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Background. Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. There are great geographical
differences in the incidence of GC, and somatic mutation rates of driver genes are also different. The present study is aimed at
screening core prognosis-related candidate genes in Chinese gastric cancer population based on integrated bioinformatics for
the early diagnosis and prognosis of GC. Methods. In the present study, the differentially expressed genes (DEGs) in GC were
identified using four microarray datasets from the Gene Expression Omnibus (GEO) database. The samples of these datasets
were all from China. Functional enrichment analysis of DEGs was conducted to evaluate the underlying molecular mechanisms
involved in GC. Protein-protein interaction (PPI) network and cytoHubba were performed to determine hub genes associated
with GC. Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) were performed to validate
the hub genes. Results. A total of 240 DEGs were obtained through the RRA method, including 80 upregulated genes and 160
downregulated genes. Upregulated genes were mainly enriched in extracellular matrix organization, extracellular matrix, and
extracellular matrix structural constituent. The downregulated genes were mainly enriched in digestion, extracellular space, and
oxidoreductase activity. The KEGG pathway enrichment analysis showed that the upregulated genes were mainly associated
with ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. And downregulated genes were mainly
associated with the metabolism of xenobiotics by cytochrome P450, metabolic pathways, and gastric acid secretion. The
transcriptional and translational expression levels of the genes including COL1A1, COL5A2, COL12A1, and VCAN were higher
in GC tissues than normal tissues. Conclusion. A total of four genes including COL1A1, COL5A2, COL12A1, and VCAN were
considered potential GC biomarkers in the Chinese population. And ECM-receptor interaction, focal adhesion, and PI3K-Akt
signaling pathway were revealed to be important mechanisms of GC. Our findings provide novel insights into the occurrence
and progression of GC in the Chinese population.

1. Introduction

Gastric cancer (GC) is one of the most common malignan-
cies worldwide, and it is the third leading cause of cancer-
related death [1]. The incidence of GC is the highest among
East Asians [2]. GC is a multifactorial disease, where many
factors can influence its development, both environmental
and genetic [3, 4]. According to reports, certain lifestyles
increase the risk of stomach cancer, including smoking, obe-

sity, high salt and salted food intake, and low intake of fruits
and vegetables [5].

According to most large clinical studies, patients have a
poor prognosis, with a five-year survival rate of less than
25% and an average overall survival (OS) of 7 to 10 months
after diagnosis [6, 7]. The clinical outcome of GC depends
on the tumor stage at the time of diagnosis. As GC symptoms
usually only appear in the late stage, many GC patients have
advanced disease after a definite diagnosis [8]. Surgery,
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Table 1: Details of the GEO gastric cancer data.

Dataset Platform Number of samples (tumor/control)

GSE118916 GPL15207 [PrimeView] Affymetrix Human Gene Expression Array 30 (15/15)

GSE54129 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 132 (111/21)

GSE79973 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 20 (10/10)

GSE19826 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 27 (12/15)

GEO: Gene Expression Omnibus.
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Figure 1: The DEGs of the four datasets. The DEGs in (a) GSE118916, (b) GSE54129, (c) GSE79973, and (d) GSE19826 datasets. The red dots
represent upregulated genes according to adjustment P < 0:05 and log fold − change > 1; the green dots represent downregulated genes after
adjustment P < 0:05 and log fold − change > 1; and the black dots represent genes with no significant difference in expression.
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Figure 2: Cluster heat maps of the top 100 DEGs in four datasets. The heat map of the top DEGs in (a) GSE118916, (b) GSE54129, (c)
GSE79973, and (d) GSE19826 datasets. Red indicates relatively upregulated gene expression; green indicates relatively downregulated gene
expression; black indicates no significant change in gene expression; and gray scale indicates that the signal strength is not high enough to
detect.
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chemotherapy, and radiation therapy are the most common
treatments. For patients with early GC, radical gastrectomy
is the preferred method for the treatment of localized GC,
but the recurrence rate is still high [9]. For patients whose
tumor cannot be surgically removed or have advanced
metastases, chemotherapy is the most important treatment
[10]. However, because of inherent or acquired resistance,
patients with GC often have poor or no response to chemo-
therapy [11]. Immune checkpoint inhibitors (ICIs) are cur-
rently being studied as the first-line treatment. In addition,
new combinations of ICIs and targeted drugs are being eval-
uated in clinical trials [12]. Despite advances in treatment,
the clinical outcome of patients with advanced GC is still
poor. There are great geographical differences in the inci-
dence of GC, and somatic mutation rates of driver genes
are also different [13]. In the Chinese population, molecular
markers for GC need to be extended. Early detection and
treatment are critical to reduce GC mortality [14]. In the

