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Abstract

Menaquinone (MK) isan importantcomponentof theelectron-transfer systeminprokaryotes.Oneof itsprecursors,1,4-dihydroxy-2-

naphthoate, can be synthesized from chorismate by the classical MK pathway. Interestingly, in some bacteria, chorismate can also be

converted to 1,4-dihydroxy-6-naphthoate by four enzymes encoded by mqnABCD in an alternative futalosine pathway. In this study,

six crucial enzymes belonging to these two independent nonhomologous pathways were identified in the predicted proteomes of

prokaryotes representing a broad phylogenetic distribution. Although the classical MK pathway was found in 32.1% of the prote-

omes, more than twice the proportion containing the futalosine pathway, the latter was found in a broader taxonomic range of

organisms (18 of 31 phyla). The prokaryotes equipped with the classical MK pathway were almost all aerobic or facultatively

anaerobic, but those with the futalosine pathway were not only aerobic or facultatively anaerobic but also anaerobic. Phylogenies

of enzymes of the classical MK pathway indicated that its genes in archaea were probably acquired by an ancient horizontal gene

transfer frombacterial donors. Therefore, the organization of the futalosine pathway likelypredated that of the classical MK pathway

in the evolutionary history of prokaryotes.
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Introduction

In prokaryotes, menaquinone (MK) and ubiquinone (UQ)

derived from chorismate are important components of the

electron-transfer pathway. These two electron carriers differ

in both their biosynthesis (they share only the shikimate

pathway) and their redox midpoint potentials (Unden and

Bongaerts 1997). The more negative midpoint potential of

MKs causes them to be abundant under anaerobic condi-

tions (Meganathan 2001; Sharma et al. 2012). In bacteria,

UQs are only found in alpha-, beta-, and gamma-

proteobacteria, while MKs occur more widely (Collins and

Jones 1981; Søballe and Poole 1999) and also are the only

quinone in the early-branching archaeal and bacterial phyla

(Schütz et al. 2000). These factors indicate that MKs prob-

ably appeared before UQs in the evolutionary history of

prokaryotes, when the atmosphere was less oxidizing

(before the appearance of oxygenic photosynthesis) and

when fewer taxa existed (Schoepp-Cothenet et al. 2009;

Nowicka and Kruk 2010). However, some obligatory

fermentative bacteria have lost the ability to synthesize

MKs, such as most members of the genera Lactobacillus

and Streptococcus, which retain partial genes of the MK

biosynthetic pathway (Collins and Jones 1981; Brooijmans

et al. 2009).

The biosynthesis of MK involves two precursors: 1,4-dihy-

droxy-2-naphthoate or 1,4-dihydroxy-6-naphthoate (polar

moiety) and an isoprenoid side chain (nonpolar moiety). As

shown in figure 1, the polar moiety 1,4-dihydroxy-2-naphtho-

ate is derived from chorismate via the classical MK pathway

that recruits six enzymes encoded by menFDHCEB genes
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(Bentley and Meganathan 1982; Meganathan 2001) and

1,4-dihydroxy-2-naphthoyl-CoA thioesterase (Widhalm et al.

2009). Ultimately, 1,4-dihydroxy-2-naphthoate will be con-

verted to MK after the prenylation and methylation catalyzed

by polyprenyltransferase (MenA) and methyltransferase

(MenG), respectively. However, Hiratsuka et al.(2008) found

that some bacteria do not possess men homologues and sub-

sequently discovered an alternative pathway, the futalosine

pathway, in a nonpathogenic strain of Streptomyces. This

newly discovered pathway consists of four enzymes encoded

by mqnABCD genes and some unknown enzymes (Dairi 2009,

2012). In this alternative pathway, chorismate is converted to

1,4-dihydroxy-6-naphthoate through four reactions catalyzed

by MqnABCD. Although direct evidence to confirm the syn-

thetic process from 1,4-dihydroxy-6-naphthoate to MK is lack-

ing, the prenylation, methylation, and decarboxylation would

be involved in the late step of the futalosine pathway

(Hiratsuka et al. 2008).

The primary precursors for the isoprenoid side chain are

dimethylallyl diphosphate and isopentenyl diphosphate.

