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Simple Summary: Detection of early esophageal cancer is important to improve patient’s survival,
but accurate diagnosis of superficial esophageal neoplasms is difficult even for experienced en-
doscopists. Computer-aided diagnostic system is believed to be an important method to provide
accurate and rapid assistance for endoscopists in diagnosing esophageal neoplasms. We developed a
single-shot multibox detector using a convolutional neural network for diagnosing esophageal cancer
by using endoscopic images and the aim of our study was to assess the ability of our system. Our sys-
tem showed good diagnostic performance in detecting as well as differentiating esophageal neo-
plasms and the accuracy can achieve 90%. Differentiating different histological grades of esophageal
neoplasm is usually conducted by magnified endoscopy and we confirm that artificial intelligence
system has great potential for helping endoscopists in accurately diagnosing superficial esophageal
neoplasms without the necessity of magnified endoscopy and experienced endoscopists.

Abstract: Diagnosis of early esophageal neoplasia, including dysplasia and superficial cancer, is a
great challenge for endoscopists. Recently, the application of artificial intelligence (AI) using deep
learning in the endoscopic field has made significant advancements in diagnosing gastrointestinal
cancers. In the present study, we constructed a single-shot multibox detector using a convolutional
neural network for diagnosing different histological grades of esophageal neoplasms and evaluated
the diagnostic accuracy of this computer-aided system. A total of 936 endoscopic images were
used as training images, and these images included 498 white-light imaging (WLI) and 438 narrow-
band imaging (NBI) images. The esophageal neoplasms were divided into three classifications:
squamous low-grade dysplasia, squamous high-grade dysplasia, and squamous cell carcinoma,
based on pathological diagnosis. This AI system analyzed 264 test images in 10 s, and the sensitivity,
specificity, and diagnostic accuracy of this system in detecting esophageal neoplasms were 96.2%,
70.4%, and 90.9%, respectively. The accuracy of this AI system in differentiating the histological
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grade of esophageal neoplasms was 92%. Our system showed better accuracy in diagnosing NBI
(95%) than WLI (89%) images. Our results showed the great potential of AI systems in identifying
esophageal neoplasms as well as differentiating histological grades.

Keywords: esophageal cancer; single-shot multibox detector; artificial intelligence; convolutional
neural network

1. Introduction

Esophageal cancer is a highly aggressive cancer with a poor prognosis, and around
508,000 esophageal cancer-related deaths were recorded globally in 2018. It is also the
seventh most common cancer and the sixth most common cause of cancer-related death [1].
The prognosis of esophageal cancer is usually good in its early stages with a 5-year survival
rate reaching 80%, but extremely poor in its advanced stages with a 5-year survival rate
of less than 20% [2]. However, most esophageal cancer is diagnosed at advanced stages
because typical symptoms such as dysphagia and odynophagia usually develop during
these later stages.

Esophagogastroduodenoscopy (EGD) is the most sensitive examination approach
as well as being the gold standard for diagnosis of esophageal cancer and precancerous
lesions; nevertheless, the diagnosis of esophageal precancerous lesions and superficial
cancer still presents great challenges for endoscopists, as these lesions are easily overlooked
in conventional white-light imaging (WLI) and about 40% of lesions might be missed [3].
Even though image-enhanced endoscopy, such as Lugol’s chromoendoscopy and narrow-
band imaging (NBI), is recommended in addition to WLI to improve the detection rate of
esophageal precancerous lesions as well as superficial cancer, interobserver variation still
exists, especially with inexperienced endoscopists [4–6].