era of targeted therapy, mutational analysis of cancer is a
key aspect of making treatment decisions [15]. Therefore, it
is crucial to identify a sensitive and specific biomarker that
can predict the prognosis of GC and be a target for GC treat-
ment in China. The Gene Expression Omnibus (GEO) data-
base (http://www.ncbi.nlm.nih.gov/geo/) was used for the
bioinformatics data mining of gene expression profiles [16].
At present, DNA microarray and bioinformatics analysis
methods were used to identify potential biomarkers that
affect the development of diseases in studies [17].

In the present study, the differentially expressed genes
(DEGs) in GC were identified using four microarray datasets
from the GEO database. Subsequently, Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were conducted to
evaluate the underlying molecular mechanisms involved in
carcinogenesis and tumor progression. Protein-protein inter-
action (PPI) network and cytoHubba were performed to
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Figure 3: The top 20 up- and downregulated genes in integrated datasets. The abscissa represents the GEO datasets, and the ordinate
represents the gene name. The red represents log FC > 0; the pink represents log FC is slightly less than 0; and the green represents log
FC < 0.
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determine hub genes associated with GC. Survival analyses of
the screened hub genes were carried out using Gene Expres-
sion Profiling Interactive Analysis (GEPIA). The expression
levels of the identified hub genes were validated based on
GEPIA and Human Protein Atlas (HPA) online databases.
Our study will provide some useful biomarkers which could
be promising and effective targets for diagnosis and progno-
sis of GC.

2. Materials and Methods

2.1. Microarray Data. The gene expression profile data
(GSE118916, GSE54129, GSE79973, and GSE19826) for gas-
tric cancer were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The selection criteria

for these datasets were as follows: (i) the samples in each
dataset were from China, (ii) included datasets must
include paired GC and normal control tissues, and (iii)
sample size of each group must be ≥10. GSE54129,
GSE79973, and GSE19826 were based on the GPL570 plat-
form [(HG-U133_Plus_2) Affymetrix Human Genome
U133 Plus 2.0 Array], and GSE118916 was based on
GPL15207 platform [(PrimeView) Affymetrix Human
Gene Expression Array]. The dataset information is shown
in Table 1. Four datasets totally included 148 GC tissues
and 58 normal gastric tissues.

2.2. Data Preprocessing and Identification of DEGs. R lan-
guage command was used to convert the gene probe IDs in
the matrix files to the gene symbols in the platform files to

Table 2: The top 15 GO terms of BP, CC, and MF of upregulated and downregulated genes.

