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Abstract: In this study, wear properties of Monel 400 after laser alloying with boron are described.
Surfaces were prepared by covering them with boron paste layers of two different thicknesses
(100 µm and 200 µm) and re-melting using diode laser. Laser beam power density was equal
to 178.3 kW/cm2. Two laser beam scanning velocities were chosen for the process: 5 m/min and
50 m/min. Surfaces alloyed with boron were investigated in terms of wear resistance, and the
surface of untreated Monel 400 was examined for comparison. Wear tests were performed using
counterspecimen made from steel 100Cr6 and water as a lubricant. Both quantitative and qualitative
analysis of surfaces after wear test are described in this paper. Additionally, microstructures and
properties of obtained laser alloyed surfaces are presented. It was found that the wear resistance
increased from four to tens of times, depending on parameters of the laser boriding process. The wear
mechanism was mainly adhesive for surfaces alloyed with initial boron layer 100 µm thick and
evolves to abrasive with increasing boron content and laser beam scanning velocity. Iron particles
detached from counterspecimens were detected on each borided surface after the wear test, and it
was found that the harder the surface the less built-ups are present. Moreover, adhered iron particles
oxidized during the wear test.
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1. Introduction

Nowadays, non-ferrous alloys have an increasingly important role in industry and their properties
are often modified with high-energy heat sources like laser beam [1–3]. Laser processes, including laser
alloying [4–6] and laser remelting [3] are increasingly displacing plasma processes [7] due to the fact
that quality and properties of obtained layers are promising. Monel 400, which was laser treated
in this study, is a one-phase nickel-copper alloy. Its main advantage is high corrosion resistance.
Thus, this alloy is generally applied in harsh environments, including seawater, alkalis, salts or acids.
The main industries in which parts made from Monel 400 are present (as valves, pumps and tanks)
are marine engineering and chemical processing [8–10]. On the other hand, the main disadvantage
of Monel 400 is its relatively low hardness in comparison with other nickel alloys [11]. Taking into
consideration that products made from this material are often exposed to high flow rates, there is a risk
of failures due to erosion, cavitation or wear.
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Wear of materials generates high production costs and thus it is often a research object in materials
engineering [12]. Due to a high risk of wearing parts made from Monel, tribological behavior of this
alloy has been the subject of research for at least 50 years. In 1973, Bill reported that wear mechanism
of Monel 400 alloy is initially adhesive with plastic deformation and the next stage of wear is an
oxidation process occurring on the surface [13]. Nowadays researchers focus on investigating wear
of Monel 400 in different states and environments. In 2016, Esgin et al. examined wear properties of
different Monel alloys produced with powder metallurgy. It was found that mass loss during the wear
test under the same conditions was the highest for Monel 400 alloy. Moreover, only this alloy suffered
adhesive wear during the process [14]. In 2018, Ma et al., investigated tribocorossion behavior of Monel
400 in artificial seawater with different loads applied during the wear test. Regardless of the load,
small regions of loose corrosion were found on surfaces after the wear test and it was found that the
wear was the dominant factor in the corrosive wear process. Moreover, abrasive wear occurred in each
experiment [15]. In 2019, Waliszyn and Adamkiewicz investigated Monel 400 erosive wear under the
influence of hydraulic cavitation. They found that (in these conditions) proneness to erosive damage of
this Ni-Cu alloy is between pure nickel and steel C45 which means relatively poor wear resistance [16].

