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Gene expression analysis
reveals a 5-gene signature
for progression-free survival
in prostate cancer
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Prostate cancer (PCa) is the secondmost commonmale cancer worldwide, but

effective biomarkers for the presence or progression risk of disease are

currently elusive. In a series of nine matched histologically confirmed PCa

and benign samples, we carried out an integrated transcriptome-wide gene

expression analysis, including differential gene expression analysis and

weighted gene co-expression network analysis (WGCNA), which identified a

set of potential gene markers highly associated with tumour status (malignant

vs. benign). We then used these genes to establish a minimal progression-free

survival (PFS)-associated gene signature (GS) (PCBP1, PABPN1, PTPRF, DANCR,

and MYC) using least absolute shrinkage and selection operator (LASSO) and

stepwise multivariate Cox regression analyses from The Cancer Genome Atlas

prostate adenocarcinoma (TCGA-PRAD) dataset. Our signature was able to

predict PFS over 1, 3, and 5 years in TCGA-PRAD dataset, with area under the

curve (AUC) of 0.64–0.78, and our signature remained as a prognostic factor

independent of age, Gleason score, and pathological T and N stages. A

nomogram combining the signature and Gleason score demonstrated

improved predictive capability for PFS (AUC: 0.71–0.85) and was superior to

the Cambridge Prognostic Group (CPG) model alone and some conventionally

used clinicopathological factors in predicting PFS. In conclusion, we have

identified and validated a novel five-gene signature and established a

nomogram that effectively predicted PFS in patients with PCa. Findings may

improve current prognosis tools for PFS and contribute to clinical decision-

making in PCa treatment.
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1 Introduction

Prostate cancer (PCa) is the second most common

malignancy in men worldwide, with an estimated 1.41 million

new cases and over 375,000 deaths in 2020 (1). Predicting the

risk of treatment failure is important because this can inform

whether to use neoadjuvant or adjuvant therapies (2) and how

closely patients should be followed up. Risk of treatment failure

has conventionally been calculated using clinical (T-stage),

biochemical [prostate-specific antigen (PSA)], and histological

(Gleason score) parameters (3), and the prognostic power of

these clinicopathological features is often limited, such as in

patients with ambiguous clinical diagnoses. Improvements on

these models could be achieved by identifying novel biomarkers,

and the use of reliable biomarkers might assist in the

determination of the prognosis and, therefore, the success of

the treatment (4).

Previous studies have used differential gene expression to

differentiate aggressive and indolent PCa subtypes using

transcriptome-wide technologies (5, 6). There is sometimes

little overlap between the gene sets identified, and comparison

between benign and malignant tissues deriving from different

subjects can introduce biological noise. To date, reliable

signatures of aggressive PCa are scarce (7), and there is a clear

need for more prec i se molecu lar d iagnos t i c and

prognostic markers.

In order to improve the accuracy of the prognosis in PCa, a

variety of survival-related molecular biomarkers have been

identified and validated to predict disease progression. For

example, three eRNA-driven genes were identified to predict

disease-free survival (DFS) (8), a three-gene based signature was

developed for predicting both overall survival (OS) and DFS (9),

and a six-gene signature associated with castration-resistant

PCa was established to predict recurrence-free survival (RFS)

(10). Previous studies have identified a few progression-related

biomarkers, such as a 49-gene signature specific for predicting

metastatic-lethal (ML) progression (11), a two-gene signature

for predicting circulating tumour cell (CTCs) levels (12), and

various biomarkers built from a binary classifier that can predict

different pairs of PCa progression stages/substages (13).

However, all of these progression-associated biomarkers and

many others (14) were selected and modelled based on two- or

multi-level classifiers, which do not take progression-free

survival (PFS) time and survival status data (i.e., progressed or

not progressed) into account, and therefore are unable to

predict PFS.

In this study, we aimed to produce transcriptome-wide

expression profiles from a series of nine PCa and matched

benign samples from the same individuals to determine

differentially expressed genes (DEGs) and co-expression

modules. The most representative and highly correlated DEGs

were integrated with the hub genes identified through weighted
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gene co-expression network analysis (WGCNA) and protein–

protein interaction (PPI) network analysis to be considered as

our candidate genes. We then used the candidate genes in

conjunction with an external dataset [The Cancer Genome

Atlas prostate adenocarcinoma (TCGA-PRAD)] to produce a

minimal 5-gene expression signature (PCBP1, PABPN1, PTPRF,

DANCR, and MYC) using the least absolute shrinkage and

selection operator (LASSO) and Cox regression methods to

predict PFS. Kaplan–Meier (KM) method and log-rank test

were used to test the association between each signature gene

and PFS of PCa. The gene signature was then combined with

PCa-associated clinical parameter(s) to define a nomogram for

PFS. Finally, we compared the clinical utility of our gene

signature and nomogram in combination with and against

established prediction tools such as the Cambridge Prognostic

Group (CPG) model and other commonly used clinical features

in PCa for the prediction of PFS. Overall, we found that both our

gene signature and nomogram were capable of predicting PFS of

patients with PCa, and thus, may have potential clinical utility as

prognostic tools in the future.
2 Materials and methods

2.1 Patient samples

Benign and matched PCa tissue was obtained using radical

prostatectomy specimens from nine patients. Histologically

confirmed areas of PCa and benign regions within the same

prostate sample were excised and stored in RNAlater (Thermo

Fisher, Waltham, MA, USA) prior to RNA extraction. The

samples were obtained with written consent and ethical

approval through the Exeter NIHR Clinical Research Facility

tissue bank (Ref: STB20). Patient characteristics are given

in Table 1.
2.2 RNA extraction

Tissue samples preserved in RNAlater were thawed and

minced using a scalpel. RNA was then extracted using the

Qiagen blood mini kit (Hilden, Germany), adapted by the use

of a Qiashredder column (Hilden, Germany) on the Qiacube

platform (Hilden, Germany). RNA concentration and integrity

were assessed using the Agilent Bioanalyser 2100 platform

(Agilent, Santa Clara, CA, USA).
2.3 Transcriptomic profiling and array
data preprocessing

Gene expression was measured on the Clariom D Pico

GeneChip Whole Transcriptome (WT) platform (Thermo
frontiersin.org
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Fisher, Waltham, MA, USA). RNA integrity was assessed as part

of the library preparation (UK Bioinformatics, King’s College,

London, UK). Data underwent quality control for probeset mean

for hybridisation intensity, probeset residual mean that

compares probeset signal to residual signal, poly-A-positive

spike in controls as control genes and positive vs. negative

area under the curve.