Category
(A) The top 15 enriched GO terms of upregulated genes

Term Count P value

BP Extracellular matrix organization 20 2.12E-20

BP Cell adhesion 22 9.65E-16

BP Collagen fibril organization 10 1.05E-13

BP Collagen catabolic process 11 2.79E-13

BP Skeletal system development 11 6.47E-10

CC Extracellular matrix 24 6.15E-23

CC Proteinaceous extracellular matrix 22 5.02E-21

CC Extracellular region 40 7.52E-21

CC Extracellular space 37 1.93E-20

CC Collagen trimer 13 5.06E-15

MF Extracellular matrix structural constituent 12 3.51E-15

MF Integrity binding 9 1.32E-08

MF Calcium ion binding 16 2.27E-07

MF Extracellular matrix binding 5 4.00E-06

MF Heparin binding 8 4.82E-06

Category
(B) The top 15 enriched GO terms of downregulated genes

Term Count P value

BP Digestion 14 2.25E-15

BP Xenobiotic metabolic process 9 1.95E-07

BP Steroid metabolic process 6 2.27E-05

BP Cellular aldehyde metabolic process 4 7.82E-05

BP Oxidation-reduction process 15 2.75E-04

CC Extracellular space 36 6.18E-10

CC Extracellular exosome 48 5.83E-07

CC Organelle membrane 7 7.91E-05

CC Apical plasma membrane 9 0.002747

CC Basolateral plasma membrane 6 0.016259

MF Oxidoreductase activity 8 9.13E-04

MF Aryl sulfotransferase activity 3 0.003693

MF Aldo-keto reductase (NADP) activity 3 0.005787

MF Retinol dehydrogenase activity 3 0.008306

MF Inward rectifier potassium channel activity 3 0.010212

BP: biological process; CC: cellular component; MF: molecular function.
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obtain a matrix file containing the international standard
gene name. Each dataset was then normalized using the
limma R package. All gene expression data were subjected
to log2 transformation. The limma R package was used to
screen for DEGs in each dataset [18]. Gene integration for
the DEGs screened from the four datasets was executed
using the RobustRankAggreg (RRA) package based on a
robust rank aggregation method [19]. The RRA method
was based on the assumption that all genes were unor-

dered in each list. Genes that met the specific cut-off cri-
teria of adjusted P value < 0.05 and logFC ∣ >1:0 were
regarded as DEGs.

2.3. GO Annotations and KEGG Pathway Enrichment
Analyses of DEGs. DAVID 6.8 (https://david.ncifcrf.gov/)
was performed to analyze the enrichment of GO and KEGG
pathways of DEGs. The results were considered statistically
significant if P < 0:05. Then, the R ggplot2 package was
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Figure 4: The results of GO analysis of upregulated genes (a) and downregulated genes (b). BP: biological process; CC: cellular component;
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performed to visualize the significant GO terms and KEGG
pathways.

2.4. PPI Network Constructions and Analysis of Modules. Pro-
tein-protein interactions among overlapping DEGs were
identified via the STRING database, and genes with the com-
bined score 0.4 were selected to construct the PPI network
[20]. The PPI network was visualized and analyzed by Cytos-
cape 3.8.0, a practical open-source software tool that visually

explores bimolecular interaction networks composed of pro-
teins, genes, and other types of interaction. Five methods in
plug-in cytoHubba were used to select the key genes in PPI,
namely, EPC (edge percolated component), MCC (maximal
clique centrality), MNC (maximal neighborhood compo-
nent), degree (node connect degree), and closeness (node
connect closeness). Top 20 genes in each method were
selected, and then, the intersection was taken to get the key
genes in the PPI analysis [21]. Hub network modules were
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captured with the help of the Cytoscape plug-in Molecular
Complex Detection (MCODE) with parameters degree
cutoff = 2, node score cutoff = 0:2, and K − core = 2 [22].

2.5. Survival Analyses and RNA Sequencing Expression of
Hub Genes. To validate the expression of the key DEGs, the

Gene Expression Profiling Interactive Analysis (GEPIA)
website (http://gepia2.cancer-pku.cn/#index) was applied to
analyze the data of RNA sequencing expression based on
thousands of samples from the GTEx projects and
TCGA [23]. The association between overall survival
(OS) and the genes expressed in GC patients was
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determined using GEPIA. The lower and upper 50% of
gene expression were set as the standard for analysis.
Log-rank test results with P < 0:05 were regarded as sta-
tistically significant. Besides, the GEPIA was employed to
visualize the mRNA expression of hub genes in tumors
and normal samples.

