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Abstract: Public safety and health cannot be secured without the comprehensive recognition of
characteristics and reliable emergency response schemes under the disaster chain. Distinct from
emergency resource allocation that focuses primarily on a single disaster, dynamic response, peri-
odic supply, and assisted decision-making are necessary. Therefore, we propose a multiobjective
emergency resource allocation model considering uncertainty under the natural disaster chain. Re-
source allocation was creatively combined with path planning through the proposed multiobjective
cellular genetic algorithm (MOCGA) and the improved A* algorithm with avoidance of unexpected
road elements. Furthermore, timeliness, efficiency, and fairness in actual rescue were optimized by
MOCGA. The visualization of emergency trips and intelligent avoidance of risk areas were achieved
by the improved A* algorithm. The effects of logistics performance, coupling of disaster factors,
and government regulation on emergency resource allocation were discussed based on different
disaster chain scenarios. The results show that disruption in infrastructure support, cascading effect
of disasters, and time urgency are additional environmental challenges. The proposed model and
algorithm work in obtaining the optimal solution for potential regional coordination and resilient
supply, with a 22.2% increase in the total supply rate. Cooperative allocation complemented by
political regulation can be a positive action for successfully responding to disaster chains.

Keywords: natural disaster chain; emergency resource allocation; multiobjective optimization;
path planning

1. Introduction

Public safety and health have become prominent livelihood issues nowadays. China’s
14th five-year development plan clearly suggests that the evolution mechanism and in-
telligent control theory of multidisaster coupling are important fields for priority de-
velopment [1]. With the intensification in the suddenness, abnormality, and cascading
destruction of natural disasters, the consequences of the disaster chain are significantly
costly [2]. This phenomenon has attracted extensive attention from the international com-
munity. For example, both the Mekong Countries symposium and UK’s New Dimensions
program have been focusing on improving joint operational capacity in response to mul-
tiple disasters [3,4]. The allocation of emergency resources plays a crucial role in social
stability and life maintenance when the unexpected disaster chain occurs. In response to
the disaster chain, there is an urgent need to establish a new emergency resource allocation
pattern that can realize the linkage of resource sharing, coordination, and efficiency.

Previous studies have mainly concentrated on geologic genesis and multihazard
framework of disaster chains [5,6]. Scholars in different fields have studied emergency re-
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source allocation problems. Aalami and Kattan developed a method for resource allocation
to communities during evacuation processes and compared four problem variations [7].
Cavdur et al. developed a two-stage stochastic integer programming model with the first
stage assigning facilities and the second stage distributing supplies [8]. Sheu and Pan inte-
grated shelter network, medical network, and distribution network to support emergency
logistics operations in response to large-scale natural disasters [9]. Nevertheless, most of the
previous studies have been devoted to one-time disaster attacks [10]. Secondary disasters,
especially the resources competition and uncertainty caused by dramatic derivation, have
been ignored. Furthermore, the uncertainty in supply, delivery trips, and disaster evolution
need to be considered in allocation decisions.

Moreover, only one objective function has been considered in most previous stud-
ies. Liu et al. addressed the problem of emergency medical vehicle allocation in urban
areas to maximize the coverage of demand sites [11]. Other emergency resource schedul-
ing problems of single objective have been proposed and discussed [12–15]. However,
single-objective methods have a limitation that may severely restrict rescue operations.
The application of multiobjective approaches is scientific because actual emergency re-
sponse generally requires taking into account multiple operational objectives, such as
response time, resource efficiency, and supply fairness. Besides, the emergency resource
allocation problem is a Nondeterministic Polynomial-hard (NP-hard) problem. One of the
widely used solutions is to transform the multiobjective function into the single-objective
function [16,17]. Due to the lack of a convincing basis for objective parameters, this transfor-
mation faces some problems when carried out. The method to overcome this drawback is to
implement parallel optimization via heuristics [18]. Heuristic algorithms have been widely
adopted in logistics problems, such as ant colony optimization, tabu search algorithm, and
genetic algorithm [19–22].