There are two distinct synthetic pathways responsible for

the synthesis of these precursors: the mevalonate (MVA)

and methylerythritol phosphate (MEP) pathways. Recently,

Lombard and Moreira (2011) studied the origin and evolution

of the MVA and MEP pathways using phylogenomic analyses

of a taxon-rich sequence database and concluded that the

MVA pathway was likely an ancestral metabolic route in all

three domains of life. In other words, if MKs were present in

the cenancestor, the MVA pathway led to the biosynthesis of

the isoprenoid side chain of MKs. However, which is the an-

cestral metabolic route for the biosynthesis of the polar moiety

of MKs remains unclear. To address this issue, we investigated

the distribution of key enzymes in the classical MK pathway

and the futalosine pathway in prokaryotes representing a

broad phylogenetic distribution. The phylogenetic distribution

of genes suggested that the futalosine pathway evolved earlier

than the classical MK pathway. These findings have important

implications for the nature of MKs in ancestral membranes

and their subsequent evolution in prokaryotes.

Materials and Methods

Sequence Retrieval

Complete predicted proteome sequences of 1,294 prokary-

otes were directly downloaded from the NCBI FTP server

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ [last accessed

January 9, 2014], faa format; see supplementary table S1,

Supplementary Material online). To identify each enzyme re-

lated to MK biosynthetic pathways, Pfam hidden Markov

model (HMM) profiles corresponding to the structural do-

mains of each protein family (see fig. 1 legend) were retrieved

from the Pfam database (http://pfam.janelia.org/, last accessed

January 9, 2014). Profiling analyses were performed using

HMMER v. 3.0 (http://hmmer.janelia.org/, last accessed

January 9, 2014). The HMM results were saved in a simple

tabular file summarizing the per-target outputs based on the

threshold e-value �10�5. A script was written in Python to

manipulate the output from the HMMER analyses, and all

protein sequences matching the profile model were collected.

Sequence collections based on protein domains usually

contain nontarget sequences that are distantly related to the

targets and/or even have distinct functions (e.g., different

functional proteins in a superfamily). Thus, we filtered the

potential nontargets based on a preliminary phylogenetic

analysis of all sequences matching the HMM profile. First,

the complete sequence data set was aligned with ClustalW-

MPI (Li 2003) and subjected to neighbor-joining tree

reconstruction with QuickTree (Howe et al. 2002). Second,

all protein sequences were clustered based on their pairwise

distances (�0.3). For each cluster, the sequence with the

minimum sum of pairwise distances to other members in

the same cluster was selected as a representative. Then, all

representative sequences were used as queries to search

against the UniRef100 database (http://www.uniprot.org/

downloads, last accessed January 9, 2014) using BlastP

(Altschul et al. 1990). The functional description of the best

hit was used to define the function of all proteins in this clus-

ter. Finally, clusters with unrelated functions were removed,

and clusters with target functions were assembled for further

analysis. Target sequences with lengths shorter than 100

amino acids were excluded.

Phylogenetic Analyses

Because MenFBC proteins were identified in more than 480

predicted proteomes, a three-step approach similar to previ-

ous work (Canback et al. 2002) was adopted to reduce the

number of bacterial sequences for phylogenetic analysis: 1) all

protein sequences (full data set) were subjected to maximum

likelihood (ML) tree reconstruction with 100 bootstrap repli-

cates in the MPI-parallelized version of RAxML v. 7.3

(Stamatakis 2006), 2) all sequences in the ML tree were clus-

tered based on whether the cluster members showed pairwise

distances �0.3, were from the same taxonomic lineage (e.g.,

order), and had sound phylogenetic relationships with each

other (�70% bootstrap support), and 3), all but one repre-

sentative of each cluster were excluded. All proteins from

domain archaea were retained, and all MqnACD sequences

were also analyzed. Because these enzymes usually did not

have homologues in domain Eukarya, proteins in the same

superfamilies but with different functions were used as out-

groups for isochorismate synthase (MenF), o-succinylbenzoate

synthase (MenC), 1,4-dihydroxy-2-naphthoyl-CoA synthase

(MenB), and dehypoxanthinyl futalosine cyclase (MqnC).