Low wear resistance of Monel 400 means improvements should be made to the tribological
properties of its surface. One of the processes which increases hardness and thus wear resistance of
nickel alloys is boriding. Researchers have been describing effects of alloying nickel and its alloys with
boron for about two decades. In 2000, Ueda et al. borided surface of pure nickel with powder-pack
method. The process resulted in increasing surface hardness about six times and significantly improved
wear resistance [17]. After this successful attempt, researchers continued studies, working on new
substrate materials and methods for improving tribological properties by boron alloying. For this
purpose, Anthymidis et al. borided pure nickel in a fluidized bed reactor. As a result, produced coatings
showed an approximately 50% increase in resistance to wear compared to the untreated nickel [18].
In further studies, it was found that boriding is an effective method of improving surface properties
of nickel alloys as well. In 2008, Petrova et al. investigated effects of boriding alloys for automotive
applications including Inconel 625 and Inconel 718. Microhardness increased six and four times
respectively after the process [19]. In this study the comparison of wear resistance between treated
and untreated surfaces was not considered, however, five years later, Sista et al. borided Inconel
600 electrochemically, resulting in 8 to 10 times increase in microhardness and examined the wear
resistance. It was found that the wear volume dropped more than 40 times due to alloying surface
with boron [20]. In 2017, Gunen et al. confirmed these results on Inconel 625 by obtaining improved
wear resistance by boriding [21] and borotitanizing [22]. In 2019, Silva et al. reported similar results
for Inconel 718 [23] and Gheisari et al. proved that boriding increases wear resistance of nickel alloys
in elevated temperatures as well [24]. Diffusion boriding of Monel 400 surface was performed in 2019
and as a result of this process both hardness and wear resistance were improved by several times [25].

In this study boriding of Monel 400 was performed with laser boriding process. The main
advantages of this method are: obtaining layers of greater thickness than diffusion boriding and a
possibility to treat only selected areas instead of whole products. In 1996 Nakata et al. had already
reported that laser boriding of Ni-Cu alloys (of different proportions of these elements) is an effective
method for increasing hardness of their surfaces, and wear resistance was improved up to about
40 times in comparison with the substrate [4]. In 2016, Monel 400 was laser alloyed with nickel, chrome,
silicon and boron. This combination of alloying elements led to obtain surface 7 times harder [5].
In 2018 it was found that laser boriding of Monel 400 significantly increases its hardness, but this
increase is highly dependent on laser remelting parameters: mainly laser beam power, laser beam
scanning velocity and amount of boron in the molten pool [6]. Despite there being no research on
wear resistance of laser borided Monel 400, it is worth noting that researchers report improving other
metal alloys’ wear resistance by alloying surfaces during this process [26–30]. Thus, due to the fact
that Monel 400 is highly exposed to wear, the authors decided to investigate this effect on this specific
Ni-Cu alloy as well.
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2. Materials and Methods

2.1. Materials

In this experiment, Monel 400 was laser alloyed with boron. Monel 400 is a single-phase
nickel-copper alloy and its chemical composition is given in Table 1. Dimensions of specimens prepared
for laser treatment were 30 mm × 20 mm × 12 mm. Material was laser alloyed with boron layers
100 µm and 200 µm thick. Amorphous boron powder was deposited on surfaces of specimens as a
paste, after mixing it with sodium water glass. Counterspecimens for wear tests were made from
bearing steel 100Cr6. Chemical composition of 100Cr6 steel is given in Table 2. Its hardness is equal to
64 HRC, which is approximately 700 HV.

Table 1. Chemical composition of Monel 400.

Cu [%] Si [%] Fe [%] Mn [%] C [%] S [%] Ni

31 0.5 2.5 2.0 0.3 0.024 bal.

Table 2. Chemical composition of 100Cr6 bearing steel.

C [%] Si [%] Mn [%] Cr [%] Mo [%] Cu [%] Al [%] P [%] S [%] Fe

1.00 0.25 0.35 1.45 0.1 0.3 0.05 0.025 0.015 bal.

2.2. Laser Heat Treatment

Laser heat treatment was performed using diode laser TRUMPF TruDiode 3006 which reaches
3 kW of power (TRUMPF, Ditzingen, Germany). Laser head was integrated with robot arm KUKA
KR16-2 (KUKA, Augsburg, Germany) to manipulate location of the beam. To provide constant laser
beam velocity on whole length of laser track, the laser beam was started above and turned off behind
the specimen just like in papers [6,31]. The scheme of the laser alloying process is presented in Figure 1.

Figure 1. Scheme of the laser boriding process.