With the development of computer technology, artificial intelligence (AI) has been
widely studied in the endoscopic field in diagnosing gastrointestinal tract diseases,
especially cancer [7]. One major role of computer-aided diagnosis is to help endoscopists
in differentiating between neoplastic and non-neoplastic lesions, and several studies have
proven the potential of AI systems in the diagnosis of early esophageal cancer, including
squamous cell carcinoma and adenocarcinoma [8–11]. Furthermore, the diagnostic accu-
racy of AI systems has also been compared with experienced endoscopists, and comparable
performance has been reported [12–14]. However, most studies have evaluated the diag-
nostic accuracy of AI systems by using two nominal variables (non-cancer and cancer),
and a few studies have used ordinal variables to evaluate different histological grades
of esophageal neoplasms such as low-grade dysplasia, high-grade dysplasia, and cancer,
by AI systems. In our previous study, we found significant spectral differences of endo-
scopic images between normal, precancerous, and cancerous lesions of the esophagus by
a computer-aided system [15]. For further analysis of the ability of AI systems in differ-
entiating the histological grade of esophageal neoplasms, we developed a deep learning
system using a single-shot multibox detector (SSD) for image recognition. SSD is a deep
convolutional neural network (CNN) consisting of 16 layers or more, and CNN is known
as one of the best performance models of AI systems in image recognition [16,17].

In the present study, we aimed to test the ability of an AI-assisted image analysis
system in differentiating histological grades of esophageal neoplasms, including low-grade
squamous dysplasia, high-grade squamous dysplasia, and squamous cell carcinoma (SCC).

2. Results
2.1. Diagnostic Performance of Our AI System for Detecting Esophageal Neoplasm

A total of 264 images were used as a test image set, including 112 WLI and 152 NBI
images, and SSD required 10 s for analysis. The comprehensive SSD accurately diagnosed
202 images of 210 images of esophageal neoplasms and 38 images of 54 images of a normal
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esophagus (Table 1). The sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy of comprehensive SSD for esophageal neoplasms
were 96.2%, 70.4%, 92.7%, 82.6%, and 90.9%, respectively (Table 2). After comparing the
diagnostic performance between WLI and NBI, SSD showed higher specificity and PPV in
diagnosing WLI images as compared with NBI. In contrast, NBI images provided higher
sensitivity and NPV. However, the accuracy of SSD was similar in diagnosing NBI and
WLI images (p = 0.61).

Table 1. Detailed results of 264 esophageal images diagnosed by our single-shot multibox detec-
tor (SSD).

Diagnostic Result
SSD Diagnosis

Normal Neoplasm

Pathological Diagnosis

Comprehensive
Normal 38 16

Neoplasm 8 202
WLI

Normal 13 4
Neoplasm 5 90

NBI
Normal 25 12

Neoplasm 3 112
Abbreviations: SSD, single-shot multibox detector; WLI, white-light image; NBI, narrow-band image.

Table 2. Diagnostic performance of SSD for esophageal neoplasm.

Diagnostic Performance WLI NBI Comprehensive

Accuracy (%) 92.0 90.1 90.9
Sensitivity (%) 94.7 97.4 96.2
Specificity (%) 76.5 67.6 70.4

PPV (%) 95.7 90.3 92.7
NPV (%) 72.2 89.3 82.6

Abbreviations: SSD, single-shot multibox detector; WLI, white-light image; NBI, narrow-band image; PPV,
positive predictive value; NPV, negative predictive value.

2.2. Diagnostic Performance of Our AI System for Differentiating Histological Grade of
Esophageal Neoplasm

The detailed results of our SSD in analyzing different histological grades of esophageal
neoplasms are shown in Table 3. The diagnostic accuracy of comprehensive SSD was 92%,
and the SSD showed higher accuracy in diagnosing NBI images (95%) than WLI images
(89%). The kappa values for WLI and NBI were 0.82 (95% confidence interval = 0.66–0.97)
and 0.91 (95% confidence interval = 0.77–1.05), respectively. Our SSD showed good sen-
sitivity for esophageal SCC, and the sensitivity of comprehensive SSD, WLI, and NBI for
esophageal cancer was 98.9%, 97.5%, and 100%, respectively. We found better sensitivity,
PPV, and F1-score of our SSD in analyzing NBI images of different histological grades of
esophageal neoplasms than WLI (Table 4). A trend of better diagnostic performance on
PPV and F1 score in advanced malignant lesions, rather than low-grade dysplasia, was also
demonstrated in our comprehensive analysis model.
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Table 3. Detailed results of SSD in diagnosing different histological grades of esophageal neoplasms.