Because futalosine synthase (MqnA) and 1,4-dihydroxy-6-

naphthoate synthase (MqnD) belong to the same protein
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family (Pfam: VitK2_biosynth, PF02621), the phylogeny of the

whole protein family was reconstructed.

The reduced data sets were realigned using MAFFT (Katoh

et al. 2002), and sites with ambiguous alignments were re-

moved by the Gblocks method in SEAVIEW software (Gouy

et al. 2010) with options for a less stringent selection: allow

smaller final blocks; allow gap positions within the final blocks;

and allow less strict flanking positions. The evolutionary model

was selected by a maximum-likelihood approach using

ProtTest 3 (Darriba et al. 2011), and the Akaike information

criterion. According to the results of ProtTest analysis, LG

model (Le and Gascuel 2008) with a proportion of invariable

sites and a gamma-shaped distribution of rates across sites

(LG+I+G) was selected for MenF and MqnC, and LG+G

was selected for MenB, MenC, and MqnAD. The ML trees

were reconstructed using RAxML v. 7.3. Nonparametric boot-

strap resampling with 1,000 replicates was performed to eval-

uate the robustness of the tree topologies. Bayesian inference

was implemented in BEAST version 1.8.0 (Drummond et al.

2012). The Markov chain Monte Carlo (MCMC) analysis was

run until evidence of proper mixing was obtained (up to

5,000,000 generations); the chain was sampled every 500th

generation. Data from two independent runs were combined.

Results were visualized in Tracer v. 1.5 (http://tree.bio.ed.ac.

uk/software/tracer/, last accessed January 9, 2014), and

proper mixing of the MCMC was assessed by calculating

the effective sampling size (ESS) for each parameter. All ESS

values were >100. For each data set, the maximum clade

credibility tree, which is the tree with the largest product of

posterior clade probabilities, was selected from the posterior

tree distribution (after removal of 50% burn-in) using the pro-

gram TreeAnnotator version 1.8.0 (available as part of the

BEAST package).

Results and Discussion

Lineage Distributions of MK Biosynthetic Pathways

All 1,294 hypothetical proteomes constructed from their pub-

lished genomes were interrogated using HMM profiles. Given

that this method usually also collected nontarget sequences

with different functions, we combined phylogenetic analysis

with functional annotation (BlastP against UniRef100 data-

base) to filter target sequences for each enzyme in the classical

MK pathway, the futalosine pathway, and the first committed

enzyme (chorismate lyase encoded by ubiC) for UQ biosynthe-

sis. Even after this step, some enzymes could not be differen-

tiated from their homologs with distinct functions. Finally, in

the classical MK pathway, the sequences of MenF, MenC, and

MenB were identified and collected successfully. And, in the
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FIG. 1.—Schematic representation of menaquinone biosynthetic pathways. MenF: isochorismate synthase, including Chorismate_bind (Pfam: PF00425)

protein domain; MenD: 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase, including TPP_enzyme_C (PF02775), TPP_enzyme_M

(PF00205), and TPP_enzyme_N (PF02776) domains; MenH: (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate synthase, including

Abhydrolase_1 (PF00561) domain; MenC: o-succinylbenzoate synthase, including MR_MLE (PF01188) and MR_MLE_N (PF02746) domains; MenE: o-

succinylbenzoate-CoA ligase, including AMP-binding (PF00501) domain; MenB: 1,4-dihydroxy-2-naphthoyl-CoA synthase, including ECH (PF00378)

domain; MenI: 1,4-dihydroxy-2-naphthoyl-CoA thioesterase, including 4HBT (PF03061) domain; MqnA: futalosine synthase, including VitK2_biosynth

(PF02621) domain; MqnB: futalosine hydrolase, including PNP_UDP_1 (PF01048) domain; MqnC: dehypoxanthinyl futalosine cyclase, including

Radical_SAM (PF04055) and Radical_SAM_N (PF08497) domains; MqnD: 1,4-dihydroxy-6-naphthoate synthase, including VitK2_biosynth (PF02621)

domain. *Adenosine could be a precursor to synthesize aminodeoxyfutalosine via MqnA (Arakawa et al. 2011). The nonpolar moiety of menaquinone is

displayed in blue, and the polar moiety is displayed in red.
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futalosine pathway, the sequences of MqnA, MqnC, and

MqnD were assembled and analyzed.