To preprocess the raw Clariom D dataset, the R package

oligo (15) was used along with the Robust Multichip Average

(RMA) algorithm (16), which summed up 138,745 captured

transcripts. Transcripts were aligned to build 37 (GRCh37/hg19)

of the human transcriptome using the BioConductor Platform

Design (pd) package pd.clariom.d.human. Annotation was

performed using the R package affycoretools (17), giving a total

of 86,161 annotated transcripts (~62%). The dataset was then

filtered to remove transcripts with mean intensities less than the

threshold in less than 50% of the samples. Unannotated and

uninformative probes (i.e., probes without a gene name or

identifier; probes mapped to multiple genes, pseudogenes, and

those predicted by the 'AceView' database) were also filtered out.

Multiple probes for the same gene were then collapsed by taking

the probe with the highest average across all samples. We

obtained a final set of 22,165 genes.
2.4 Identification of differentially
expressed genes

DEGs between matched benign and malignant prostate

tissue samples were identified using the R package Limma (18)

to fit a linear model and an empirical Bayes moderated t-test

applied for each gene. A Benjamini–Hochberg (BH) multiple

hypothesis testing correction was applied to adjust for false

discovery rate (FDR). DEGs were defined based on raw

p-value<0.001, adjusted p-value<0.1, and |log2 fold change

(FC)| >0.585. Non-parametric multivariate BIO-ENV analysis

was then applied using PRIMER-Є software (version 6.1.18)

(19). We measured (dis)similarity for the genes and used

Spearman’s rank correlations between subset matrices and
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between-sample matrix (both in Euclidean distance) to

identify the most representative gene subsets capturing the

total DEGs for benign vs. malignant tumour comparison.

Subsets with

p-value <0.05 were considered significant.
2.5 Weighted gene co-expression
network analysis

WGCNA was conducted on the 22,165 genes using the R

package WGCNA (20, 21). The minimum soft-thresholding

power satisfying the scale-free fit index of 0.80 was selected.

The module detection was constructed with a dynamic merging

branch cut of 0.25 in a signed network design. Topological

overlap matrix (TOM) dissimilarity plots were used to visualise

the gene network structure. Each module was summarised by an

eigengene (ME, the first principal component of all co-expressed

genes in the module). To identify key module(s) of interest,

Pearson correlation was applied between the MEs and tumour

status (malignant or benign). Moreover, gene significance (GS;

the Pearson correlation between genes and tumour status of a

given module) and module significance (MS; the average of GS

of all genes within a module) were used to verify the module–

trait association(s).
2.6 Identification of module hub genes

Hub genes within a module were detected using two

measures: 1) TOM-based intramodular connectivity and 2)

based on module membership (MM; correlation between gene

expression values and ME of a particular module). We first

calculated the MM of each key module and then assessed MM vs.

GS, MM vs. TOM-based intramodular connectivity, and GS vs.

TOM-based intramodular connectivity to investigate the

properties of the genes within each key module. The selection

of module hub genes was based on the overlapped genes of the

top 5% highest intramodular connectivity score of both TOM-
TABLE 1 Patient characteristics of the paired Clariom D sample set.

Patient number Age Gleason score TNM score Smoking status Family history

007 RP 66 4+3+5 pT3aN1 No No

008 RP 67 4+3 pT2cN0 No No

009 RP 65 4+3+5 pT3aN0 Yes Father with breast cancer

010 RP 53 3+4 pT3aNX No No

012 RP 64 4+5+3 pT3aN0 Former smoker (17 years ago) No

013 RP 59 3+4 pT2NX No No

014 RP 67 4+5 pT3bN0 Yes No

015 RP 70 4+3+5 pT2cN0 No Father with prostate cancer

017 RP 67 3+4 pT2cN0 Former smoker (6 weeks ago) Strong family history of bowel cancer
TNM: T, tumour size; N, lymph node status; M, metastasis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.914078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mou et al. 10.3389/fonc.2022.914078
and MM-based measures. Hub genes satisfied the thresholds of

the absolute value of the MM >0.90 and GS >0.30. The Search

Tool for Retrieval of Interacting Genes (STRING) was used to

construct a PPI network prediction of module hub genes (22).

Full STRING network with score confidence >0.4 and FDR<0.05

was applied on the hub gene set(s). Genes satisfying

the thresholds were further analysed using Cystoscape (23).

The Maximal Clique Centrality (MCC), an algorithm from the

plugin CytoHubba (24), was used to rank gene connectivity in

the respective PPI network. Lastly, the top 5 hub genes according

to the MCC scores were selected from each module.
2.7 Pathway enrichment analysis

The R package clusterProfiler (25) was used to perform Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses on the hub genes within

each key module associated with tumour status. GO enrichment

analysis was performed primarily to identify biological process (BP),

cellular component (CC), and molecular function (MF) associated

with the identified gene sets, while KEGG analysis revealed their

associations to biological pathways. We set FDR-adjusted p-value

<0.05 as a cutoff criterion for significant enrichment.
2.8 Preprocessing of public sequencing
data and validation of gene expression

For prognostic model development, raw RNA-seq counts

and clinical, genetic, pathological, and radiological data from
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TCGA-PRAD were obtained using the R package TCGAbiolinks

(26). Raw count data were preprocessed using the R package

edgeR (27–29), and the corresponding progression-free interval

(PFI) and status information of each sample were downloaded

from the UCSC Xena PAN-Cancer database (https://

xenabrowser.net; version: 2018-09-13). PFS was used as the

primary clinical endpoint as the most reliable outcome for

PCa (30) and was defined as the interval between the date of

diagnosis and the date of the new event returned, including the

progression of the cancer, local recurrence, distant metastases, or

death from the cancer.