Diagnostic Result SSD Diagnosis

Low-Grade Dysplasia High-Grade Dysplasia Cancer (SCC)

Pathological diagnosis Accuracy
Comprehensive 92%

Low-grade dysplasia 26 2 3
High-grade dysplasia 2 68 8

Cancer (SCC) 0 1 92
WLI 89%

Low-grade dysplasia 11 1 3
High-grade dysplasia 1 30 4

Cancer (SCC) 0 1 39
NBI 95%

Low-grade dysplasia 15 1 0
High-grade dysplasia 1 38 4

Cancer (SCC) 0 0 53

Abbreviations: SSD, single-shot multibox detector; WLI, white-light image; NBI, narrow-band image; SCC, squamous cell carcinoma.

Table 4. Diagnostic performance of SSD for different histological grades of esophageal neoplasm.

Diagnostic Performance Sensitivity (%) PPV (%) F1-Score (%)

Comprehensive
Low-grade dysplasia 83.4 92.8 88.1
High-grade dysplasia 87.2 95.8 91.3

Cancer (SCC) 98.9 89.3 93.9
WLI

Low-grade dysplasia 73.3 91.7 81.5
High-grade dysplasia 85.7 93.8 89.6

Cancer (SCC) 97.5 84.8 90.7
NBI

Low-grade dysplasia 93.8 93.8 93.8
High-grade dysplasia 88.4 97.4 92.7

Cancer (SCC) 100.0 93.0 96.4
Abbreviations: SSD, single-shot multibox detector; WLI, white-light image; NBI, narrow-band image; PPV,
positive predictive value; SCC, squamous cell carcinoma.

3. Discussion

Our AI system showed good diagnostic performance for the detection of esophageal
neoplasms, and the accuracy, sensitivity, and PPV of our SSD were 90.9%, 96.2%, and 92.7%,
respectively. Previous studies using other AI systems in diagnosing esophageal neoplasms
showed the accuracy, sensitivity, and PPV of different AI systems were about 56–93%,
89–98%, and 46–86%, respectively [8,11,18–20]. Our system, therefore, demonstrated com-
patible results with these previous studies. The diagnostic performance of our SSD in
analyzing WLI and NBI images was tested, but no apparent increase in diagnostic accuracy
was observed in analyzing NBI images. A previous study showed no significant difference
was found between using WLI and NBI images for AI diagnosis [20]. Although NBI in-
creased the sensitivity by magnifying the features of neoplasm, NBI might also decrease
the specificity through over-diagnosis. Similar findings (higher sensitivity and lower speci-
ficity) were also observed in a previous prospective study evaluating the efficacy of NBI in
the diagnosis of esophageal lesions by endoscopists [21].

In addition to the detection of esophageal neoplasm, our SSD system also demon-
strated the capacity to differentiate histological grades of neoplasms into low-grade dys-
plasia, high-grade dysplasia, and cancer. The accuracy of our SSD system for the diagnosis
of histological grades of esophageal neoplasm was 92%, and NBI (95%) showed higher
accuracy than WLI (89%). To the best of our knowledge, this study is the pilot study
using an AI system to differentiate between histological grades of esophageal neoplasm,
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and a diagnostic system that not only detects esophageal neoplasm but also identifies the
histological grade of esophageal neoplasm was constructed.

Most previous studies used two nominal classifications in testing the diagnostic per-
formance of an AI system for esophageal neoplasm, including cancer and non-cancer or a
region of interest and a region of non-interest [8,10,14,20]. Some other studies have used an
AI system in evaluating the invasion depth of esophageal cancer, and two nominal classifi-
cations for invasion depth were used, including submucosal microinvasion and submucosal
deep invasion [13,22]. A few studies have used more than two nominal classifications to
test the ability of an AI system in diagnosing esophageal neoplasms. In the present study,
we found NBI showed better diagnostic accuracy in differentiating esophageal neoplasms
than WLI. Although no previous study could be compared, NBI did show better accuracy
than WLI in lesion detection in previous endoscopic screening studies for esophageal neo-
plasms [23]. Actually, magnified endoscopy with NBI had an important role in evaluating
the invasion depth of esophageal neoplasm, and the differentiation between low-grade
dysplasia, high-grade dysplasia, and cancer might have been achieved by experienced
endoscopists [24]. Our result showed the potential benefit of an AI system in differentiating
histological grades of esophageal neoplasm without the limitations of the requirement of
magnified endoscopy and, more importantly, the experience of endoscopists.