As shown in figure 2, ~32.1% of the predicted proteomes

contained the classical MK pathway, ~13.2% contained the

futalosine pathway, and ~23.5% contained UbiC. As the first

committed enzyme in UQ biosynthesis, UbiC was identified

only in alpha-, beta-, and gamma-proteobacteria.

Remarkably, only Stackebrandtia nassauensis DSM 44728

had both the classical MK pathway and the futalosine path-

way. In addition, no bacteria or archaea possessed both the

futalosine pathway and UbiC. Although there were 141 pre-

dicted proteomes containing both the classical MK pathway

and UbiC, nearly all of them were gamma-proteobacteria; the

two exceptions were both beta-proteobacteria (candidatus

Accumulibacter phosphatis and Dechloromonas aromatica).

These results were consistent with a previous investigation

(Dairi 2009).

Considering that quinones are key elements of the electron

transport chain and that the relationship between quinone

type and oxygen requirements was thought to be very tight

(Maklashina et al. 2006; Bekker et al. 2010), the habitats of all

tested prokaryotes were investigated. Their biological proper-

ties (oxygen requirement and habitat) were collected from the

NCBI Genome Projects page http://www.ncbi.nlm.nih.gov/

genome/browse/ (last accessed January 9, 2014). We found

that the classical MK and futalosine pathways were correlated

with different oxygen requirements (fig. 3). The oxygen re-

quirements of prokaryotes containing the classical MK path-

way and UbiC were similar. The majority of them were

obligately or facultatively aerobic (73.8%), while few (8.9%)

were anaerobic or microaerophilic. In contrast, the oxygen

requirements of prokaryotes possessing the futalosine path-

way were more diverse, including aerobic (34.9%), anaerobic

(27.3%), microaerophilic (12.8%), and facultatively aerobic

(7.6%) organisms. Obviously, more prokaryotes living in an-

aerobic and microanaerobic environments are apt to use the

futalosine pathway to synthesize the polar moiety of MKs.

Based on the hypothesis that UQ evolved to cope with atmo-

spheric oxygen enrichment, MKs were thought to be an an-

cient type of quinones. Our results demonstrated that the

futalosine pathway contributed substantially to assembling

MKs in anaerobes.

We divided the predicted proteomes into 31 divisions

based on phylum (table 1). Remarkably, although more pre-

dicted proteomes contained the classical MK pathway, they

represented a narrower taxonomic range than those contain-

ing the futalosine pathway. The futalosine pathway was

found in 18 phyla; however, only 11 phyla contained species

with the classical MK pathway. Of the five named phyla in the

domain archaea, the futalosine pathway could be identified in

species from Crenarchaeota, Euryarchaeota, and

Thaumarchaeota, but only Euryarchaeota, particularly the

family Halobacteriaceae, contained the classical MK pathway.

Based on the taxonomic distributions of the enzymes, the

most parsimonious explanation is that the last common an-

cestor of prokaryotes synthesized the polar moiety of MKs

using the futalosine pathway, and later, the classical MK path-

way evolved in the ancestor of some bacterial phyla.

Subsequently, the haloarchaea acquired the classical pathway

through horizontal gene transfer (HGT) from bacteria. Also,

the putative HGT was also observed in previous studies

(Kennedy et al. 2001; Boucher et al. 2003; Baymann et al.

2012; Nelson-Sathi et al. 2012). This hypothesis is consistent

with the correlations of the two pathways with oxygen re-

quirements. Generally, identifying the product of HGT rather

than vertical descent relies on several lines of evidence,
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including the distribution of genes in different organisms. In

other words, genes that are patchily distributed in several

unrelated taxa or in a small subset of a larger phylogenetic

group are considered HGT candidates (Ragan 2001). Thus, the

classical MK pathway identified in Halobacteriaceae was prob-

ably not inherited vertically but acquired through an ancient

HGT.

Only 57.2% of the proteomes studied represented pro-

karyotes that could synthesize MK and/or UQ; 42.8% of the

predicted proteomes did not have either complete pathway

for MK and UQ (fig. 2). In fact, prokaryotes produce other

types of isoprenoid quinones (Nowicka and Kruk 2010).