The reliability and time costs of transportation paths are very important due to the
urgency of resource availability after a disaster [23]. Distance is commonly measured
by Euclidean distance and Manhattan distance [24–26]. For emergency travel time, most
studies have been derived from Global Information System or estimated from scenario
settings [27–30]. However, little research has been done on the problems arising from the
performance of dynamic road networks, and there is a research gap of combining resource
allocation with path planning. The A* algorithm and its modifications are the most classical
heuristic pathfinding methods and are applied to path planning for workshop robots [31].
In most cases, searching for the optimal path is equivalent to identifying the least costly
or fastest path [32]. However, the limitations of traditional pathfinding are highlighted
by the single pathfinding result, low intelligence, and large gap with manual selection.
The traditional A* algorithm can only avoid static obstacles, while a dynamic anti-collision
A* algorithm is proposed to solve the path planning problem with dynamic obstacles
in multiship encounter scenarios [33]. The simulation results show that the dynamic A*
algorithm can generate more reasonable dynamic and static obstacle avoidance paths
in complex traveling scenarios. The A* algorithm can be further improved so that path
planning can be properly integrated into emergency planning.

The framework for disaster risk reduction sets out priority objectives for managing
disaster risk and ultimately enhancing preparedness for effective response [34]. Considering
the relationship between society and environment, strategies to improve risk acceptance
and to motivate transformation in the context of changing disasters are proposed [35].
The key to disaster risk reduction is to reduce the exposure and vulnerability of people
and property to hazards without compromising the long-term prospects of communities
or countries. A critical component of disaster risk reduction is demand-led multidisaster
resilience [36]. However, few works have realized the key to save lives in disasters, i.e., the
ability to sustain relief [37]. Therefore, there is a significant need to reduce the risk of the
natural disaster chain through multiperiod emergency resource allocation.

In light of the above considerations, a multiobjective emergency resource allocation
model with path planning is proposed to be applied for the natural disaster chain in this
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study. From the results of this paper, the model performed well in dynamic decision,
periodic supply, and cascading response. Although the A* algorithm has been widely used
in many other fields, the provided perspective can be valuable in application for emergency
management. The multiobjective cellular genetic algorithm (MOCGA) was applied to
realize timeliness, effectiveness, and fairness of relief process and the A* algorithm was
improved to support path planning in the multiechelon road network.

The main contributions of this study are as follows: Firstly, an emergency resource
allocation model that integrates the multiobjective, multiperiod, and multiechelon network
is developed for the natural disaster chain under the uncertainties. Secondly, the inter-
connection of the improved A* algorithm and the MOCGA makes dynamic response and
periodic supply feasible. Thirdly, through a series of numerical study, the key points of
resource allocation in actual emergency relief are analyzed. The remainder of this paper is
organized as follows: The formulation of the proposed model and improved path planning
are described in Section 2. The multiobjective cellular genetic algorithm is presented in
Section 3. The numerical study of the three scenarios is analyzed in Section 4. In Section 5,
the conclusions and future scopes related to this work are given.

2. Problem Formulation
2.1. Problem Description

This paper concentrates on the multiperiod and multiobjective problem of emergency
resource allocation for the natural disaster chain, with the vehicle path problem for mul-
tiechelon logistics networks. Emergency resource allocation under the natural disaster
chain is complex and often accompanied with uncertainty and conflicting objectives. In
order to respond rapidly to the disaster chain, decision makers need better technical sup-
port and well-organized deployment of facilities. Responsiveness refers to distributing
the maximum supplies to the maximum number of beneficiaries at the right time [38].
Generally, national resource reserves are strategically placed throughout the country to
cover multiple disasters. Owing to the derivative scope and social impact of the natural
disaster chain, it is far from enough to depend on local relief facilities alone. Warehouses
can serve as cross-regional relief facilities and provide stored emergency resources for
rescue stations, which are closer to disaster sites. In addition, rescue stations play the role
of integrating transported resources and redistributing them to the corresponding disaster
sites. The disaster sites can be classified into primary and secondary ones according to the
cause of their outbreak.