During laser alloying of Monel 400 with boron each laser track was produced parallelly to longer
side of specimen and distance between tracks (f) was equal to 0.5 mm. Constant laser beam power
P = 1400 W was used and considering the laser beam diameter was dl = 1 mm, laser beam power
density (q) was equal to 178.3 kW/cm2. Two laser scanning velocities were set: 5 m/min and 50 m/min.
Laser heat treatment was performed on two different types of specimens: Monel 400 with initial
boron layer of thickness equal to tb = 100 µm and Monel 400 with boron layer of thickness equal to
tb = 200 µm. These parameters are collected in Table 3. The specimen marked with symbol “E” stands
for untreated Monel 400.
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Table 3. Laser alloying parameters.

P [W] q [kW/cm2] tb [µm] vl [m/min] dl [mm] f [mm] Symbol of Specimen

1400 178.3 100 5 1 0.5 A
1400 178.3 200 5 1 0.5 B
1400 178.3 100 50 1 0.5 C
1400 178.3 200 50 1 0.5 D

- - - - - - E

2.3. Samples Preparation

After laser alloying, samples were cut for obtaining specimens for the wear test (with dimensions
13 mm × 10 mm × 6 mm). For comparison of the wear resistance, one additional specimen made from
untreated Monel 400 was also prepared. Other pieces of borided samples were cut across laser tracks
for obtaining metallographic microsections. Cutting was performed using hand saw blade to reduce
any structural changes. Samples designed for wear test were slightly grinded to obtain Ra lower than
0.2 µm. Cross-sections of specimens designed for structural investigation were grinded with abrasive
papers of grits ranged from 120 to 2000. Thereafter, they were polished for 20 min and etched with
Marble’s reagent.

2.4. Microstructure and Chemical Composition

Microstructural investigation of laser borided layers’ cross-sections, as well as surfaces after
wear tests was carried out using scanning electron microscope Tescan MIRA3 (TESCAN, Brno,
Czech Republic). This instrument was equipped with Oxford Instruments EDS (Energy-dispersive
X-ray spectroscopy) detector (Oxford Instruments, High Wycombe, UK) with AZtec system version
4.2, which were used for chemical composition analysis.

2.5. Microhardness Testing

Microhardness indentations were fabricated with Zwick 3212B Vickers tester (Zwick, Ulm,
Germany) with constant load equal to 0.9807 N. Load was kept on samples for 15 s for each indentation.
On each sample, indentations were made in different distances from surfaces, and five indentations
were fabricated in the substrate.

2.6. Wear Test

Specimens cut to dimensions suitable for the wear tester were mounted in it in a way presented in
Figure 2. Machine used for the testing was AMSLER A135 (Amsler, Szafuza, Switzerland) which allows
to set specific load to the specimen and specific rotational speed to the counterspecimen. Dimensions of
the counterspecimen were 45 mm in diameter and thickness equal to 12 mm, with mounting hole
of diameter equal to 15 mm. In this study load was equal to F = 392 N and rotational speed of the
counterspecimen n = 180 rev./min, just like at paper [32]. Some droplets of water were delivered
to the friction zone to make the friction coefficient lower. During the process, two temperatures
(T1 and T2) were measured using thermometer TES-1312A (TES, Taipei, Taiwan) with probe equipped
with thermocouple type “K”—NiCr-NiAl. Places of these measurements are presented in Figure 2.
Measurements of temperature T1 were taken from inside the sample through a drilled hole and
temperature T2 was measured on surfaces of counterspecimens, just behind the friction zone. Moreover,
frictional moments were measured for each specimen during the process. Testing time of boron-alloyed
specimens was equal to t = 45 min. The wear test of sample made from Monel 400 was stopped after
5 min due to the fact that the specimen suffered notable seizing and large increases in temperatures T1
and T2 was observed.
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Figure 2. Scheme of the wear test.

2.7. Depth of Friction Zone and Mass Loss

For measuring depth of friction zone, contact profilometer ZEISS (Carl Zeiss, Oberkochen,
Germany) was used. It was equipped with induction converter and SUFORM software version
2.0 provided by SAJD Metrologia company (SAJD, Kielce, Poland). Measuring the mass loss of
specimens after the wear test was performed with laboratory weight Sartorius BP221S (PCE-instruments,
Southampton, Hampshire, UK) with a precision of 0.0001 g.