Differential expression of candidate genes was then validated

using TCGA-PRAD dataset. For model construction and

validation, we eliminated one metastatic tumour sample, all

normal tissue samples, and three samples with follow-up less

than 1 month, resulting in a total of 492 tumour cases. Moreover,

the samples were randomly divided into a training set (n = 345;

70%) and a testing set (n = 147; 30%). The progression event and

clinicopathological characteristics of the two internal sets are

summarised in Table 2.
2.9 Prognostic model construction for
progression-free survival of prostate
cancer patients

LASSO regression analysis (31) was conducted using the

R package glmnet (32) to narrow down the candidate genes in

TCGA-PRAD training set. Subsequently, the multivariate

Cox proportional hazards model was applied using the R

package survival (33, 34) with a bidirectional stepwise
TABLE 2 Clinical characteristics of TCGA-PRAD sets of the prostate cancer tumour samples for progression-free survival (PFS) analysis.

Clinical feature Training set Validation set
TCGA-PRAD (n = 345) TCGA-PRAD (n = 147)

Age (years) (%)

<60 141 (40.9) 59 (40.1)

≥60 204 (59.1) 88 (59.9)

Progressed events (%) 65 (18.8) 28 (19.0)

Pathological T stage (%)

T2 121 (35.1) 66 (44.9)

T3–T4 220 (63.8) 79 (53.7)

Unknown 4 (1.2) 2 (1.4)

Pathological N stage (%)

N0 237 (68.7) 105 (71.4)

N1 57 (16.5) 21 (14.3)

Unknown 51 (14.8) 21 (14.3)

Gleason score (%)

≤7 200 (58.0) 90 (61.2)

>7 145 (42.0) 57 (38.8)
TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma; Age, age at diagnosis; T stage, tumour stage; N stage, lymph node status (N0 = without lymph node metastasis; N1 =
with lymph node metastasis); Unknown, missing data.
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var iable se lect ion procedure for the opt imal gene

combination that calculated the lowest Akaike information

criteria (AIC) value. Finally, the prognostic risk model of each

patient was defined as follows:

survival risk score of  each patient 

=on
i=1 coefficienti  �   gene   expressionið Þ

;

where the coefficienti is the corresponding coefficient from the

multivariate Cox regression of genei and gene expression i is the

expression value of genei.

The predicted risk scores were classified into high and low

risk using the function surv_cutpoint from the R package

survminer (35) to find an optimal separation point. Finally, we

assessed the significance of the difference between the two

groups using KM and log-rank tests. Both training and testing

sets were evaluated to determine the performance of the derived

gene-based risk model. R package rms (36) was used to test the

discrimination of our model using Harrell’s concordance index

(C-index). Bias-corrected calibration analysis with 1,000

bootstrap sample permutations was used to check the

consistency between predicted and observed probabilities for

1-, 3-, and 5-year PFS. Time-dependent receiver operating

characteristic (ROC) analysis was conducted using the R

package survivalROC (37) to assess the model accuracy

according to the area under the ROC curve (AUC) for 1-, 3-,

and 5-year PFS.
2.10 Independent prognostic ability of
the signature and nomogram
construction

Age, pathological stage T (tumour stage), N (lymph node

status), and Gleason score are common clinicopathological

factors in PCa and were accounted for assessing the prognostic

power of our five-gene signature (Table 2). Univariate and

multivariate Cox regression analyses were performed in the

two TCGA-PRAD sets to assess the association between the

input factors and PFS. Significant factors from the multivariate

Cox analysis were selected to construct a nomogram for

predicting 1-, 3-, and 5-year PFS. The calibration plot, ROC

analysis, and C-index were used to evaluate the characteristics of

the nomogram. Furthermore, we evaluated the clinical utility of

our gene signature and nomogram through comparison with the

well-established CPG model for predicting PCa PFS. The CPG

model comprises the Gleason score, the PSA level, and the T

stage. An algorithm was adopted to compute the CPG score

according to Gnanapragasam et al. (38), but with pathological T

stage rather than clinical T stage. We also evaluated the models

against the Gleason score, pathological T stage, and serum PSA

level (divided into three categories: <10 ng/ml, 10–20 ng/ml, and

>20 ng/ml).
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2.11 Statistical analysis

This study was conducted using the R software (version

4.0.5), PRIMER-Є software (version 6.1.18), and Cytoscape

(version 3.8.2). For two-group differential analysis, the

Student’s t-test was applied for the risk score-associated

comparisons, and the Wilcoxon rank-sum test was applied for

gene expression-associated comparisons. KM method and log-

rank test were used to assess associations between variables and

PFS. Statistical significance was set at p = 0.05 throughout this

study, unless otherwise indicated.
3 Results

3.1 Differential gene expression in
prostate cancer samples

In this study, 22,165 genes were expressed in human prostate

samples after quality control (QC). We identified 47 DEGs

under the cutoffs raw p-value <0.001, FDR-adjusted p-value

<0.1, and |log2 FC| >0.585 (Table S1; Figures 1A, B). The

minimal gene set capturing the information in the complete

DEG dataset was identified using BIO-ENV analysis. The top 5

subsets from the analysis are shown in Table S2, and the most

significant gene set was defined by genes PTPRF, MRPL24,

DANCR, MYC, and TRPM4 (rho = 0.977; p< 0.001).
3.2 Construction of co-expression
modules

By setting the scale-free fit index at R2 = 0.80, a soft-

thresholding power b = 14 was selected to best approximate

the scale-free topology (Figure S1A). Genes were clustered based

on 1-TOM dissimilarity measure, and the dynamic tree cut was

set to 0.25 with minimal module size as 50 (Figure S1B). Seven

distinct modules with module size ranging from 6,662 to 102

genes were identified (Table S3), and the green ME exhibited a

significant correlation with tumour status (r = 0.5, p = 0.03;

Figure S1C). MS comparison analysis also confirmed that the

green module had the highest association with tumour status

(Figure S1D).
3.3 Identification of hub genes

A positive correlation between GS and MM was identified,

indicating that genes significantly associated with tumour status

were also important representatives of the green module

(correlation = 0.45, p = 1 × 10-200; Figure S1E). Moreover, GS

and MM were significantly correlated with IMC (correlation =
frontiersin.org
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0.49, p = 1 × 10-200 and correlation = 0.86, p = 1 × 10-200 for GS

and MM, respectively; Figures S1F, G), which indicated that a

gene with a high MM or GS also had a high intramodular

connectivity and thus may represent hub genes in the module.