Given the time-dependent demand, generic and specific resources need to be trans-
ported from multiple warehouses to each disaster site. The time, location, type, and
quantity of allocated resources must be given throughout the response phase. The purpose
of this study is to develop a dynamic decision process and periodic supply strategy for the
challenging problem. It is considered as a multiobjective model for emergency resource
allocation under the natural disaster chain. A three-echelon emergency logistics network is
constructed, consisting of warehouses (WHs), rescue stations (RSs), primary disaster points
(PDPs), and secondary disaster points (SDPs).

Although secondary disasters are induced by primary disasters in the chain structure,
the disaster types and required emergency resources often differ. For example, the natural
disaster chain of landslide-induced surge is a widespread form in mountainous and gorge
areas, coastal areas, and reservoir areas [39]. Related secondary disasters resulting from
the consequences of strong earthquake damage include landslides, floods, mudslides, fires,
and pollution, etc. The need for generic and specific resources in response to the disaster
chain makes the trade-off difficult. The uncertainty arises from the disaster derivation and
information asymmetry in the subsequent decision. Thereby, fuzzy sets are employed to
represent the fluctuation intervals in the supply and demand. The single transportation
mode is considered, and the travel time is derived from planned paths on the raster map,
which is in relation to the distance and road conditions. Moreover, the recirculation of
resource flows is avoided in the logistics network.



Int. J. Environ. Res. Public Health 2022, 19, 7876 4 of 19

• Sets.

I: Set of WH, indexed by i.
J: Set of RS, indexed by j.
K: Set of PDP, indexed by k.
S: Set of SDP, indexed by s.
T: Set of time periods, indexed by t.
H: Set of emergency resource types, indexed by h.

• Parameters.

G̃h,t
i : The quantity of emergency resources h supplied by WH i in time period t.

D̃h,t
k : The quantity of emergency resources h PDP k demands in time period t.

D̃h,t
s : The quantity of emergency resources h SDP s demands in time period t.

di,j: The distance between WH i and RS j.
dj,k: The distance between RS j and PDP k.
dj,s: The distance between RS j and SDP s.
ps: The probability of secondary disaster at SDP s.

• Variables.

xh,t
i,j : The quantity of emergency resources h from WH i to RS j in time period t.

xh,t
i,j ∈ N.

xh,t
j,k : The quantity of emergency resources h from RS j to PDP k in time period t.

xh,t
j,k ∈ N.

xh,t
j,s : The quantity of emergency resources h from RS j to SDP s in time period t.

xh,t
j,s ∈ N.

Uh,t
k : The quantity of unsatisfied demand h of PDP k in time period t. Uh,t

k ∈ N.
Uh,t

s : The quantity of unsatisfied demand h of PDP s in time period t. Uh,t
s ∈ N.

2.2. Defuzzification

The allocation of emergency resources under the natural disaster chain is noted as in-
herently difficult and constitutes a spatiotemporal decision under uncertainty. As a method
to describe uncertainty phenomena, fuzzy sets are frequently used in production and life,
such as fuzzy control systems and fuzzy classification [40–42]. In order to reflect uncertainty

in the rescue process of the disaster chain, the triangular fuzzy number G̃h,t
i , D̃h,t

k , D̃h,t
s

and the subsequent defuzzification approach are employed [43]. Take G̃h,t
i as an example,

G̃h,t
i =

([
Gh,t

i

]1
,
[

Gh,t
i

]2
,
[

Gh,t
i

]3
)

, where
[

Gh,t
i

]1
,
[

Gh,t
i

]2
,
[

Gh,t
i

]3
are the pessimistic, normal,

and optimistic values of a fuzzy number, respectively. The conversion is then executed according to the

weighted method, G̃h,t
i =

([
Gh,t

i

]1
,
[

Gh,t
i

]2
,
[

Gh,t
i

]3
)
= ω1

[
Gh,t

i

]1
+ ω2

[
Gh,t

i

]2
+ ω3

[
Gh,t

i

]3
,

where ω1 + ω2 + ω3 = 1. In essence, the values of pessimistic, normal, and optimistic
situations are estimated from years of disaster data.