3. Results and Discussion

3.1. Microstructural Characterization and Microhardness

Microstructures of laser alloyed surfaces are shown in Figures 3 and 4. Additionally, Figure 3
includes EDS mappings of produced coatings for chemical composition analysis. Each of these
figures presents surfaces treated with two different laser beam scanning velocities and two different
thicknesses of initial boron layer. Letters which are given within figures indicate following process
parameters: (a) laser beam scanning velocity vl = 5 m/min and initial boron layer thickness tb = 100 µm,
(b) vl = 5 m/min and tb = 200 µm, (c) vl = 50 m/min and tb = 100 µm, (d) vl = 50 m/min and tb = 200 µm.

Figure 3. Laser borided layers produced on Monel 400 with different parameters with their EDS
mappings: (a) vl = 5 m/min and tb = 100 µm, (b) vl = 5 m/min and tb = 200 µm, (c) vl = 50 m/min and
tb = 100 µm, (d) vl = 50 m/min and tb = 200 µm.
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Figure 4. Microstructures of laser borided layers produced on Monel 400 with different parameters:
(a) vl = 5 m/min and tb = 100 µm, (b) vl = 5 m/min and tb = 200 µm, (c) vl = 50 m/min and tb = 100 µm,
(d) vl = 50 m/min and tb = 200 µm.

It is clearly seen that laser re-melting of Monel 400 with boron has a significant influence on its
microstructure. However, microstructures of layers with different initial boron thicknesses differ more
from each other than layers produced with different laser beam scanning velocities. Layers alloyed
with boron paste 100 µm thick, which are shown in Figures 3a,c and 4a,c are built mainly of column
crystals solidified in much directions which depend on turbulences of liquid metal during re-melting.
Grains can be seen as lengthy or as equiaxed due to the fact that some of their crystallization fronts
were directed parallel to the laser movement and it can be especially seen in Figure 4a. According to
Safonov et al. [27], laser alloyed layers which include low amount of boron crystalize into structures
of primary dendrites and a boride eutectic between them. It is considered that layer produced with
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vl = 5 m/min is built of hypoeutectic and layer produced with vl = 50 m/min is eutectic, because of higher
concentration of boron in the re-melted volume. Moreover, it can be seen with high magnification in
Figure 4a,c that sizes of grains are strongly dependent on laser beam scanning velocity. Column crystals
emerged on specimen treated with vl = 5 m/min are visibly few times larger than these obtained
during alloying with vl = 50 m/min. This effect is the result of grain growth during long time of
exposition to laser radiation on specimens produced with vl = 5 m/min and quick solidification of
layers produced with vl = 50 m/min. On the other hand, microstructures of surfaces which were alloyed
with initial boron layer thickness equal to 200 µm are more uniform. Safonov et al. [27] concluded
that microstructures laser alloyed with high amount of boron consist of primary boride crystals and
a eutectic. In this study, these layers, in most of their volume, seem like solid one-phase materials
which is a hypereutectic structure. However, in both cases there are noticeable areas of various tints
in which chemical compositions and crystal orientations differ from other volume. Their presence
is the result of insufficient mixing of substrates in the molten pool. This effect can be observed in
EDS mappings presented in Figure 3. Although boron is distributed uniformly within produced
coatings, concentrations of nickel and copper vary in different areas. Moreover, since the mixing is
weaker in layers produced with higher laser beam scanning velocity (Figure 3c,d), these areas differ
more from surrounding volume than in specimens produced with vl = 5 m/min. This suggests that,
due to insufficient mixing in coatings produced with vl = 50 m/min, the microstructure is built of both
hypereutectic and eutectic areas. Furthermore, it is worth noting that in both layers produced with
200 µm initial boron layer structure built of columnar crystals is visible between re-melted zone and
the substrate.