In this pilot study, we found the severity of histological grade influenced the diagnostic
performance of our AI system. A trend of diagnostic performance of comprehensive
analysis between cancer and low-grade dysplasia was observed; our AI system showed
the highest PPV and F1 score in diagnosing cancer, on the other hand, low-grade dysplasia
had the lowest PPV and F1 score. The same finding was also observed in the WLI model.
Discussing the reasons as to why histological grade influences the diagnostic performance
of the AI system is problematic because deep learning did not explain the predictions;
however, this phenomenon was not observed in the NBI model. Our explanation is that the
classification of esophageal neoplasms is made by pathological diagnosis, and it is supposed
that some image features of advanced esophageal neoplasms could be identified by the AI
system in the WLI model, while the image differences between early and advanced lesions
would be diminished by the NBI model as NBI magnifies some features that could not be
demonstrated on WLI.

The specificity rate of our AI system was 70.4%, and previous studies have shown
specificity rates of about 68–96% [8,11,13,14,20,22]. After analyzing the causes of a false-
positive result, we found possible reasons including fewer training images of a normal
esophagus, the quality of the image was not sharp enough, or the shadow of the esophagus
affected the SSD diagnosis. A previous study also found the most common cause of false-
positives was a shadow, followed by normal structure and benign lesion [20]. Our study
used only 936 images as the training set for the construction of our SSD system, and this
number was far less than previous studies where the AI system used 8000–10,000 images
for training. Although a key feature of the SSD model is the multiscale convolutional
bounding-box output using multiple feature maps, this model did not have to learn image
boundary features that were too complicated; however, more training images or carefully
selected frames might still be needed to improve the diagnostic performance of our system.

There are several limitations in our study. Firstly, our SSD system was constructed
by images from a single center using fewer training images as compared to previous
studies. In addition, images were still used from regular endoscopes (GIF-Q260; Olympus
Medical Systems, Co, Ltd., Tokyo, Japan) and standard endoscopic video systems (EVIS
LUCERA CV-260/CLV-260; Olympus Medical Systems, Co, Ltd., Tokyo, Japan), rather than
non-high-resolution endoscopy images and system. Whether the diagnostic performance
of our SSD system could be improved by higher quality images from a newer model
machine or magnified endoscopy is unknown; however, based on the results of the present
study, our SSD system shows non-inferior diagnostic performance in detecting esophageal
neoplasms and has a great potential in differentiating neoplasms into different histological
grades. Furthermore, a newer machine or magnified endoscopy is not necessary for our
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system, and this advantage might be of great help in institutions without these devices.
Secondly, as mentioned before, fewer images of a normal esophagus were used in our
training set and data imbalance between different groups might have interfered with the
model optimization; moreover, the number of images from each lesion was not consis-
tent, and this might have also influenced the learning effect of our SSD system. Thirdly,
suboptimal images with poor quality were excluded in both training and testing sets,
which might have caused selection bias; and fourthly, we focused mainly on esophageal
squamous dysplasia and squamous cell carcinoma, and images of Barrett’s esophagus and
esophageal adenocarcinoma were not collected for analysis. Because of the small sample
size, we believe that constructing an AI system merely focused on squamous cell neoplasms
would provide better diagnostic accuracy. Further study might be warranted to evaluate
our SSD system in diagnosing Barrett’s esophagus as well as esophageal adenocarcinoma.

4. Materials and Methods
4.1. Study Design and Preparation of Training and Test Image Sets

To construct our SSD (SSD-HS, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung
City, Taiwan) system for the diagnosis of esophageal neoplasm, we retrospectively collected
EGD images from 46 patients with esophageal neoplasms at Kaohsiung Medical University
Hospital, and there were 10 patients with esophageal low-grade dysplasia, 20 patients
with high-grade dysplasia, and 16 patients with SCC. The classification of esophageal
neoplasm was based on pathological reports. A total of 936 images were collected for
training images, including 162 images of a normal esophagus, 165 images of low-grade
squamous dysplasia, 282 images of high-grade squamous dysplasia, and 327 images of
esophageal cancer (SCC). The number of WLI and NBI images was 498 and 438, respectively.
An additional 264 images were also obtained for the test set, and these images included 112
WLI and 152 NBI images. We excluded low-quality images caused by blurring, defocusing,
mucus, and poor air blowing. This study was approved by the Institutional Review
Board of Kaohsiung Medical University Hospital (KMUH) (KMUHIRB-E(I)-20180338).
Written informed consent was waived because of the retrospective, anonymized nature of
study design.