2.3. Path Planning with Improved A* Algorithm

Path planning can support allocation decisions to avoid risky road sections and obtain
optimal distribution trips and corresponding travel times. The regional road network is at
risk of disaster chain disruption. It is necessary to optimize the timeliness and reliability
of emergency resource transportation to ensure resources can safely reach primary and
potential secondary disaster sites in time. From the actual disaster disposal, logistics access
scenarios should be set up to reflect potential road interruptions and blockages.
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The A* algorithm is organically combined with the raster map and road reliability is
added to the traditional shortest path search. The purpose of path planning is to find the
optimal path that meets the practical requirements from the starting nodes to the target
nodes in the road network. The logistics network is abstracted as a directed connectivity
graph G = (V, R, P), where V is the set of nodes, R is the set of connection arcs between
nodes, and P = {Pc|c = 1, 2, . . . , C} is the set of arc resistances.

Maps with arbitrary contours can be drawn with sufficiently fine raster to simulate the
real road environment. Each raster is colored differently to characterize the specific physical
entity. There are three directions for path planning based on raster maps: horizontal,
vertical, and diagonal. For low-speed robots, the planned path can be followed exactly,
while for medium- and high-speed robots, the planned path can be smoothed for non-fully-
constrained systems.

Based on the estimated cost, A* algorithm iterates from the initial state through state n
to the target state. The search process of the evaluation function is shown in Figure 1, where
g(n) is the actual cost from the initial state to state n in the state space, representing the
information blocks near the start node; h(n) is the ideal estimated cost from state n to the
target state, representing the information blocks near the target node. The total cost f (n)
equals the sum of g(n) and h(n), f (n) = g(n) + h(n). Two list sets are defined: openList
and closeList. The movement cost f (n) of the subnodes around the start node is evaluated
and the node with the smallest cost is selected and added to the closeList. This operation is
repeated in the openList and the parent node is updated. Once the target node is searched,
the path search is completed.

A

I
4014

54

F
3010

40

D
4014

54

C
5010

60

H
5010

60

E
5010

60

B
6014

74

G
6014

74

T

f(n)

h(n)g(n)

Start node

Target node

Sub-nodes

Obstacles

f(n)=g(n)+h(n)

openList={B,C,D,E,G,H,I}    closeList={A,F}

g(n): Actual cost from 

initial state to state n

h(n): Ideal estimate cost 

from state n to target state

Figure 1. A* algorithm evaluation function search.

Based on the traditional shortest path planning, the A* algorithm is modified to
overcome the poor flexibility and low applicability of single-objective pathfinding, which
can only avoid static obstacles. The improved algorithm for the avoidance of random
obstacles can simulate the unexpected road elements that may occur during the allocation of
emergency resources, such as road disruption and blockage. Two main planning objectives
are concerned, reflecting the timeliness and reliability of the trips. Trip efficiency refers
to optimizing the actual travel time of the distribution vehicle, measured by the raster
from start nodes to target nodes. Trip reliability refers to avoiding risky road sections
and reducing trip exposure. Road section reliability is translated into a safety factor for
each raster.
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2.4. Multiobjective Emergency Resource Allocation Model

The problem of emergency resource allocation is modeled to obtain a robust and
scientific scheme to the disaster chain. The social and humanitarian attributes of the disaster
chain relief dictate that the process is inevitably accompanied by multiple conflicting
objectives. As an essential evaluation index of rescue schemes, timeliness determines
whether the disaster sites can be allocated in time. According to the consensus of the
rescue community, the golden relief time after a natural disaster is 72 h, after which the
survival rate decreases significantly. It is necessary to avoid delays in the availability of
resources. Furthermore, the complexity of the rescue network and the diversity of resource
demand make it difficult to decide on a reasonable allocation solution. In the process
of emergency resource allocation in the natural disaster chain, the demand comes from
the primary disaster points and secondary disaster points, which is reflected in the types
and quantity. Emergency resource allocation is a special logistics activity to scientifically
distribute emergency resources from the warehouses to each disaster area. However,
the supply of emergency resources from the warehouses is often limited at the initial
stage. The excessive influx of emergency resources can result in wasted supplies, while
insufficient resources can lead to further casualties and losses. Consequently, delivery time
and unsatisfied demand are taken as multiple objectives for the model.