Microstructures of layers alloyed with boron using different laser beam scanning velocities do
not differ as significantly as if boron content is considered. However, the main difference between
them is their depth. In this experiment depths of boron-alloyed layers were measured ten times for
each specimen. Average depths of coatings produced using laser beam scanning velocity vl = 5 m/min
are equal to approximately 300 µm and 410 µm if initial boron layer thickness was 100 µm and
200 µm respectively. Increasing laser beam scanning velocity to 50 m/min results in obtaining layers
enriched with boron approximately 130 µm and 175 µm deep. Both laser beam scanning velocity and
initial boron layer thickness affect the depth of re-melting. The higher laser beam scanning velocity
is, the shallower alloyed layer is. It is the result of shorter time of influence of laser radiation on
material’s surface during the process. On the other hand, the more boron is provided in the molten
pool, the deeper the layer that is obtained. This effect is considered to be caused by higher thermal
conductivity of nickel borides than of Monel 400.

Microhardness of untreated Monel 400 is ranged between 150 and 200 HV0.1. It was confirmed
that alloying Monel 400 with boron increases these values significantly. In this study, as in case of
depth, final results depend on laser beam scanning velocity and thickness of initial boron layer. In this
study microhardness was measured in two different laser tracks. Average values of microhardness,
depending on distance from surface, are presented in Figure 5. Laser alloying with initial boron layer
100 µm thick using laser beam scanning velocity equal to 5 m/min resulted in obtaining almost two
times harder surface layer (between 280 and 310 HV0.1). Increasing boron content to initial layer
thickness equal to 200 µm leads to obtain layer of microhardness between 870 and 930 HV01. Due to
the fact that increasing laser beam scanning velocity results in decreasing depths of obtained layers,
microhardness of surfaces alloyed with boron using vl = 50 m/min is higher with the same initial boron
content. The reason for this is higher concentration of hard nickel borides in smaller re-melted volume
of material. Thus, microhardness of layer enriched with 100 µm of boron paste ranged between 400 and
450 HV0.1 if the laser beam scanning velocity is equal to 50 m/min. Doubling the initial boron content
to 200 µm results in obtaining microhardness from 890 to 1000 HV0.1. Taking into consideration that
surfaces treated with higher laser beam scanning velocity are built of smaller grains, their higher
microhardness increase could also be affected by the higher number of grain boundaries present in
re-melted zones.
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Figure 5. Microhardness of borided layers in different distances from surface, alloyed with: (a) vl = 5 m/min
and (b) vl = 50 m/min.

3.2. Wear Analysis

For quantitative comparison of wear resistance of laser borided Monel 400 surfaces, two indicators
were taken into consideration: depth of the friction zone and mass loss of each specimen after the wear
test. In Figure 6, an exemplary measurement of depth of friction zone is shown. This specific profile
was measured on sample borided with 100 µm boron paste using laser beam scanning velocity equal
to 50 m/min. Figure 7 is a graphic representation of values of friction zones’ depths and mass losses
after the wear test.Materials 2020, 13, 5757 9 of 16 

Figure 6. Measurement of depth of friction zone on specimen laser borided with vl = 50 m/min and tb 
= 100 µm. 

Figure 7. Mass losses and depths of friction zones of specimens after the wear test. 

It was found that the rate of wear is strongly dependent on microhardness. The shallowest 
friction zone after the wear test was measured on sample laser alloyed with 200 µm boron paste using 
laser beam scanning velocity equal to vl = 50 m/min. In this case, the depth of friction zone was equal 
to 15.8 µm. The second lowest value, equal to 23.7 µm, was measured on sample which was prepared 
with the same boron content but with lower laser beam scanning velocity vl = 5 m/min. Samples 
produced with initial boron layers 100 µm thick suffered wear which resulted in obtaining friction 
zones 39.9 µm and 105.5 µm deep on samples alloyed using laser beam scanning velocity equal to 50 
m/min and 5 m/min respectively. For comparison, depth of friction zone on untreated Monel 400 was 
equal to 436.5 µm after only 5 min of wear test. These numbers confirm that laser alloying of Monel 
400 surface with boron significantly increases its resistance to wear. In terms of differences in depth 
of the friction zone, the resistance to wear was increased minimum 4-times and maximum 27-times, 
and even more, if the fact that sample of untreated Monel 400 was tested for 9-times shorter period 
of time is taken into consideration. 