4.2. Construction of AI System

A convolutional neural network (CNN) architecture, called the single-shot multibox
detector (SSD) model, was used in constructing a diagnosis system based on AI [25–29].
It is a fast object detector for multiple categories within one stage, as shown in Figure 1.

The crucial feature of SSD is that it can provide at least one order of magnitude and a
default box with different locations, scales, and aspect ratios compared with the existing
methods; additionally, the SSD architecture utilizes multiscale convolutional bounding-box
output with multiple feature maps [27,30]. The setting of the default box is shown in
Figure 2. Overly complicated image boundary features are not needed for model training,
and SSD can be efficiently trained to learn the possible boundary box dimensions. The SSD
filters were fine-tuned using stochastic gradient descent.

Several rectangular default boxes with different sizes and positions can be obtained
through the settings above. However, the predicted results of the model output only needed
a few boundary boxes to match the ground truth. Therefore, SSD required a mechanism
that could match or eliminate redundant default boxes. The matching principles between
the default boxes and the ground truth are defined as follows. First, how the ground
truth of the training images matches the default boxes must be determined. The matching
degree between the default boxes and the ground truth is determined by calculating
the Intersection over Union (IOU) value and used in ensuring that each ground truth
corresponds to a unique default box [31]. The bounding box corresponding to the prior
box matching the ground truth is responsible for the prediction. The IOU value is between
0 and 1, and a large value indicates a high matching degree between the default box and
ground truth. The IOU value of the prediction box and ground truth is ideally 100%.
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Figure 3 shows the principle of how a default box matches a ground truth. Figure 3a
demonstrates that the SSD forms several default boxes to match the ground truth. The two
main principles of matching are as follows. The first principle is that for each ground truth,
a default box matching with the largest IOU value must be present to guarantee that each
ground truth can match a certain default box, as shown in Figure 3d. The default box that
matches the ground truth is called a positive sample, which eventually becomes a boundary
box. If a default box does not match any ground truth, it can only match the background,
which is called the negative sample, as shown in Figure 3b. Ground truths are few in
an image, whereas default boxes are numerous. If the first principle is adopted to match
the ground truth, many default boxes become negative samples, and the ratio between
positive and negative samples becomes unbalanced. Therefore, the second principle is
needed: for the rest of the unmatched default boxes, if the IOU value of a ground truth is
greater than a specific threshold (generally 0.5), then the default box matches the ground
truth, as shown in Figure 3c. The second principle means that a certain ground truth may
match several default boxes; by contrast, a default box can only match a ground truth.
If multiple ground truths match a certain default box and their IOU values are all greater
than the threshold, the default box only matches the ground truth with the largest IOU
value. The second principle is performed only after the first principle, and the output
results are shown in Figure 3e. After the SSD was used to learn the training image set,
264 independent test images were used in evaluating the performance of the trained model.
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Figure 1. Schematic flowchart of the single-shot multibox detector (SSD) for esophageal neoplasms.
Under the input of 300 × 300 SSD, Conv7, Conv8_2, Conv9_2, Conv10_2, and Conv11_2 were
extracted as the feature maps for detection in the newly added convolutional layer to generate more
layers with smaller scales and facilitate multilayer feature fusion. A total of six feature maps whose
sizes were (38, 38), (19, 19), (10, 10), (5, 5), (3, 3), and (1, 1) were extracted with the Conv4_3 layer.
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Figure 2. Schematic of the settings of the default box. Taking the midpoint of each point on the
feature map as the center, a series of square prior frames with different sizes and the same center
point was generated. With the square prior frame, the ground truth cannot be all square. If the
square prior frame was used to predict the ground truth, the prediction effect could not be optimized.
Therefore, in addition to the square prior frame, multiple rectangular prior frames needed to be
added to match the ground truth and increase the model prediction effect.
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Figure 3. Schematic of the principle of matching ground truth with a prior box. The green box in the esophagus image is
the ground truth, the multiple red boxes are prior boxes, and the blue box is the boundary box that finally matches the
ground truth. (a) A match between multiple prior frames and ground truth; (b) a negative sample that does not meet the
first principle during the matching process; (d) a positive sample that conforms to the first principle, which later becomes a
boundary box; (c) a positive sample that does not meet the first principle but meets the second principle and also becomes a
bounding box; and (e) the final output bounding box, which conforms to the first and second principles, which is the final
SSD prediction.