2.6. Exploration of the Protein Levels of Hub Genes in the
Human Protein Atlas Database. The Human Protein Atlas
(HPA) database (https://www.proteinatlas.org/) is an free
online database that provides abundant transcriptome and
proteome data on human normal or pathological tissues
through RNA sequence analysis and immunohistochemical
analysis. In the present study, the protein expression and dis-
tribution of hub genes were investigated in GC tissues and
compared normal tissues in HPA [24].

3. Results

3.1. Identification of DEGs in GC. The GC chip expression
datasets GSE118916, GSE54129, GSE79973, and GSE19826
were normalized, and the results are shown in Figure S1.
The GSE118916 dataset contained 1143 differential genes,
including 511 upregulated genes and 632 downregulated
genes. The GSE54129 dataset contained 1793 differential
genes, including 894 upregulated genes and 899
downregulated genes. The GSE79973 dataset contained 857
differential genes, including 410 upregulated genes and 447
downregulated genes. In addition, the GSE19826 dataset

contained differential genes, including 387 upregulated
genes and 504 downregulated genes. The DEGs of the four
datasets are shown in Figure 1, and the cluster heat map of
the top 100 genes is shown in Figure 2. The batch effect can
be eliminated by RRA method. A total of 240 DEGs were
obtained through the RRA method, including 80
upregulated genes and 160 downregulated genes (Table S1).
The top 20 up- and downregulated genes after the
integrated analysis are displayed in Figure 3.

3.2. Functional Enrichment Analyses. GO functional analysis
of integrated differential genes was divided into three parts:
biological process (BP), cellular component (CC), and
molecular function (MF). The top 15 GO terms of BP, CC,
and MF of upregulated and downregulated genes are shown
in Table 2. The results of 15 GO analyses of upregulated
genes and downregulated genes are shown in Figure 4.
Upregulated genes were mainly enriched in extracellular
matrix organization, extracellular matrix, and extracellular
matrix structural constituent. The downregulated genes were
mainly enriched in digestion, extracellular space, and oxido-
reductase activity. According to the KEGG pathway enrich-
ment analysis, the upregulated genes were mainly
associated with ECM-receptor interaction, focal adhesion,
and PI3K-Akt signaling pathway (Figure 5(a)). And down-
regulated genes were mainly associated with the metabolism
of xenobiotics by cytochrome P450, metabolic pathways, and
gastric acid secretion (Figure 5(b)).

Table 3: The genes that scored in the top 20 by EPC, MCC, MNC, degree, and closeness.