Values of mass loss after the wear test are convergent with these described above. The lowest 
mass loss, measured on specimen laser alloyed with 200 µm boron paste and vl = 50 m/min, was equal 
to 0.0013 g after 45 min of testing. Mass loss of sample re-melted with same boron content but slower 
laser beam scanning velocity vl = 5 m/min was equal to 0.009 g. Mass loss, as well as depth of friction 
zone, was greater if initial boron layer thickness was equal to 100 µm. In these cases, masses of 
specimens decreased by 0.0511 g if laser beam scanning velocity vl = 50 m/min and 0.0611 g if vl = 5 
m/min was used for the boron-alloying process. Mass loss of untreated Monel 400 was equal to 0.2707 
g after 5 min of testing. These values indicate even greater increase in wear resistance than values of 

Figure 6. Measurement of depth of friction zone on specimen laser borided with vl = 50 m/min and
tb = 100 µm.



Materials 2020, 13, 5757 9 of 15

Figure 7. Mass losses and depths of friction zones of specimens after the wear test.

It was found that the rate of wear is strongly dependent on microhardness. The shallowest friction
zone after the wear test was measured on sample laser alloyed with 200 µm boron paste using laser
beam scanning velocity equal to vl = 50 m/min. In this case, the depth of friction zone was equal to
15.8 µm. The second lowest value, equal to 23.7 µm, was measured on sample which was prepared with
the same boron content but with lower laser beam scanning velocity vl = 5 m/min. Samples produced
with initial boron layers 100 µm thick suffered wear which resulted in obtaining friction zones 39.9 µm
and 105.5 µm deep on samples alloyed using laser beam scanning velocity equal to 50 m/min and
5 m/min respectively. For comparison, depth of friction zone on untreated Monel 400 was equal to
436.5 µm after only 5 min of wear test. These numbers confirm that laser alloying of Monel 400 surface
with boron significantly increases its resistance to wear. In terms of differences in depth of the friction
zone, the resistance to wear was increased minimum 4-times and maximum 27-times, and even more,
if the fact that sample of untreated Monel 400 was tested for 9-times shorter period of time is taken
into consideration.

Values of mass loss after the wear test are convergent with these described above. The lowest mass
loss, measured on specimen laser alloyed with 200 µm boron paste and vl = 50 m/min, was equal to
0.0013 g after 45 min of testing. Mass loss of sample re-melted with same boron content but slower laser
beam scanning velocity vl = 5 m/min was equal to 0.009 g. Mass loss, as well as depth of friction zone,
was greater if initial boron layer thickness was equal to 100 µm. In these cases, masses of specimens
decreased by 0.0511 g if laser beam scanning velocity vl = 50 m/min and 0.0611 g if vl = 5 m/min was
used for the boron-alloying process. Mass loss of untreated Monel 400 was equal to 0.2707 g after
5 min of testing. These values indicate even greater increase in wear resistance than values of friction
zones’ depths. The lowest measured value of mass loss, on specimen tested for 45 min, is more than
200-times lower than mass reduction of Monel 400 sample after 5 min of the wear test. On the other
hand, quadrupled increase in wear resistance of surface alloyed with 100 µm of boron paste and laser
beam scanning velocity equal to 5 m/min, in terms of mass loss, is comparable with the result obtained
by analysis of depths of friction zones. Nonetheless, these results clearly indicate that laser alloying
Monel 400 with boron significantly enhances wear resistance of the material’s surface.

For qualitative assessment of surfaces after the wear test, microscopic examination using scanning
electron microscope was performed as well as chemical composition analysis. Results of these
observations are given in Figures 8 and 9. In each figure sliding direction is vertical. EDS mappings were
taken from the same areas as corresponding photos in Figure 8. Red dots present in Figure 8 represent
spots analyzed in terms of chemical composition and their results are given in Table 4. Letters given in
Figures 8 and 9 indicate specimens as in Table 3. Analysis of chemical composition, both for points
and mappings, was limited to four elements: nickel, copper, iron and oxygen, because verification
of their presence is sufficient for the assessment of the nature of wear. Results shown in bold font in
Table 4 represent spots of increased content of iron or oxygen. Moreover, for better understanding of
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wear mechanisms which occurred between specimens and counterspecimens, a schematic view of
phenomena in wear zones is shown in Figure 10.