Top 5% (~220) highly connected genes were screened from each

cluster measure and the overlap analysis between the two

clusters along with the absolute value of the MM >0.90 and

GS >0.30, resulting in a total of 165 hub genes for further

analysis (Figure S1H).
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3.4 Pathways analysis

The 165 hub genes were enriched in “interaction with host,”

“nucleocytoplasmic transport,” “nuclear transport,” “RNA

splicing,” and “regulation of translation” GO biological

processes (Figure 2A; Table S4). 'cadherin binding' was the

most significantly enriched pathway in molecular function

(MF) (Figure 2B; Table S5). The cellular component (CC)

pathways were enriched in “nuclear speckle,” “focal adhesion,”
B

A

FIGURE 1

Patterns of differential expression in paired PCa samples. (A) Volcano plot of the DEGs between paired benign and malignant prostate samples.
This graph is formed by plotting the log2(fold change) on the x-axis and calculating the -log10(adjusted p-value) along the y-axis. The red dots
indicate genes that are upregulated (with labelled names), the blue dots indicate genes that are downregulated (with labelled names), and the
black dots represent genes that are stable. The top 10 dysregulated genes were labelled. (B) Heatmap of the DEGs between the benign and
malignant prostate samples. The genes are clustered vertically. Using the colour legend bar on the right-hand side, red represents high gene
expression, green represents low gene expression, and black represents no gene expression. The expression values range from -2 to 2. DEG,
differentially expressed gene. PCa, prostate cancer; M, malignant; B, benign.
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“cell-substrate junction,” and “ribonucleoprotein granule”

pathways (Figure 2C; Table S6). KEGG pathway analysis

indicated that the hub genes participated in pathways

including “adherens junction,” “biosynthesis of amino acids,”

and “carbon metabolism” (Figure 2D; Table S7). The top 10

biological process GO terms and their assigned genes are shown

in Figure 2E.
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3.5 Protein–protein interaction network
and hub gene identification

The STRING database was used to construct the PPI

network of the 165 hub genes in the green module. The

resulting networks were further analysed and visualised in

Cytoscape using the plugin CytoHubba, with the MCC
B

C D

E

A

FIGURE 2

GO term analysis for differentially regulated genes. Dotplot for GO enrichment analysis in BP (A), MF (B), CC (C), and KEGG pathway analysis (D)
of the 165 hub genes in the green module. The larger the size of a dot, the greater enrichment of genes. The dot colour represents the -log10
(p-value). (E) Network chord plot between the BP-enriched GO terms and their corresponding hub genes. The top 10 terms are presented, and
the redder the box below the gene, the greater the log fold change. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
BP, Biological Process; MF, Molecular Function; CC, Cellular Component.
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algorithm for scoring gene connectivity (Table S8). The network

of the top 15 genes and their neighbour genes is presented in

Figure 3. The top 5 hub genes are HNRNPL, ELAVL1, PCBP1,

PCBP2, and PABPN1, and notably that all of these genes were

significantly enriched in the “RNA splicing” biological process

(Figure 2E). For further analysis, the top 5 hub genes and the five

identified DEGs were considered candidate genes.
3.6 Validation of candidate gene
expression

The expression levels of the candidate genes (HNRNPL,

ELAVL1, PCBP1, PCBP2, PABPN1, PTPRF, MRPL24, DANCR,

MYC, and TRPM4) were validated between tumour and normal

tissue samples in TCGA-PRAD dataset. These genes were

defined as candidates on the basis that they were identified as

“hub” genes in either the PPI network deriving from the most

significant WGCNA module or represented the minimal

differential expression signature required to distinguish

tumour from benign tissues in the expression dataset. All

genes, except for PTPRF, exhibited significantly altered

expression between tumour and normal samples, with eight

showing elevated expression {HNRNPL [p< 0.0001 and log2
Frontiers in Oncology 08
(FC) = 0.232], ELAVL1 [p< 0.0001, log2(FC) = 0.179], PCBP1

[p< 0.01, log2(FC) = -0.219], PCBP2 [p< 0.001, log2(FC) =

0.171], PABPN1 [p< 0.0001, log2(FC) = 0.529], MRPL24 [p<

0.0001, log2(FC) = 0.432], DANCR [p< 0.0001, log2(FC) =

0.859], MYC [p< 0.0001, log2(FC) = 0.840], and TRPM4

[p< 0.0001, log2(FC) = 1.738]; Figure S2}.
3.7 Construction of a five-gene signature
for predicting prognosis in prostate
cancer patients

A set of five genes (PCBP1, PABPN1, PTPRF, DANCR, and

MYC) was retained after applying LASSO (Lambda minimum =

0.009302712; Figures S3A, B) and multivariate Cox regression

analyses to the training cohort and was considered as an optimal

prognostic model for PFS of PCa patients (Table S9, Figure 4A).

