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Abstract 

Objective:  Because it is impossible to know which statistical learning algorithm performs best on a prediction task, 
it is common to use stacking methods to ensemble individual learners into a more powerful single learner. Stacking 
algorithms are usually based on linear models, which may run into problems, especially when predictions are highly 
correlated. In this study, we develop a greedy algorithm for model stacking that overcomes this issue while still being 
very fast and easy to interpret. We evaluate our greedy algorithm on 7 different data sets from various biomedical dis‑
ciplines and compare it to linear stacking, genetic algorithm stacking and a brute force approach in different predic‑
tion settings. We further apply this algorithm on a task to optimize the weighting of the single domains (e.g., income, 
education) that build the German Index of Multiple Deprivation (GIMD) to be highly correlated with mortality.

Results:  The greedy stacking algorithm provides good ensemble weights and outperforms the linear stacker in many 
tasks. Still, the brute force approach is slightly superior, but is computationally expensive. The greedy weighting algo‑
rithm has a variety of possible applications and is fast and efficient. A python implementation is provided.
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Introduction
It is generally impossible to know a priori which learn-
ing algorithm (e.g., Random Forest, linear regression) 
performs best for a particular prediction task. For this 
reason, researchers have proposed combining different 
learners to build a powerful single learner. These meth-
ods are called stacking, stacked regression, or super learn-
ing in the literature [1–3].

The principle of stacking can be explained like this: 
given d different learning algorithms, evaluate each of 
them on the predictor matrix X, given outcome vector y 
in a k-fold cross-validation. Save the out-of-fold predic-
tions and combine them to a new data matrix Z. Z now 
has d columns and the same number of rows as X. Then, 
estimate a weighted scheme for each column of Z to com-
bine to a final prediction. A more detailed description of 

the stacking principle, including a graphical overview, 
can be found in [4–6].

This paper is motivated by the discussion on how the 
weighting of the single learners should be assessed. Van 
der Laan et al. suggest using a constrained linear regres-
sion model, so that the coefficients β in the linear model 
are positive and sum to 1 [3]. They discuss that this has 
potential problems if the predictions in Z are collinear, 
yielding problems in both the interpretability and the 
numerical instability of linear models. In this paper, we 
develop a greedy algorithm to produce weights to opti-
mally combine predictions of the single learners that 
overcomes collinearity issues and is easily interpretable. 
Additionally, because of its greedy nature, the stacked 
predictions will always be at least as good as the best sin-
gle learner in the ensemble [7, 8]. We evaluate our greedy 
stacking algorithm on prediction tasks using different 
data sets from a variety of biomedical disciplines. In a 
second example, we show that this algorithm can be used 
in further applications. We look at optimizing the weights 
of the single domains of the German Index of Multiple 
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Deprivation (GIMD) [9, 10] to be highly correlated with 
mortality. There is good evidence that mortality is asso-
ciated with regional deprivation in European countries 
[11, 12], but the weighting of the domains of deprivation 
(e.g., income, education) that build the GIMD is based on 
expert knowledge.

Main text
Methods
In the following, we provide a description of the pro-
posed greedy weighting algorithm in pseudocode. Two 
inputs have to be provided: a matrix Z, where each col-
umn represents a single feature for weighting, and a 
vector y for designated values to be weighted for. The 
columns in Z can be predictions from different learners, 
or for example, the different domains (i.e. vectors that 
indicate area-level deprivation in various socio-economic 
spheres) that build the GIMD. Furthermore, a function 
metric is needed as an evaluation metric (e.g., AUROC, 
correlation). The weights will be optimized in order to 
maximize this function. This can be any function that 
accepts two vectors as input and returns a single number. 

The algorithm works as follows: the vector P containing 
the greedy solution of the unnormalized weighted sum 
in each step is initialized with zero elements. All column 
weights and the total number of weights are also initial-
ized to zero. In each iteration, first, the total number of 
weights is incremented. Then, all sums of P with a col-
umn of Z are normalized by the total number of weights 
and evaluated separately on the evaluation metric (i.e., 
AUROC, correlation). The column corresponding to the 
highest value is assigned one weight factor and added to 
P. This procedure is repeated iter times. Usually, setting 
iter to 100 is sufficient; higher values lead to increased 

precision but also increased computational time. The 
algorithm returns a vector of length d, with the number 
of columns of Z, containing weights for each column, 
summing to 1.