Phylloquinone and plastoquinone were discovered in cyano-

bacteria, isoprenoid quinones with an additional heterocyclic

ring containing sulfur occur in Sulfolobales and in thermophilic

and aerobic archaea (Lübben 1995), and rhodoquinone is

known in purple bacterium (family Rhodospirillaceae). In

these organisms with different quinones, only 1 of 38 cyano-

bacteria genomes, all 11 genomes of the order Sulfolobales,

and all 3 genomes of the family Rhodospirillaceae were in-

cluded in this 42.8% without the complete pathways for MK

and UQ. The biosynthesis of phylloquinone is analogous to

that of MK (Bouvier et al. 2005), and UQ is a required inter-

mediate for the biosynthesis of RQ in Rhodospirillum rubrum

(Brajcich et al. 2010). Even if these particular microorganisms

are not considered, there still exist many prokaryotes (33.1%)

that cannot synthesize any type of isoprenoid quinone. None

of the MK pathways were identified in 6 of 26 bacterial phyla

(table 1). And among them, Thermotogae, Dictyoglomi, and

Synergistetes correspond to anaerobic and mostly nonhost-

associated phyla. Moreover, a complete MK pathway only

exists in 28 organisms from the 97 archaeal organisms. Even

Table 1

Distribution of Enzymes Constituting the Classical MK Pathway, the Futalosine Pathway, and UbiC in the Predicted Proteomes of Prokaryotes

Phylum Number of

Proteomes

Quinone Typea Classical MK Pathway Futalosine Pathway UK Biosynthesis

MenF MenB MenC MqnA MqnC MqnD UbiC

Crenarchaeota 30 MK/SQ/CQ/BDTQ 5 10 10 10

Euryarchaeota 62 —/MK 12 14 15 5 5 5 1

Korarchaeota 1 — 1

Nanoarchaeota 1 —

Thaumarchaeota 3 — 1 2 2

Acidobacteria 5 MK 4 5 5 5

Actinobacteria 122 MK 89 90 89 15 15 16

Aquificae 9 —/MTQ 9 9 7

Bacteroidetes 46 MK 35 35 34 7 4 4

Chlamydiae 16 MK 2 2 1 14 14 14

Chlorobi 11 MK/ChQ 11 11 11

Chloroflexi 15 MK 8 7 8 1 1

Chrysiogenetes 1 — 1 1 1

Cyanobacteria 38 MK/PhQ/PQ/a-TQ 37 37 37

Deferribacteres 3 — 3 3 3

Deinococcus-Thermus 12 MK 1 12 12 12 12

Dictyoglomi 2 —

Elusimicrobia 2 ND

Fibrobacteres 1 — 1 1 1

Firmicutes 251 MK/DMK 88 94 69 24 25 16

Fusobacteria 5 —/ND

Gemmatimonadetes 1 MK 1 1 1 1 1

Nitrospirae 2 MK 1 1 1 1

Planctomycetes 5 MK 4 5 5 5

Proteobacteria 574 MK/DMK/UQ/RQ 210 190 182 66 66 66 303

Spirochaetes 22 — 1 6 6 6

Synergistetes 2 —

Tenericutes 35 —

Thermobaculum 1 — 1 1 1

Thermotogae 11 — 1

Verrucomicrobia 4 MK 3 3 2 1 1

NOTE.—a-TQ, a-tocopherol quinone; BDTQ, benzodithiophenoquinone; ChQ, chlorobiumquinone; CQ, caldariellaquinone; DMK, demethylmenaquinone; MK, menaqui-
none; MTQ, menathioquinone; PhQ, phylloquinone; PQ, plastoquinone; RQ, rhodoquinone; SQ, sulfolobusquinone; UQ, ubiquinone; ND, not detected; —, unknown.

aThe data about the types of quinone collected from references (Collins and Jones 1981; Nowicka and Kruk 2010; Krieg et al. 2011).
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removing Sulfolobales from this analysis, only 42.8% of the

archaeal organisms have complete MK pathways, from which

13.1% correspond to halobacterial organisms.

So, there are three potential underlying mechanisms result-

ing in the nonglobal distribution of quinones in prokaryotes.