In KM analysis, all five genes had significant differences between

high- and low-expression groups [PCBP1 (p = 0.004), PABPN1

(p< 0.001), PTPRF (p = 0.019), DANCR (p = 0.019), and MYC

(p = 0.040); Table S10]. Patients with high PABPN1 and MYC

gene expression had reduced PFS, whereas those with elevated

PCBP1, PTPRF, and DANCR expression demonstrated

improved PFS (Figures 4B–F). The predictive risk score was
FIGURE 3

Identification of highly connected hub genes in the PPI network. PPI networks derived from Cytoscape using the cytoHubba plugin and the
MCC algorithm for the 165 hub genes from the green module. Among the top 15 genes, the higher the MCC-based connectivity score is, the
redder the colour of the node (gene). Neighbour genes in the module are presented in green. PPI, protein–protein interaction; MCC, maximal
clique centrality.
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FIGURE 4

Construction of optimal gene signature and performance of the PFS survival risk score model. (A) Forest plot of the five genes in the signature.
(B–F) KM survival curves and log-rank test based on gene expression levels for the 5 genes in the signature. Boxplots of the signature risk score
between not progressed and progressed PCa patient groups in TCGA-PRAD training set (G) and TCGA-PRAD testing set (H). The significance of
the risk score difference between the two groups is interpreted as asterisks (ns, no significance, *p< 0.05, **p< 0.01, ***p< 0.001). KM survival
analysis and log-rank test based on the risk scores obtained in TCGA-PRAD training set (I) and TCGA-PRAD testing set (J). PFS, progression-free
survival; KM, Kaplan–Meier; PCa, prostate cancer; TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2022.914078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mou et al. 10.3389/fonc.2022.914078
calculated as follows: survival risk score = (-0.508*PCBP1) +

(1.026*PABPN1) + (0.363*PTPRF) + (-0.567*DANCR)

+ (0.372*MYC).
3.8 Evaluation of the model risk score

Our five-gene risk model showed a higher risk score in the

disease progression patient group compared to that of the

progression-free group in the training set (p< 0.001;

Figure 4G) and the testing set (p< 0.05; Figure 4H). In both

cohorts, the optimal separation value categorised patients

ranked with ascending risk scores into high- and low-risk

groups, and the number of progressed patients increased as

the risk score increased (Figures S4A, B). Moreover, the low-risk

patients showed better PFS than the high-risk patients

(p< 0.0001 and p = 0.00031 for the training and testing set,

respectively; Figures 4I, J). Differential expression of our

signature genes between the high- and low-risk groups

revealed that all five genes were differentially expressed in the

training set {PABPN1 [p< 0.0001 and log2(FC) = 0.505], MYC

[p< 0.01 and log2(FC) = 0.352], PCBP1 [p< 0.0001 and log2

(FC) = -0.341], PTPRF [p< 0.05 and log2(FC) = -0.159], and

DANCR [p< 0.001 and log2(FC) = -0.412]}, whereas only three

genes showed significant dysregulation in the testing set

{PABPN1 [p< 0.0001 and log2(FC) = 0.468], MYC [p< 0.05

and log2(FC) = 0.391], and PCBP1 [p< 0.01 and log2(FC) =

-0.239]} (Figure S6A). Other clinicopathological subgroups were

also evaluated in a similar way (Figures S6B–E). Time-

dependent ROC AUCs of 0.640, 0.646, and 0.674 (training set;

Figure 5A) and 0.775, 0.748, and 0.624 (testing set; Figure 5B)
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were determined for 1-, 3-, and 5-year PFS. The C-index in the

training set was 0.636 [95% confidence interval (CI): 0.554–

0.717] and 0.709 (95% CI: 0.616–0.802) in the testing set. The

calibration plots showed a high concordance between the

predicted and actual outcomes of 1-, 3-, and 5-year PFS in

TCGA-PRAD training set (Figure S5A), and 1- and 3-year PFS

in TCGA-PRAD testing set (Figure S5B).
3.9 Prognostic ability of the signature
with other clinicopathological factors

In this study, 291 and 125 patients remained after the

exclusion of incomplete clinicopathological records from the

training and testing sets, respectively. Our signature was

significantly associated with PFS in both TCGA-PRAD sets

[p< 0.001 and p = 0.0191, hazard ratios (HRs) = 2.57 (95% CI:

1.64–4.02) and 2.56 (95% CI: 1.17–5.61), respectively; Tables 3,

4; Figures 6A, C]. The multivariate Cox regression analysis, after

adjusting for covariate factors, demonstrated that the signature

remained significant in both cohorts [p< 0.001 and p = 0.0106,

HRs = 2.26 (95% CI: 1.42–3.59) and 3.38 (95% CI: 1.33–8.61),

respectively; Tables 3, 4; Figures 6B, D], suggesting that our

signature may be used as an independent prognostic factor to

predict PFS. The risk score of our signature demonstrated a

significantly higher risk in the Gleason group >7 (p< 0.05 in both

sets; Figures 6E, F). Moreover, the risk score of our signature

could significantly distinguish high- and low-risk patient groups

of progression within the subgroups of all selected

clinicopathological factors [i.e., Gleason score (≤7 vs. >7),

pathological T stage (T2 vs. T3–T4), and pathological N stage
BA

FIGURE 5

Five-gene signature evaluation of PFS in PCa patients. Time-dependent ROC curves assessing the five-gene signature performance for 1-, 3-,
and 5-year PFS in TCGA-PRAD training set (A) and TCGA-PRAD testing set (B). PCa, prostate cancer; PFS, progression-free survival; TCGA, The
Cancer Genome Atlas; PRAD, prostate adenocarcinoma; ROC, receiver operating characteristic.
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(N0 vs. N1) ] in the training set. The results revealed that high-

risk patients were associated with worse PFS rate than low-risk

patients (p< 0.05; Figures S7A–F Left panel). Similar results were

obtained from the testing set (p< 0.05; Figures S7A–F Right

panel), except for the Gleason score >7 subgroup (p = 0.059;

Figure S7B Right panel) and N1 stage subgroup (p = 0.06; Figure

S7F Right panel).
3.10 Nomogram construction and
prognostic model comparison

Gleason score was predictively associated with PFS of PCa

patients from both univariate and multivariate Cox regression

analyses in the training set [p< 0.001 and 0.00176, HRs = 3.53

(95% CI: 2.01–6.20) and 2.72 (95% CI: 1.45–5.09), respectively;

Table 3; Figures 6A, B] and the testing set [p< 0.001 and 0.00186,

HRs = 12.7 (95% CI: 3.79–42.8) and 7.60 (95% CI: 2.12–27.3),

respectively; Table 4; Figures 6C, D]. A nomogram consisting of

the signature risk score and Gleason score was built to predict a

PCa patient’s 1-, 3-, and 5-year PFS from the training set

(Figure 6G). The ROC AUCs for predicting 1-, 3-, and 5-year

PFS from the nomogram were 0.709, 0.752, and 0.734,

respectively, in the training set (Figure 7A) and 0.832, 0.837,
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and 0.847, respectively, in the testing set (Figure 7B). The C-index

of the nomogram was 0.701 (95% CI: 0.630–0.772) in the training

set and 0.803 (95% CI: 0.732–0.875) in the testing set. The

calibration plots of the nomogram also showed a satisfactory

agreement between the predicted and actual observed

probabilities of 1-, 3-, and 5-year PFS in the training (Figure

S8A) and the testing (Figure S8B) sets. This indicated that the

Gleason score enhanced our gene signature performance.