Category
Rank methods in cytoHubba

EPC MCC MNC Degree Closeness

1 COL1A2 COL1A1 COL1A1 FN1 FN1

2 COL1A1 COL1A2 COL3A1 COL1A1 COL1A1

3 COL5A2 COL3A1 FN1 COL3A1 COL3A1

4 COL3A1 COL5A1 COL1A2 COL1A2 COL1A2

5 FN1 COL5A2 BGN BGN CXCL8

6 FBN1 COL11A1 COL5A2 COL5A2 SPP1

7 COL5A1 FN1 FBN1 FBN1 BGN

8 BGN BGN TIMP1 TIMP1 TIMP1

9 VCAN COL6A3 THBS2 THBS2 FBN1

10 TIMP1 FBN1 SPARC SPARC VCAN

11 SERPINH1 SPARC COL5A1 VCAN COL5A2

12 CDH11 COL12A1 SPP1 SPP1 SPARC

13 THBS2 THBS2 COL6A3 COL5A1 THY1

14 COL2A1 COL2A1 VCAN COL6A3 COL2A1

15 COL12A1 SERPINH1 COL12A1 CXCL8 THBS2

16 SPP1 VCAN COL2A1 COL12A1 C3

17 COL11A1 COL10A1 CDH11 COL2A1 CDH11

18 SPARC COL8A1 CXCL8 CDH11 COL5A1

19 COL6A3 CDH11 COL11A1 COL11A1 COL12A1

20 ASPN TIMP1 ASPN SERPINH1 SERPINH1

EPC: edge percolated component; MCC: maximal clique centrality; MNC: maximal neighborhood component; Degree: node connect degree; Closeness: node
connect closeness.
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3.3. PPI Network and Module Analyses. The PPI network was
constructed by Cytoscape based on the STRING database,
consisting of 193 nodes and 615 edges (Figure 6(a)). The
genes that scored in the top 20 by five methods are shown
in Table 3. MCODE in Cytoscape was used to perform mod-
ule analysis. The most important module (Module 1) was
selected, as shown in Figure 6(b). This model included 21
nodes and 164 edges. Remarkably, genes in this module were
all upregulated. We found that most of genes in the top 20
genes in five methods were in Module 1 (Figure 6(c)). There
were 14 genes, including BGN, CDH11, COL12A1, COL1A1,

COL1A2, COL3A1, COL5A1, COL5A2, FBN1, FN1, SPARC,
THBS2, TIMP1, and VCAN. KEGG pathway enrichment
analysis of the 14 genes was performed using the DAVID
website (Table S2). The results showed that the key genes
were mainly enriched in ECM-receptor interaction, focal
adhesion, and PI3K-Akt signaling pathway.

3.4. Analysis of Hub Genes in the GEPIA. As shown in
Figure 7, high expression levels of COL1A1, COL5A2,
COL12A1, and VCAN in patients with GC were associated
with poor OS. Besides, the expression levels of four genes in
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Figure 7: The OS (overall survival) analysis of hub genes by GEPIA. Four hub genes were found to be associated with the prognosis of gastric
cancer patients. (a) COL1A1. (b) COL5A2. (c) COL12A1. (d) VCAN.
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GC tissues were significantly higher than in normal tissues
(Figure 8).

3.5. Validation of Hub Genes via the HPA. The protein
expression levels of these hub genes in GC were explored
using the HPA database (Figure 9). The protein levels of
COL1A1 and COL12A1 were not expressed in normal stom-
ach tissues, whereas the high protein expression levels of
COL1A1 and low protein expression levels of COL12A1 were
observed in GC tissues. The low protein expression levels of
VCAN were observed in normal stomach tissues, while high
protein expression levels of VCAN were observed in GC tis-

sues. There was no pathological map of COL5A2 expression
in GC in the HPA database. In summary, the present results
indicated that the transcriptional and translational expres-
sion levels of the hub genes were overexpressed in patients
with GC.

4. Discussion

Despite significant advances in GC treatment protocols, the
underlying mechanism of GC development and progression
is still unclear, and more cancer-related molecules have yet
to be discovered. Bioinformatics analysis has been playing
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Figure 8: Validation of the mRNA expression levels of (a) COL1A1, (b) COL5A2, (c) COL12A1, and (d) VCAN in GC tissues and normal
stomach tissues using GEPIA. The red box represents GC samples (408), and the gray box represents normal samples (211). GC: gastric
cancer; STAD: stomach adenocarcinoma.
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crucial roles in cancer study [25]. Among various bioinfor-
matics strategies, DNA microarray gene expression profil-
ing has been widely used to explore DEGs involved in
tumorigenesis, diagnosis, and treatment [26]. At present,
most of the GEO datasets used for CRC research are from
different countries [27]. For the first time, we analyzed 4
GEO datasets from the Chinese gastric cancer population
and used bioinformatics to discover possible biomarkers
of GC.

In the present study, 240 DEGs containing 80 upregu-
lated genes and 160 downregulated genes were screened
and integrated from four GEO datasets. The 240 inte-
grated DEGs were then subjected to BP, CC, and MF
enrichment analyses. Upregulated genes were mainly
enriched in extracellular matrix organization, extracellular
matrix, and extracellular matrix structural constituent.
The downregulated genes were mainly enriched in diges-
tion, extracellular space, and oxidoreductase activity. These
results indicated that DEGs were mainly involved in the
progression of GC through extracellular matrix. The extra-
cellular matrix is a key component exerting an active effect
in all the hallmarks of cancer [28]. KEGG pathway analy-
sis demonstrated that the upregulated genes were mainly
enriched in ECM-receptor interaction, focal adhesion,
and PI3K-Akt signaling pathway. The downregulated
genes were mainly associated with the metabolism of
xenobiotics by cytochrome P450, metabolic pathways,
and gastric acid secretion. ECM-receptor interaction and
focal adhesion have been shown to be important compo-
nents of tumorigenesis and cancer progression [29, 30].
The PI3K-Akt pathway is widely distributed in various

