summary of the Ernst Strungmann
Forum on schizophrenia. Schizophrenia Bulletin, 40, 259-265.
doi:10.1093/schbul/sbt238

Silverstein, S. M., & Rosen, R. (2015). Schizophrenia and the eye.
Schizophrenia Research: Cognition, 2, 46-55.

Spaulding, W. D., Storms, L., Goodrich, V., & Sullivan, M. (1986).
Applications of experimental psychopathology in psychiatric
rehabilitation. Schizophrenia Bulletin, 12, 560-577.

Spitzer, M. (2000). The mind within the net. Cambridge, MA: MIT
Press.

Spitzer, M., Beuckers, J., Beyer, S., Maier, S., & Hermle, L. (1994).
Contextual insensitivity in thought-disordered schizophrenic
patients: Evidence from pauses in spontaneous speech. Language
and Speech, 37, 171-185.

Spitzer, M., & Neumann, M. (1996). Noise in models of neuro-
logical and psychiatric disorders. International Journal of Neural
Systems, 7, 355-361.

Storms, L. H., & Broen, J. E. (1969). A theory of schizophrenic
behavioral disorganization. Archives of General Psychiatry, 20,
129-144.

Swerdlow, N. R., & Geyer, M. A. (1998). Using an animal model of
deficient sensorimotor gating to study the pathophysiology and
new treatments of schizophrenia. Schizophrenia Bulletin, 24,
285-301.

Todd, J., Michie, P. T., Schall, U., Ward, P. B., & Catts, S. V. (2011).
Mismatch negativity (MMN) reduction in schizophrenia-impaired
prediction—Error generation, estimation or salience? Interna-
tional Journal of Psychophysiology, 83,222-231.

Tu, P. C., Lee, Y. C,, Chen, Y. S, Li, C. T, & Su, T. P. (2013).
Schizophrenia and the brain’s control network: Aberrant within-

Computational Psychiatry

and between-network connectivity of the frontoparietal network
in schizophrenia. Schizophrenia Research, 147, 339-347. doi:
10.1016/j.schres.2013.04.011

Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organiza-
tion in schizophrenia spectrum disorders: Empirical research and
theoretical implications. Psychological Bulletin, 131, 618-632.
doi:10.1037/0033-2909.131.4.618

Uhlhaas, P.J., & Singer, W. (2010). Abnormal neural oscillations
and synchrony in schizophrenia. Nature Reviews Neuroscience,
17, 100-113. doi:10.1038/nrn2774

van den Heuvel, M. P., Scholtens, L. H., de Reus, M. A., & Kahn,
R.S. (2015). Associated microscale spine density and macroscale
connectivity disruptions in schizophrenia. Biological Psychiatry,
80, 293-301. doi:10.1016/j.biopsych.2015.10.005

Viertio, S., Laitinen, A., Perala, J., Saarni, S. |, Koskinen, S.,
Lonnqvist, J., & Suvisaari, ). (2007). Visual impairment in per-
sons with psychotic disorder. Social Psychiatry and Psychiatric
Epidemiology, 42, 902-908. doi:10.1007/s00127-007-0252-6

Wacogne, C. (2016). A predictive coding account of MMN reduc-
tion in schizophrenia. Biological Psychology, 116, 68-74. doi:
10.1016/j.biopsycho.2015.10.011

Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neu-
ron, 84, 638-654. doi:10.1016/j.neuron.2014.10.018

Weiler, J. A., Bellebaum, C., Brune, M., Juckel, G., & Daum, I.
(2009). Impairment of probabilistic reward-based learning in
schizophrenia. Neuropsychology, 23, 571-580. doi:10.1037/
a0016166

Wibral, M., Priesemann, V., Kay, J. W., Lizier, J. T., & Phillips, W. A.
(2015). Partial information decomposition as a unified approach
to the specification of neural goal functions. Brain and Cognition,
112,25-38. doi:10.1016/j.bandc.2015.09.004

Williams, L. M., Whitford, T. J., Gordon, E., Gomes, L., Brown, K. J.,
& Harris, A. W. (2009). Neural synchrony in patients with a first
episode of schizophrenia: Tracking relations with grey matter and
symptom profile. Journal of Psychiatry Neuroscience, 34, 21-29.

Zhang, Z., Sun, S., Yi, M., Wu, X., & Ding, Y. (2015). MIC as an
appropriate method to construct the brain functional network.
BioMed Research International, 2015(825136). doi:10.1155/
2015/825136

Zhaoping, L. (2014). Understanding vision: Theory, models, and
data. Oxford, UK: Oxford University Press.

101


https://dx.doi.org/10.1093/schbul/sbr052
https://doi.org/10.1093/schbul/sbt238
https://doi.org/10.1016/j.schres.2013.04.011
https://doi.org/10.1016/j.schres.2013.04.011
https://doi.org/10.1037/0033-2909.131.4.618
https://doi.org/10.1038/nrn2774
https://dx.doi.org/10.1016/j.biopsych.2015.10.005
https://dx.doi.org/10.1007/s00127-007-0252-6
https://dx.doi.org/10.1016/j.biopsycho.2015.10.011
https://dx.doi.org/10.1016/j.biopsycho.2015.10.011
https://dx.doi.org/10.1016/j.neuron.2014.10.018
https://dx.doi.org/10.1037/a0016166
https://dx.doi.org/10.1037/a0016166
https://dx.doi.org/10.1016/j.bandc.2015.09.004
https://dx.doi.org/10.1155/2015/825136
https://dx.doi.org/10.1155/2015/825136


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