Additionally, having categorised the Gleason score into five

subgroups (i.e., 6, 7, 8, 9, and 10), the AUCs of the nomogram

had a slight improvement compared to the nomogram that

contains the Gleason score of two subgroups (i.e., ≤7 and >7) in

the training cohort (AUCs: 0.747 vs. 0.709, 0.772 vs. 0.752, and

0.756 vs. 0.734; Figures 7A, C), while the opposite was observed in

the testing cohort (AUCs: 0.832 vs. 0.832, 0.820 vs. 0.837, and

0.833 vs. 0.847; Figures 7B, D) for predicting the three time points.

The CPG scores of the PCa patients were calculated for both

the training set (Table S11) and the testing set (Table S12). In

this study, 304 patients (training set) and 127 patients (testing

set) were included to compare our gene signature and

nomogram with the CPG risk stratification model. The ROC

analysis demonstrated that our nomogram outperformed the

CPG model for 1-, 3-, and 5-year PFS predictions in the training

set (AUCs: 0.755 vs. 0.673; 0.749 vs. 0.683; 0.728 vs. 0.650;
TABLE 3 Univariate and multivariate analyses of the five-gene-based risk score and clinicopathological characteristics in TCGA-PRAD training set
(n = 291).

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value

TCGA-PRAD training set (n = 291)

Five-gene risk score 2.57 1.64 4.02 <0.0001 2.26 1.42 3.59 <0.001

Age (<60 vs. ≥60 years) 1.16 0.68 1.96 0.59 1.01 0.59 1.72 0.98

Pathological T stage (T2 vs. T3–T4) 2.81 1.33 5.92 0.01 1.81 0.81 4.07 0.15

Pathological N stage (N0 vs. N1) 1.59 0.88 2.86 0.12 0.82 0.44 1.55 0.55

Gleason score (≤7 vs. >7) 3.53 2.01 6.20 <0.0001 2.72 1.45 5.09 0.002
fronti
TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma; Age, age at diagnosis; T stage, tumour stage; N stage, lymph node status (N0 = without lymph node metastasis; N1 =
with lymph node metastasis); HR, hazard ratio; HR.95L/H, 95 confidence interval of hazard ratio lower/upper bound.
TABLE 4 Univariate and multivariate analyses of the five-gene-based risk score and clinicopathological characteristics in TCGA-PRAD testing set
(n = 125).

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value

TCGA-PRAD testing set (n = 125)

Five-gene risk score 2.59 1.17 5.617 0.02 3.38 1.33 8.61 0.01

Age (<60 vs. ≥60 years) 2.32 0.92 5.87 0.07 1.46 0.51 4.19 0.48

Pathological T stage (T2 vs. T3–T4) 9.47 2.70 33.2 <0.001 7.24 1.65 31.8 0.01

Pathological N stage (N0 vs. N1) 2.54 1.05 6.16 0.04 0.77 0.28 2.10 0.61

Gleason score (≤7 vs. >7) 12.7 3.79 42.8 <0.0001 7.60 2.12 27.3 0.001
TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma; Age, age at diagnosis; T stage, tumour stage; N stage, lymph node status (N0 = without lymph node metastasis; N1 =
with lymph node metastasis); HR, hazard ratio; HR.95L/H, 95 confidence interval of hazard ratio lower/upper bound.
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FIGURE 6

Application of the five-gene signature and nomogram construction to clinical practice. Univariate and multivariate Cox regression analyses of
the five-gene signature risk score, age of the PCa patients at diagnosis, pathological T stage (tumour stage), pathological N stage (Lymph node
status), and Gleason score in TCGA-PRAD training set (A, B) and TCGA-PRAD testing set (C, D). Boxplots based on risk scores between Gleason
scores ≤7 and >7 groups in TCGA-PRAD training set (E) and TCGA-PRAD testing set (F). The significance of the risk score difference between
the two groups is interpreted as asterisks (*p< 0.05). (G) Development of a nomogram to predict 1-, 3-, and 5-year PFS in the training set. PCa,
prostate cancer; PFS, progression-free survival; KM, Kaplan–Meier; TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma.
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Figures S9A–C) and 1- and 3-year PFS predictions in the testing

set (AUCs: 0.846 vs. 0.823; 0.846 vs. 0.790; Figures S9D, E). In the

training set, our nomogram alone predicted better than when it

was combined with the CPG score (AUCs: 0.755 vs. 0.737; 0.749

vs. 0.740; 0.728 vs. 0.701; Figures S9A–C). The predictive power

of the joint gene signature and the CPG model was superior to

the CPG alone for 1-, 3-, and 5-year PFS in the training set

(AUCs: 0.733 vs. 0.673; 0.733 vs. 0.683; 0.727 vs. 0.650; Figures

S9A–C) and the testing set (AUCs: 0.859 vs. 0.823; 0.859 vs.

0.790; 0.901 vs. 0.889; Figures S9D–F). For the prediction of 1-,

3-, and 5-year PFS in the training set, the gene signature had

higher AUCs than the T stage and PSA level (0.666 vs. 0.578 vs.