Fist of all, we found that most of these prokaryotes were

anaerobic and host-associated (supplementary fig. S1,

Supplementary Material online). The genera Streptococcus,

Clostridium, Mycoplasma, Lactobacillus, Staphylococcus,

Bifidobacterium, Rickettsia, and Brucella accounted for

34.6% of the genomes that had lost the quinone biosynthesis

pathways. These bacteria live in nutrient-rich environments

and obtain their energy from fermentation and/or their host,

leading to a progressive loss of respiration genes (Lange et al.

2000; Brooijmans et al. 2009). And then, the extreme paucity

of redox driving force also rationalizes the loss of quinone

biosynthesis in acetogens and methanogens (other than

Methanosarcinales, Schoepp-Cothenet et al. 2013). On the

other hand, there are other existing scenarios that quinones

only appeared after the divergence of the prokaryotic domains

(Lane and Martin 2012; Sousa et al. 2013). According to this

assumption, the loss of respiratory gene and host-associated

phenomena are not inadequate to explain the absence of MK

pathways in phyla that are thought to contain MK (table 1).

Nevertheless, the distributions of these two MK biosynthetic

pathways basically covered the prokaryotes that use MKs to

transfer electrons. Therefore, we hypothesized that the futa-

losine pathway predated the classical MK pathway, based on

the pathways’ taxonomic distributions and correlations with

oxygen requirements.

Phylogenies of the Classical MK Pathway-Related
Enzymes

The patchy taxonomic distribution of the classical MK pathway

indicated that HGT has played a role in its evolutionary history

(table 1). Traditionally, an evolutionary scenario involving HGT

was considered to be well supported if the phylogenetic tree

for the gene in question disagreed with the accepted organ-

ismal tree (Gophna et al. 2006). Although gene duplication

followed by gene loss can also result in incongruent tree

topologies and systematic phylogenetic artifacts, this criterion

is considered the most reliable for establishing HGT (Brown

2003). To examine whether MK pathway in Halobacteriaceae

were acquired by HGT, we reconstructed the phylogenies of a

reduced set of corresponding enzymes. All sequences from

domain archaea were retained to avoid any inaccuracies

caused by limited taxon sampling (Pollock et al. 2002;

Zwickl and Hillis 2002; Heath et al. 2008).

After removing highly divergent and ambiguously aligned

blocks, MenF (120 sites) and MenB (218 sites) were analyzed

by ML. The phylogenetic trees for MenF are shown in figure 4.

The protein sequences from the family Halobacteriaceae

formed a distinctive clade (in red) nested within bacteria.

Although the bootstrap support was modest (<30%; but in

the Bayesian tree, the relationship between haloarchaea and

Roseiflexus sp. RS-1 was supported by a higher posterior prob-

ability [0.95]), probably because of limited phylogenetic signal,

its nearest neighbors were the phyla Chloroflexi and

Cyanobacteria. This lack of reciprocal monophyly between

the two domains is incongruent with the phylogenomic tree

of life based on ribosomal proteins (Yutin et al. 2012) and

ribosomal RNA (Woese et al. 1990). Remarkably, in the

Bayesian tree, Halomicrobium mukohataei did not group

with other haloarchaea. By comparing the genetic architec-

ture of genes related to the classical MK pathway in

Halobacteriaceae (supplementary fig. S2, Supplementary

Material online), we found that, unlike other haloarchaea,

Halomicrobium mukohataei did not have a linked menF and

menD, indicating that menF had differing origin in haloarch-

aea. With this exception, other genes were organized in clus-

ters, which would have facilitated their HGT into the common

ancestor of Halobacteriaceae.

As expected, domains bacteria and archaea were very clo-

sely related in the phylogenetic trees of MenB (fig. 5).