The fixed number of iterations iter can be derived as a 
convergence criterion. Common convergence criteria for 
iterative algorithms check whether the algorithm does 
not produce better results any more, or whether the solu-
tion found does not change any more. This is the case if 
the relative or absolute difference in the target function or 
the relative distance between the estimates of two subse-
quent steps falls below a threshold ǫ. Our algorithm esti-
mates a parameter vector w iteratively with an estimate 
ŵi in step i. Using the relative difference of estimates with 
a percentage ǫ ∈]0, 1[ as convergence criterion, the algo-
rithm is aborted after step i,  if �ŵi − ŵi−1� < ǫ · �ŵi−1� . 
The components of wi are positive integers summing to 
i. If the Manhattan distance ( L1-Norm) is used, the ine-
quality thus evaluates to 1 < ǫ · i , and with ǫ = 0.01 the 
algorithm is aborted after 100 iterations. If the euclid-
ean distance ( L2-Norm) is used, convergence is achieved 
if 1 < ǫ · �wi−1�2. Because a problematic target func-
tion may differ dramatically for similar estimates of the 
parameter, the additional convergence of the target func-
tion is required in some cases. However, this is not the 
case in the examples presented.

In our application examples of this algorithm, we 
used seven different data sets, freely available at the 
UCI Machine Learning Repository [13]. All these data 
sets are real world examples that have been analyzed 
in previous publications. The Mesotheliomas data set 
predicts the presence of tumors based on socio-eco-
nomic values and laboratory measurements [14]. In 
the Lung Cancer data set, three different types of lung 
cancer have to be predicted [15]. The Diabetic Retin-
opathy data set is again a binary classification task for 
the presence of this eye disease. In a similar way, the 
Liver Disorder data set predicts the presence of liver 
disease or not, but with very unbalanced classes [16]. 
We further feature two regression examples: first, the 
Abalone data set predicts the age of an abalone from 
physical measurements [17] and, second, the Rand HIE 
data set measures health care utilization costs from 
claims data [18]. The Pima Indians Diabetes data set 
is another well-known data set that predicts diabetes 
mellitus in a high risk population of Pima Indians in 
Arizona [19]. An overview of the data sets with respec-
tive number of observations, number of features, the 
prediction task (classification or regression), and the 
metrics we used to quantify the quality of the predic-
tions is available in the Additional file 1. For classifica-
tion tasks, we used accuracy (the percentage of making 
the correct prediction), the area under the receiver 
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operator characteristic (AUROC), and the area under 
the precision recall curve (AUPR). For regression tasks, 
we chose the mean absolute error (MAE), i.e. the mean 
difference between observation and prediction, as the 
evaluation metric to be optimized.

For all classification tasks, we used three algorithms 
for ensembling: logistic regression, Random Forest, and a 
naive Bayes classifier [20]. The reason for selecting these 
algorithms is that they are based on completely differ-
ent approaches and therefore make good candidates for 
ensembling as they may capture different aspects of the 
data sets: logistic regression is based on linear discrimi-
nation, Random Forest is based on decision trees and 
can apprehend complex interactions, and naive Bayes 
is a simple classifier using posterior probabilities based 
on Bayes’ rule. To analyze the behaviour of the greedy 
weighting in the presence of highly correlated predic-
tions, we ensemble three Random Forest models for the 
Pima Indians data set that were calculated with different 
random seeds. This results in slightly different predic-
tions but very high correlation (Spearman correlation 
coefficient ρ > 0.95 ). For regression tasks, we used Ran-
dom Forest regression, linear regression, and support 
vector regression (with radial kernel). Again, these algo-
rithms provide different regression approaches, which 
make them ideal candidates for ensembling.

We compared the greedy weighting scheme with the 
brute force approach, i.e., all possible weighting combi-
nations in steps of 0.01, and with a constrained linear 
model weighting. In this linear model with error term η,

the constraints 
∑

j βj = 1 and βj > 0 for the parameter 
estimates β have to be satisfied to obtain valid weights. If 
specified as an optimization problem, it can be solved by 
quadratic programming, [21] i.e.,

This is similar to the method in [3] and has the advantage 
of full interpretability of the weights as percentages. In 
addition, we compare it to the genetic stacking algorithm 
described in [5]. We evaluated all individual learners in a 
fivefold cross-validation setting. The linear, genetic, and 
greedy weighting scheme to optimally combine these 
individual predictions was assessed in an inner fivefold 
cross-validation by blending the predictions of multiple 
learners. The reported value is the average of all (outer) 
folds.

In a second application, we weighted the domains of 
the GIMD to be highly correlated with mortality, i.e., we 
maximized the Spearman correlation coefficient ρ to the 
standardized mortality ratio (SMR). The SMR is the ratio 
of observed deaths in a municipal district to expected 
deaths in the same area. The GIMD (2010 version) is built 
upon seven different domains of deprivation (income, 
employment, education, municipal revenue, social capi-
tal, environment, and security) and covers all 412 dis-
tricts of Germany (status 2010). The weighting of the 

Y = β1Z1 + β2Z2 + · · · + βjZj + η,

min
∑

i

(

Yi −
(

β1Zi1 + β2Zi2 + · · · + βjZij

))2
.