0.575, 0.664 vs. 0.609 vs. 0.570, 0.691 vs. 0.603 vs. 0.548,

respectively; Figures S9A–C). In both cohorts, we found that
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the nomogram outperformed the conventional clinical

parameters that defined the CPG model, including Gleason

score, pathological T stage, and PSA level, for predicting PFS

at 1-, 3-, and 5-year intervals (training set: AUCs: 0.755 vs. 0.680

vs. 0.578 vs. 0.575; 0.749 vs. 0.685 vs. 0.609 vs. 0.570; 0.728 vs.

0.641 vs. 0.603 vs. 0.548; Figures S9A–C; testing set: 0.846 vs.

0.770 vs. 0.754 vs. 0.474; 0.846 vs. 0.740 vs. 0.700 vs. 0.510; 0.876

vs. 0.826 vs. 0.799 vs. 0.495; Figure S9D–F).
4 Discussion

Prediction of the clinical course of disease remains a challenge

in managing PCa. In this study, we undertook transcriptome-wide
B
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A

FIGURE 7

Nomogram evaluation of PFS in PCa patients. Time-dependent ROC curves assessing the nomogram model performance for 1-, 3-, and 5-year
PFS, with the Gleason score classified into two subgroups (≤7 and >7) or five subgroups (6, 7, 8, 9, and 10) in TCGA-PRAD training set (A, C,
respectively) and TCGA-PRAD testing set (B, D, respectively). PCa, prostate cancer; PFS, progression-free survival; TCGA, The Cancer Genome
Atlas; PRAD, prostate adenocarcinoma; ROC, receiver operating characteristic.
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gene expression profiling of paired benign and malignant prostate

samples obtained from radical prostatectomy of nine patients with

histologically confirmed PCa. We carried out an integrated

bioinformatics analysis to identify DEGs and modules from our

self-generated Clariom D Human array data and constructed and

validated a novel five-gene-based signature risk model based on

the expression of the PCBP1, PABPN1, PTPRF, DANCR, and

MYC genes for PFS using a publicly available TCGA-PRAD

dataset. Our signature was able to stratify PCa patients into

high- and low-risk groups based on the entire patient

population and within some subgroups of the Gleason score,

pathological T stage, and pathological N stage. Our gene signature

also demonstrated good predictive power for PFS and remained as

an independent prognostic factor from the multivariate Cox

regression analysis after adjusting for clinicopathological factors

including age, pathological tumour stages T and N, and

Gleason score.

The combined signature and Gleason score nomogram gave

a good predictive performance for 1-, 3-, and 5-year PFS in

TCGA-PRAD training and testing sets and excellent calibration

plots in both data sets, indicating a potential clinical application.

Our nomogram consistently outperformed both the signature

and the CPG model alone for predicting 1-, 3-, and 5-year PFS.

The only exception is a 1.3% worse prediction of 5-year PFS in

the testing set compared to the CPG model, which is a result of

conducting the study exclusively on TCGA dataset. A higher

prediction accuracy was also observed when the gene signature

and CPG were combined compared to the CPG alone in

both sets.

Four out of the five genes in our signature have all previously

been implicated in malignancy. Poly(rC) binding protein 1

(PCBP1) has been demonstrated previously to be a PCa

tumour suppressor gene (39). Loss of PCBP1 can result in the

upregulation of genes such as mitogen-activated protein kinase 1

(MAPK1) and extracellular signal-regulated kinase 2 (ERK2),

which are overexpressed in PCa samples and known to be

involved in tumorigenesis and metastatic progression (40).

MYC is a well-established proto-oncogene that drives the

tumorigenesis of PCa, and its activation was reported to be

one of the first changes that occur just before or during the onset

of prostate intraepithelial neoplasia (41). MYC is known to be

expressed at high levels in the early stages of tumorigenesis, but

also in more advanced PCa cells compared to normal or benign

cells (42–44). Differentiation antagonizing non-protein-coding

RNA (DANCR) is a long non-coding RNA that is known to

enhance the invasion and metastasis of prostate cells by

repressing TIMP2/3, crucial inhibitors of PCa metastasis (45).

Downregulation of Protein tyrosine phosphatase, receptor type F

(PTPRF) expression has been reported in advanced tumour

stages and in poor OS prognosis in gastric cancer. Conversely,

overexpression of PTPRF has been shown to suppress gastric

tumour migration and invasion by deactivating ERK1/2

signalling (46). High expression of PTPRF has also been
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reported to reduce cell invasion, migration, and advanced

metastasis potential in breast cancer (47). Poly(A)-binding

protein nuclear 1 (PABPN1) is an RNA-processing gene.

Although no role for linear PABPN1 species in cancer has yet

been reported, a circular RNA deriving from this locus has been

reported to enhance colorectal cancer development by

attenuating the activity of the splicing factor SRSF1 via the

miR-638 axis (48).

GO enrichment analysis of the green module hub genes

uncovered a number of enriched biological processes, including

pathways linked to splicing processes and nucleocytoplasmic

transport (Figure 2A, Table S4). All of our PFS signature genes

had involvement in RNA splicing processes, and all of the 165 green

module hub genes were implicated in regulatory splicing functions,

processes, and pathways on the level of RNA. Aberrant alternative

splicing (AS) is a major feature of cancer (49). Abnormal AS

processes can activate and dysregulate the expression of

oncogenes, as well as deactivating tumour suppressor genes,

leading to cancer development and promotion of the progression

of malignancies (50, 51). Previous studies demonstrated that

abnormal AS machinery is strongly associated with the

progression and aggressiveness of PCa (52–54) and can result in

drug resistance in PCa cells [e.g., hormone resistance due to AS of

androgen receptor (AR)] (51, 55). Disrupted nucleocytoplasmic

transport processes have also been demonstrated to be associated

with the development of many cancer types, including PCa (56).