However, in these two trees (based on different methods),

Halobacteriaceae formed a well-supported clade with

Salinibacter ruber (Bacteroidetes), Shewanella baltica

(Proteobacteria), and some species of the phylum

Actinobacteria. Additionally, the MenB from Archaeoglobus

fulgidus and Ferroglobus placidus did not group with other

sequences of Halobacteriaceae, implying that MenB had mul-

tiple origins in Euryarchaeota. Meanwhile, MenF and MenC

were not identified in the predicted proteomes of A. fulgidus

and F. placidus (table 1); this fact suggested that the classical

MK pathway was absent in these two species. Although

MenC had fewer than 50 homologous sites after removing

the highly divergent and ambiguously aligned blocks, we re-

constructed its phylogeny based on the full data set (supple-

mentary fig. S3, Supplementary Material online) to compare

with those of MenF and MenB. Similar to MenB, the se-

quences from the family Halobacteriaceae formed a clade

with S. ruber in the ML tree. Other sequences from phyla

Korarchaeota, Euryarchaeota, and Crenarchaeota (except

for Ignicoccus hospitalis) formed a distinct clade that was

also nested within bacteria.

Phylogenies based on rRNA, concatenated proteins, and

proteins involved in transcription and translation indicated

that the suborders Halobacteriales and Methanosarcinales

are sister groups (Brochier-Armanet et al. 2011). Assuming

the hypothesis that haloarchaea evolved from methanogens,

they had to switch from a strictly anaerobic chemolithoauto-

trophic lifestyle to an aerobic (photo)organoheterotrophic one

(Bapteste et al. 2005). This switch was accompanied by a

massive gene gain from the domain bacteria (Kennedy et al.

2001), which may explain why whole-genome-based phylo-

genetic reconstructions often place them at the base of the

archaeal domain (Korbel et al. 2002; Wolf et al. 2002). For
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example, the haloarchaea are different from other archaea in

the oxidization of acetyl-CoA via the methylaspartate cycle

(Khomyakova et al. 2011). Instead of using the glyoxylate

and citric acid cycles and the ethylmalonyl-CoA pathway,

some enzymes that originally belonged to other metabolic

pathways from different groups of prokaryotes were

recruited by haloarchaea to assemble this patchworked

pathway. In addition to substance metabolism, HGT influ-

enced the genetic information processing of haloarchaea as

well. One of the two divergent forms of leucyl-tRNA syn-

thetase in haloarchaea was acquired from an organism re-

lated to the ancestor of the bacterial domain by an ancient
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FIG. 4.—Phylogenies of isochorismate synthase (MenF) based on ML (A) and Bayesian (B) methods. These phylogenies were calculated from an

unambiguous amino acid alignment of 146 sequences and 104 sites. Fifty-one sequences of anthranilate synthase (component I), representing 20 phyla,

were used as the outgroup. Archaeal species are displayed in red. Bootstrap values above 49% and posterior probabilities above 0.49 are shown as branch

labels. The scale bar denotes the number of substitutions per site.
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transfer (Andam et al. 2012). Clearly, the haloarchaea were

fully equipped with the ability to acquire heterogenous

genes by HGT.

Moreover, Rhodes et al. (2010) observed significant HGT

between haloarchaea and both halophilic Salinibacter bacteria

and the thermophilic Thermotoga bacteria. In this study, both

the MenB and MenC ML trees indicated that haloarchaea

were most closely related to S. ruber, an extremely halophilic

red bacterium found in saltern crystallizer ponds (Anton et al.

2002). They share the same habitat and have similar pheno-

types. One mechanism underlying this resemblance was that

gene flow occurred between them, although the total

number of apparent transfers between Salinibacter and

haloarchaea appears to be modest (Mongodin et al. 2005).

However, the haloarchaea did not group closely with S. ruber

in the MenF tree, indicating that the genes of the classical MK

pathway in haloarchaea might have been acquired from dif-

ferent donors. Alternatively, the menF gene in S. ruber may

have undergone complex evolution after the HGT occurred.