A B

Fig. 1  Schematic overview of both example cases for the greedy weighting algorithm. Numbers in the plots are just for illustration. a Logistic 
regression, Random Forest, and naive Bayes learners are combined to achieve a more accurate ensemble learner for classification. For regression 
tasks, Random Forest, linear regression, and support vector regression was used. b The GIMD is a weighted combination of different domains of 
deprivation
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Fig. 2  Results of the different weighting approaches for all data sets. Classification task include Random Forest (RF), naive Bayes (NB), and logistic 
regression (LR). Regression tasks are based on Random Forest, linear regression (LinR), and support vector regression (SVR). Stacking is based on the 
greedy, genetic, linear, and brute force methods
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seven domains is based on expert knowledge and follows 
the recommendations of Noble et  al. [22]. More infor-
mation on the GIMD can be found elsewhere [9, 10, 23]. 
We again compared this weighting with the constrained 
linear and brute force approaches. Figure  1 presents a 
graphical overview of both test cases.

A python implementation of the proposed algorithm, 
including code to reproduce the examples presented, is 
available online [24].

Results
Figure  2 presents the results for all data sets. Generally, 
all stacked ensembling approaches outperform individual 
learners. Sometimes, the gain is only marginal, for exam-
ple, the AUPR increase for the liver data set is only 0.002. 
The brute force approach usually provides the best weight-
ing scheme, but the difference from the greedy, genetic, and 
linear weighting does not justify the huge computational 
effort required. For the lung cancer, diabetic retinopathy, 
and Pima Indians (correlated setting only) data sets, the 
brute force solution provides no advantage over the other 
stacking methods. The linear weighting is superior for the 
diabetic retinopathy and the Rand HIE data sets, but the 
greedy weighting produces higher or equal scores in all 
other cases. In the setting of correlated predictions for the 
Pima Indians data set, the advantage of the greedy weight-
ing is very apparent with an AUROC of 0.813 compared 
with 0.790 for the linear weighting. Genetic algorithm 
weighting is very similar to linear and greedy in most cases. 
Because of the high number of possible combinations, the 
brute force ensemble takes 12 minutes to compute.

In Table  1, we compare the greedy weighting to the 
linear and genetic weighting. All methods are very fast 
( < 1 second), but the results are quite different: the cor-
relation with SMR is 0.615 for greedy weighting, 0.614 
for genetic, and only 0.449 with linear. The baseline cor-
relation, based on expert knowledge, is 0.578. The brute 
force approach takes 23 hours in this case.

Discussion
This paper demonstrates that a greedy approach provides 
a viable alternative for weighting different domains to a 
specific outcome. In the first case, we optimized the pre-
dictions of three different statistical learning algorithms to 
a combined prediction on several biomedical data sets. 
Here, the global optimum solution was often slightly better 
than the greedy approach, but at a cost: the brute force 

approach had to evaluate all 
(

102

2

)

= 5, 151 possible 

combinations. For a fair comparison, we restricted the 
analysis to candidate sets of values of length 3 (as we com-
bine 3 learners) that sum to 1. Finding these sets is itself of 
exponential complexity as it is a variation of the subset 
sum problem [8]. Accordingly, the computation time of 12 
minutes is not an accurate comparison measure because 
we omitted Random Forest hyperparameter tuning for 
each candidate set, as this would take unbearably long even 
on a HPC system. Although the linear ensemble is a fast 
and viable alternative, the greedy approach is superior in a 
setting with highly correlated predictions. Still, even in this 
setting, both the linear and genetic ensemble produces 
scores superior to the best single model.

In the second case, we optimized the domains of the 
GIMD to be highly correlated with SMR. Here, we 
obtained the actual domain weights to interpret them 
for the importance of regional mortality in future use. 
Interestingly, the linear approach here cannot optimize 
the weights as well as the greedy algorithm. Probably, 
the optimization is stuck in a local minimum here. Even 
the weighting scheme based on expert knowledge was 
more highly correlated with SMR. On this data set with 
7 domains, the disadvantage of the brute force ensem-
bling is very apparent: a brute force approach had to 

evaluate 
(

106

6

)

= 1, 705, 904, 746 possible combina-

tions which took 23 h, parallelized on a HPC cluster.

Limitations
While we tried to cover a wide range of data sets and 
scenarios in the biomedical field, results can be very 
different when applying the algorithm to other tasks or 
learners, or when other evaluations metrics are used.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-4931-7.

Additional file 1. Derivation of convergence weights and description of 
data sets.

Table 1  Comparison of  different weighting approaches 
for correlation of GIMD domains with SMR

a  This computation was performed on a high-performance computer

SMR correlation Computation 
time

Expert 0.578 NA

Brute force 0.616 23 ha

Greedy 0.615 < 1 s

Genetic 0.614 < 1 s

QP 0.449 < 1 s

https://doi.org/10.1186/s13104-020-4931-7
https://doi.org/10.1186/s13104-020-4931-7
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