cells and is known to regulate cell behavior, protein syn-
thesis, and angiogenesis [31]. The disorder of the PI3K-
Akt pathway may trigger the occurrence and development
of cancer [32]. Studies have found that cytochrome P450
family genes were involved in the development of gastric
adenocarcinoma through the metabolism of xenobiotics
by cytochrome P450 [33]. Genetic variations of gastric
acid secretion pathway genes are associated with the risk
of GC [34]. Studying these pathways will help to elucidate
the underlying mechanism of GC development and
progression.

Through the PPI network construction and analysis of
modules, we identified the following 14 hub genes: BGN,
CDH11, COL12A1, COL1A1, COL1A2, COL3A1, COL5A1,
COL5A2, FBN1, FN1, SPARC, THBS2, TIMP1, and VCAN.
The GEPIA and HPA were applied for further validation
of the expression level of these genes. Finally, we identified
4 important genes (COL1A1, COL5A2, COL12A1, and
VCAN). The expression levels of the four genes in GC tis-
sues were significantly higher than in normal tissues. The
genes COL1A1 and COL5A2 belong to the collagen gene
family, which participates in the formation of collagen in
extracellular matrix proteins [35]. As a key structural com-
ponent of ECM, collagen has been found to be overex-
pressed in a variety of cancers, providing a rigid matrix
that promotes tumor growth [36]. Studies have reported
that COL1A1 and COL1A2 were generally upregulated in
GC and were associated with invasion and metastasis
[37]. COL5A2 has previously been found to be associated
with the pathological processes of GC [38]. Although bioinfor-
matics analysis has suggested that COL5A2 is a candidate GC
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Figure 9: Representative immunohistochemistry images of (a) COL1A1, (b) COL12A1, and (c) VCAN in GC and noncancerous stomach
tissues derived from the HPA database. HPA: Human Protein Atlas.
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biomarker, its precise regulatory mechanism is still unclear
[39]. COL1A1 and COL5A2 are members of three important
pathways that upregulated gene enrichment. COL12A1, a gene
encoding collagen type XII alpha 1 chain, is a typical collagen-
organizer molecule involved in collagen cross-linking in the
cancer microenvironment [40]. The expression of COL12A1
in GC tissues increased significantly, and the elevated
COL12A1 protein level was positively correlated with aggres-
sive clinical features [41]. VCAN is a chondroitin sulfate pro-
teoglycan. A study showed that the upregulation of VCAN
promoted the migration and invasion of ovarian cancer cells
by activating the NF-κB signaling pathway [42]. Wnt and che-
mokine signaling pathways could be key regulators of VCAN
expression in GC [43].

The present study has certain limitations such as the
sample size for the RNA-Seq experiments and lack of valida-
tion in tumor tissues. Besides, the characteristic details (such
as gender, age, race, tumor grade, and staging) were not taken
into account in our research.

5. Conclusion

In the present study, 240 differentially expressed genes were
identified in the GEO datasets from the Chinese GC popula-
tion. Four of them (COL1A1, COL5A2, COL12A1, andVCAN)
were considered potential GC biomarkers. In the database, the
expression levels of four genes in GC tissues were significantly
higher than in normal tissues. ECM-receptor interaction, focal
adhesion, and PI3K-Akt signaling pathway were revealed to be
important mechanisms of GC. The present study provided
novel insights into the occurrence and progression of GC in
the Chinese population. However, the diagnostic and prog-
nostic valuse of these genes require further validation.
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