Phylogenies of the Futalosine Pathway-Related Enzymes

The archaeal sequences formed the most ancient branches

in the trees of MqnA, MqnD (fig. 6), and MqnC (fig. 7),
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FIG. 5.—Phylogenies of 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) based on ML (A) and Bayesian (B) methods respectively. These phylogenies

were calculated from an unambiguous amino acid alignment of 107 sequences and 192 sites. Thirty-three sequences of enoyl-CoA hydratase, representing

six phyla, were used as the outgroup. Additional details are described in the legend to figure 4.
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unlike in the topologies of MenF, MenB, and MenC. The

evolutionary relationships between bacteria and archaea in

these trees were similar to the phylogenomic tree of life

based on ribosomal proteins, although the archaeal groups

were not monophyletic. These phylogenetic evidences also

support the assumption that the futalosine pathway

evolved earlier than the classical MK pathway in prokary-

otes. Subsequently, the classical MK pathway was orga-

nized in the ancestor of some bacteria. An ancient HGT

from bacteria to the common ancestor of the

Halobacteriaceae introduced this younger pathway into

some archaea.
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The futalosine pathway together with the MVA path-

way might have been responsible for the biosynthesis of

MKs in the ancient prokaryotes. However, 1,4-dihydroxy-2-

naphthoate and/or 1,4-dihydroxy-6-naphthoate (DHNA)

polyprenyltransferase (MenA), which catalyzes the transfer

of a polyprenyl side chain to DHNA, is another essential

enzyme that associates the MK biosynthesis pathway with

the membrane. Therefore, we investigated the taxonomic
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distribution of MenA, which belongs to the UbiA protein

family (PF01040, data not shown). As expected, most prokary-

otes possessed this enzyme, catalyzing the combination of

polar and nonpolar moieties of MK, although some taxa

lacked it, i.e., phyla Dictyoglomi, Elusimicrobia, Fusobacteria,

Spirochaetes, Synergistetes, and Tenericutes and some species

Caldicellulosiruptor, Clostridium, Lactobacillus, Streptococcus,

and Eubacterium in phylum Firmicutes. These results were con-

sistent with the distributions of these two MK biosynthetic

pathways. In particular, these fermentative and host-associ-

ated bacteria have lost genes necessary for respiration. All

these data demonstrated that the ancient prokaryotes were

fully capable of synthesizing MKs and orienting them toward

the cell membrane for respiration.

All these evidences demonstrated that the futalosine path-

way was the primordial MK pathway and have appeared early

in evolution. However, we still need more evidences to answer

the question whether its origin could be dated back to the

divergence of domains bacteria and archaea. Although the

archaeal sequences occupied the basal positions in the trees

of MqnAD and MqnB, they did not form monophyletic clades

even within the bacterial domain (fig. 6B). The topologies of

ML and Bayesian phylogenies differ significantly with respect

to positioning of the earliest bacterial and archaeal branches.

This suggests that several events of HGT might occur within

the evolution of these genes. Additionally, as aforementioned,

the quinones might appear after the split of the prokaryotic

domains. Thus, these existing evidences merely support that

the futalosine pathway predated the classical MK pathway,

but it might not originate before the divergence of domains

bacteria and archaea.

Compared with Blast and other database search tools,

HMM profiling is significantly more accurate for detecting

remote homologs. In other cases, however, homologous

proteins with different functions might not be differentiated

if they have ambiguous phylogenetic relationships. In this

study, only some enzymes of these two MKs biosynthetic

pathways were identified. Our conclusions are necessarily

limited by the methodology. In addition, the high genetic

variability of certain proteins, like MenC, led to short se-

quence lengths after alignment ambiguities were removed,

further reducing the utility of the data. However, although

the tested proteomes we collected covered all prokaryotic

phyla, the uneven taxonomic sampling of genome sequenc-

ing projects probably mean that the potential donors in

the HGT cannot be confirmed. Additionally, because these

enzymes are so ancient and divergent in prokaryotes, long-

branch attraction might interfere with the accuracy of the

phylogeny. However, none of these limitations negate the

hypothesis that the futalosine pathway evolved earlier than

the classical MK pathway in prokaryotes, and our findings

provide evidence that the cenancestor could biosynthesize

MKs.
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Supplementary table S1 and figures S1–S3 are available at
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Yutin N, Puigbò P, Koonin EV, Wolf YI. 2012. Phylogenomics of prokary-

otic ribosomal proteins. PLoS One 7:e36972.

Zwickl DJ, Hillis DM. 2002. Increased taxon sampling greatly reduces phy-

logenetic error. Syst Biol. 51:588–598.

Associate editor: Bill Martin

Zhi et al. GBE

160 Genome Biol. Evol. 6(1):149–160. doi:10.1093/gbe/evu007 Advance Access publication January 6, 2014