Figure 8. Surfaces after the wear test of specimens produced with: (a) vl = 5 m/min and tb = 100 µm,
(b) vl = 5 m/min and tb = 200 µm, (c) vl = 50 m/min and tb = 100 µm, (d) vl = 50 m/min and tb = 200 µm,
(e,f) untreated Monel 400.
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Figure 9. EDS mappings of surfaces after the wear test: (a) vl = 5 m/min and tb = 100µm, (b) vl = 5 m/min
and tb = 200 µm, (c) vl = 50 m/min and tb = 100 µm, (d) vl = 50 m/min and tb = 200 µm, (e) untreated
Monel 400.
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Table 4. Results of chemical composition analysis of spots marked in Figure 8.

Symbol A1 A2 A3 A4 B1 B2 B3 B4 C1 C2

Ni [Wt%] 30.4 26.9 59.7 42.9 37.1 38.1 57.0 58.2 19.3 19.9
Cu [Wt%] 18.2 16.9 35.3 53.4 7.6 7.3 33.9 33.0 16.4 0.8
Fe [Wt%] 20.1 21.6 3.1 2.2 28.7 26.9 6.4 6.5 25.6 44.7
O [Wt%] 31.3 34.7 1.8 1.5 26.6 27.7 2.3 2.2 38.8 34.6

Symbol C3 C4 D1 D2 D3 D4 E1 E2 E3 E4

Ni [Wt%] 58.3 59.9 49.4 41.3 60.5 62.7 61.1 63.2 64.1 63.5
Cu [Wt%] 30.0 32.2 23.3 45.0 36.0 34.0 33.1 33.7 30.7 31.5
Fe [Wt%] 8.4 3.7 4.6 1.8 2.1 2.3 2.7 2.4 4.0 2.2
O [Wt%] 3.4 4.1 22.6 11.9 1.4 1.0 3.1 0.7 1.3 2.8

Figure 10. Schemes of wear mechanisms on different specimens: (a) Specimens A and C: serious
abrasive wear of the specimen and adhesive wear of the counterspecimen, (b) Specimens B and D: minor
abrasive wear of the specimen and adhesive wear of the counterspecimen, (c) Specimen E: serious
abrasive and adhesive wear of the specimen, with plastic deformation.

After the wear test, surfaces laser alloyed with boron paste 100 µm thick (Figure 8a,c) differ from
these which were laser alloyed with higher boron content. Surface presented in Figure 8a which
was produced using laser beam scanning velocity equal to 5 m/min contains much irregularities
after the wear test. Moreover, in pits and built-ups visible on the surface, an increased amount of
iron and oxygen was spotted and results of this analysis are given in Table 4 as symbols A1 and A2.
The confirmation of this effect is shown in Figure 9a—areas which are darker in Figure 8a contains
less nickel and copper but more oxygen than surrounding zones. Taking into consideration chemical
composition of Monel 400 alloy and 100Cr6 steel, it is considered that detected fragments is iron
detached from counterspecimen, which reacted with oxygen during the wear test. Presence of grooves
and iron particles on surface presented in Figure 8a suggests that this surface suffered serious abrasive
wear. Surface which was alloyed with the same boron content but higher laser beam scanning velocity
that is presented in Figure 8c appears similar after the wear test. However, in this case there are fewer
built-ups including iron and oxygen which are visible in Figure 9c and in spots with symbols C1 and
C2. On the other hand, more wide scratches were found. This suggests that higher hardness resulted
in reducing tendency to adhere iron particles from counterspecimen and wear mechanism became
more abrasive than adhesive. Schematic representation of wear mechanism of specimens alloyed with
100 µm- thick boron paste is shown in Figure 10a.