A number of molecular biomarkers have been identified to

predict different survival endpoints of the PCa patient, including

OS, DFS, and RFS. For example, a previous study (9) established a

Gleason score-related three-gene signature (CDC45, ESPL1, and

RAD54L) to predict OS (AUC = 0.606, 0.562, and 0.608 for 1-, 3-,

and 5-year OS in the GSE16560 dataset; AUC = 0.585, 0.552, and

0.495 for 1-, 3-, and 5-year OS in the GSE53922 dataset) and for

DFS (AUC = 0.765, 0.698, and 0.628 for 1-, 3-, and 5-year DFS in

the entire TCGA-PRAD dataset). MYC was overlapped between

our signature and an autophagy-related gene signature

(FAM215A, FDD, MYC, RHEB, and ATG16L1) for OS

prediction (AUC = 0.84 in TCGA-PRAD dataset) from the

study (57). Moreover, Gao et al. (58) proposed a signature

consisting of six RBPs (MSI1, LENG9, REXO2, PABPC1L,

MBNL2, and RNASE1) to predict 1-, 3-, and 5-year RFS in

TCGA-PRAD cohort (AUCs: 0.799, 0.736, and 0.714) and the

Memorial Sloan Kettering Cancer Center (MSKCC) cohort

(AUCs: 0.693, 0.708, and 0.708). Meng et al. (59) identified 11

genes that were associated with RFS and developed them into a

risk signature that could predict RFS over 1, 3, and 5 years in five

datasets (TCGA-PRAD: 0.717, 0.711, and 0.641; MSKCC: 0.908,

0.898, and 0.857; GSE116918: 0.936, 0.735, and 0.705; GSE70768:

0.816, 0.706, and 0.554; GSE70769: 0.858, 0.806, and 0.745).

Another study from Meng et al. (60) proposed a clinical and

gene-based signature, including Gleason score, pathology T stage,

KLF5, and KLF13, for the prediction of RFS over the same three

time points. The predictive value of the model was evaluated in
frontiersin.org

https://doi.org/10.3389/fonc.2022.914078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mou et al. 10.3389/fonc.2022.914078
three cohorts (TCGA-PRAD: 0.735, 0.696, and 0.785; MSKCC:

0.854, 0.845, and 0.722; GSE116918: 0.832, 0.574, and 0.635).

Some progression-related signatures have been reported in

advanced PCa. Previously, a 49 gene-based signature for

prediction of metastatic-lethal (ML) progression had AUCs of

0.76, 0.77, and 0.83 for the signature alone, the clinical factors

alone, and the combined models in the Fred Hutchinson (FH)

dataset (11). A two-gene signature based on KLK3 and BIRC5

expression was evaluated for predicting circulating tumour cell

(CTC) levels in metastatic castration-resistant PCa (mCRPC)

that produced an AUC of 0.74 from a set of 29 mCRPC and 19

healthy individuals (12). A collection of signatures were selected

and developed by a binary classifier, a support vector machine

(SVM), in order to predict different pairs of PCa progression

stages/substages (all AUCs >0.8) (13). In Hamzeh et al. (14) , a

selection of signatures were derived using SVM and achieved

high accuracy in their ability to predict three classes of tumour

locations in PCa (left: FBOX21, RTN1, NDUFA5, and POP7;

right: ALG5, Z99129, SNAI2, MRI1, and MAF7; bilateral: HLA-

DMB, SRSF6, and EIF4G2; all AUCs = 0.99).

However, none of the above progression-related signatures

were constructed using Cox regression (i.e., they were not

suitable for PFS prediction), but rather a less preferred logistic

regression or some other multi-level classification models, which

do not account for survival time and censoring data (61). In light

of this, we believe that our five-gene signature may be the very

first model suitable for 1-, 3-, and 5-year prediction of the PFS, as

well as its combined nomogram model.

A strength of our approach is the use of paired benign and

malignant samples from the same patients. Gene expression data

are frequently “noisy” and influenced by anthropometric and

lifestyle traits that can be difficult to control for even in a

multivariate fully adjusted model. The use of paired samples

reduces noise; samples will have been exposed to the same

confounding factors that gives us greater power than a standard

case–control design. The limitations of our study relate to the

restricted number of samples we were able to obtain for

transcriptomic profiling (which has been partially addressed

through replication in the publicly available TCGA-PRAD

dataset) and the relatively small amount of clinical data available

for each. These samples were collected as part of the routine clinical

care pathway in line with tissue bank ethics, so we were restricted by

data availability. However, although TCGA-PRAD dataset includes

sufficient samples, it is predominantly based on prostate specimens

from Caucasians (62), which may require extra attention when

applying our gene signature to PCa patients from other ethnicities.

Since our gene signature and nomogram were established and

validated using TCGA database, additional transcriptome-wide

datasets with a greater number of patients included and more

clinical information (specifically the PFI and the progression status)

are crucial for the external validation of our prognostic model.

Moreover, although the CPG model is a well-validated prognostic

tool for PCa, it was configured for predicting cancer-specific
Frontiers in Oncology 15
survival of non-metastatic PCa. In the future, it will be necessary

to conduct further studies to compare available models including

ours with other prognostic tools and assess the predictability of not

only PFS but also other survival endpoints, such as OS.

In conclusion, we have carried out a transcriptome-wide

expression profile in nine paired benign and malignant PCa

samples and constructed a novel five-gene-based prognostic

model (PCBP1, PABPN1, PTPRF, DANCR, and MYC) that is

capable of classifying PCa patients into high- and low-risk

groups with respect to PFS. Our gene signature has an effective

potential to predict PFS of PCa patients who have undergone

radical treatment and can be used as an independent prognostic

factor from some traditional clinicopathological factors. Our

nomogram alone resulted in an improved PFS prediction

performance than traditional clinical features in PCa,

including Gleason score, pathological T stage, and serum PSA

levels. Moreover, both the nomogram and the gene signature

combined with the CPG score model proved to be reliable

prognostic models and performed better than the CPG model

alone in predicting PCa PFS. Our signature may therefore have

clinical utility as prognostic biomarkers, potentially predicting

PFS in patients with PCa from small amounts of sample

material, and facilitate decisions regarding treatment options

for PCa patients. Future work should focus on validating our

models in additional ethnically diverse sets, predicting the PFS in

active surveillance PCa patient groups, and evaluating their

clinical utility in accessible tissues, such as blood or urine.
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