When the model detector detects an esophageal neoplasm from the input data of the
test image, the disease name (normal, low-grade dysplasia, high-grade dysplasia, or cancer)



Cancers 2021, 13, 321 9 of 12

is assigned, and a rectangular frame is displayed in the endoscopic image to surround the
area of the esophageal neoplasm. In addition, if the area is normal, the rectangular frame
is not displayed. Figures 4 and 5 demonstrate the results of using SSD to diagnose WLI
and NBI esophageal neoplasm images, respectively. The SSD uses a marked bounding
blue box to identify esophageal low-grade dysplasia, a gray box to identify high-grade
dysplasia, and an orange box to identify esophageal cancer. The normal area does not
display the frame, and the green box indicates the ground truth manually circled. Whether
SSD can diagnose esophageal cancer is determined by comparing the ground truth and the
bounding box.
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Figure 4. SSD diagnostic results of WLI esophageal neoplasm image. All green boxes in the figure
are ground truth. The numbers in the label indicate the probability of being judged as the number
of esophageal cancer stages in the box. (a) Image of a normal esophagus. No frame is displayed
under the SSD diagnosis; thus, the SSD diagnosis was normal esophagus. (b) A blue border box
is displayed around the lesion area, determined as low-grade dysplasia. (c) A gray border box is
displayed around the lesion area, determined as high-grade dysplasia. (d) Esophageal endoscopy
image with an esophageal cancer area. Under SSD diagnosis, an orange bounding box surrounds the
lesion area and determines that the lesion area is cancer.

4.3. Statistical Analysis

Fisher’s exact test was used to compare the diagnostic accuracy of SSD in using
WLI and NBI for the detection of esophageal neoplasm, while a p value below 0.05 was
considered statistically significant. To compare the diagnostic accuracy of SSD in using WLI
and NBI in differentiating histological grade of esophageal neoplasm, the kappa coefficient
was used to assess interrater diagnostic agreement between SSD and pathological diagnoses.
All statistical operations were performed using STATA 15 statistical software.
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Figure 5. SSD diagnostic result of NBI esophageal neoplasm image. All green boxes in the figure
are ground truth. The numbers in the label indicate the probability of being judged as the number
of esophageal cancer stages in the box. (a) Image of a normal esophagus. No frame is displayed
under the SSD diagnosis. Thus, the SSD diagnosis was normal esophagus. (b) Esophageal endoscopy
image with a low-grade dysplastic area. Under SSD diagnosis, a blue border box is displayed around
the lesion area, and the lesion area is therefore determined to be low-grade dysplasia. (c) Esophageal
endoscopic image with an area of high-grade dysplasia. Under SSD diagnosis, a gray border box
is displayed around the lesion area, and the lesion area is therefore determined to be high-grade
dysplasia. (d) Esophageal endoscopic image with an esophageal cancer area. Under SSD diagnosis,
an orange bounding box surrounds the lesion area and determines that the lesion area is cancer.

5. Conclusions

Our SSD system showed good diagnostic performance in detecting neoplasm as well
as classifying histological grade. An AI system might have potential in diagnosing the
early stages of esophageal neoplasms without the necessity of magnified endoscopy and
an experienced endoscopist. It is hoped that early and accurate diagnosis of esophageal
neoplasm will provide a less harmful therapeutic option and improve patient prognosis.
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