It is clearly seen in Figure 8b,d that specimens which were alloyed with boron paste 200 µm
thick suffered minor wear in comparison with these described above. Both surfaces contain much
fewer grooves and signs of plastic deformation. Surface presented in Figure 8b is mostly covered
with scratches of various widths but there are considerably fewer deformed areas than on surfaces
alloyed with 100 µm boron paste. Despite this, iron particles were detected on this surface as well
but in a smaller amount which can be seen in Figure 8b and in results from spots marked as B1 and
B2. These results lead to the conclusion that in this case the major mechanism of wear was abrasive.
However, presence of iron built-ups detected during analysis of chemical composition suggests that
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slight adhesive wear also occurred in some areas. Moreover, an exemplary graph of frictional moment
and temperatures during the wear test of specimen laser alloyed with 200 µm boron paste and laser
beam scanning velocity equal to 5 m/min (Figure 11) indicates irregular movement resistance. On the
other hand, a specimen produced with the same amount of boron but higher laser beam scanning
velocity which surface is presented in Figure 8d. This suffered only insignificant wear in comparison
with other samples. Scratches visible after the wear test are shallow and narrow, and there are no signs
of plastic deformation of alloyed layer. Foreign particles are visible but only as spots (not surfaces like
on other specimens) and in small amount. These spots of increased oxygen concentration are visible
in Figure 9d, and results of their chemical composition analysis are shown in Table 4 as D1 and D2.
This suggests that laser alloyed layer with the highest microhardness suffered only minor abrasive
wear, with insignificant share of adhesive wear and oxidation. The scheme of this wear mechanism is
shown in Figure 10b.

Figure 11. Frictional moment and temperatures T1 and T2 as function of wear time for specimen laser
borided with laser beam scanning velocity vl = 50 m/min and initial boron layer tb = 100 µm.

Finally, it is worth noting that although surface of untreated Monel 400 suffered the most serious
plastic deformation during the wear test, areas with increased iron concentration were not detected on
its surface. It is proven with results shown in Figure 9e and spots marked as E1–E4 in Table 4. In this
case, only minor oxidation distributed uniformly was detected. The reason of these effects is lower
hardness of Monel 400 itself than hardness of the steel counterspecimen. It is considered that in this
case material was detached from the Monel 400 specimen. An example of area of plastic deformation
which could occur as a result of detachment of material from Monel 400 surface is given in Figure 8f
with higher magnification. The condition of Monel 400 surface after the wear test ongoing for only
5 min, in comparison with other specimens which were tested for 9 times longer period of time, is a
notable evidence that laser alloying with boron is an effective method for increasing wear properties of
this nickel-copper alloy. This wear mechanism is shown schematically in Figure 10c.

4. Conclusions

On the basis of results and examination of condition of laser borided Monel 400 after wear tests
following conclusions were formulated:

(1) Laser alloying with boron is an effective method for improving wear resistance of Monel 400
and level of this enhancement is strongly dependent on microhardness of obtained layers
and hence on the laser boriding parameters. This fact confirms that laser boriding can be
implemented to increase hardness and wear properties of this specific Ni-Cu alloy, as it is for
other nickel-based metals.
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(2) Wear resistance, both in terms of depth of friction zone and mass loss after the wear test,
improves with increasing initial boron content and laser beam scanning velocity during the laser
boriding process. In this study, the highest wear resistance was observed for surface alloyed with
initial boron layer 200 µm thick using laser beam scanning velocity equal to 50 m/min.

(3) The improvement of wear resistance achieved by laser alloying Monel 400 with boron is
quantitatively larger than increase of microhardness in each examined case. For example,
microhardness of surface laser borided with 100 µm thick initial boron layer using laser beam
scanning velocity equal to 50 m/min almost doubles while mass loss during the wear test decreases
about five times in comparison with untreated Monel 400.

(4) In conditions chosen for this examination, mechanism of wear evolves from severe abrasive and
adhesive on surface alloyed with initial boron layer 100 µm thick using laser beam scanning
velocity 5 m/min to insignificant abrasive wear of surface re-melted with 200 µm boron layer and
laser beam scanning velocity equal to 50 m/min. Thus, increasing boron content and laser beam
scanning velocity leads to reduction of adhesive wear on alloyed surfaces.
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