Different from the commercial logistics problem, the proposed emergency resource
allocation emphasizes both the timeliness and the effectiveness of schemes. The optimal al-
location scheme is in compromise between different evaluation indexes. The multiobjective
model for emergency resource allocation is proposed as follows:

Min ∑t∈T∑i∈I∑j∈J∑h∈H
xh,t

i,j di,j +∑t∈T∑j∈J∑k∈K∑h∈H
xh,t

j,k dj,k

+∑t∈T∑j∈J∑s∈S∑h∈H
psxh,t

j,s dj,s

(1)

Min ∑t∈T∑k∈K∑h∈H
Uh,t

k +∑t∈T∑s∈S∑h∈H
Uh,t

s (2)

Subject to

xh,t
i,j , xh,t

j,k , xh,t
j,s ≥ 0, i ∈ I, j ∈ J, k ∈ K, s ∈ S, h ∈ H, t ∈ T (3)

∑t∈T∑j∈J
xh,t

i,j ≤ G̃h,t
i , j ∈ J, t ∈ T, h ∈ H (4)

Uh,1
k = D̃h,1

k −∑j∈J
xh,1

j,k , k ∈ K, h ∈ H (5)

Uh,t
k = D̃h,t

k −∑j∈J
xh,t

j,k + Uh,t−1
k , k ∈ K, h ∈ H, t ∈ T, t ≥ 2 (6)

Uh,1
s = D̃h,1

s −∑j∈J
xh,1

j,s , s ∈ S, h ∈ H (7)

Uh,t
s = D̃h,t

s −∑j∈J
xh,t

j,s + Uh,t−1
s , s ∈ S, h ∈ H, t ∈ T, t ≥ 2 (8)

∑j∈J
xh,1

j,k ≤ D̃h,1
k , k ∈ K, h ∈ H (9)

∑j∈J
xh,t

j,k ≤ D̃h,t
k + Uh,t−1

k , k ∈ K, h ∈ H, t ∈ T, t ≥ 2 (10)

∑j∈J
xh,1

j,s ≤ D̃h,1
s , s ∈ S, h ∈ H (11)
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∑j∈J
xh,t

j,s ≤ D̃h,t
s + Uh,t−1

s , s ∈ S, h ∈ H, t ∈ T, t ≥ 2 (12)

∑i∈I
xh,t

i,j ≥∑k∈K
xh,t

j,k +∑s∈S
xh,t

j,s , h ∈ H, j ∈ J, t ∈ T (13)

Equation (1) represents the timeliness of the model, labeled as F1, with the aim of
minimizing the emergency travel time, which is related to transported resources and road
conditions among sites. Equation (2) represents the efficiency of the model, labeled as F2,
with the aim of minimizing the unsatisfied demand from PDPs and SDPs, which is related
to the amount of supplied resources. Equations (3)–(13) are the feasibility constraints.
Considering the availability of realistic assumptions, the transportation flow is ensured to
be unidirectional by Equation (3). The quantity of transported resources is limited to the
supply of WHs by Equation (4). Equations (5)–(8) are used to determine the quantity of
unsatisfied demand of PDPs and SDPs at each period. Equations (9)–(12) are used to limit
the quantity of resources to PDPs and SDPs no more than their demand at each period.
The quantity of resources to PDPs and SDPs is no more than the resources available to RSs,
as shown in Equation (13).

3. Multiobjective Cellular Genetic Algorithm

The emergency resource allocation problem is NP-hard and many heuristic algorithms
have been used to solve this problem. Compared to other algorithms, MOCGA is equipped
with the domain structure and evolutionary mechanism to achieve the balance between
local and global optimization [44,45]. The quality and diversity of the optimal solution
set at convergence are guaranteed. Its excellent optimization performance has led to its
application in many fields [46–48]. Thus, MOCGA is chosen to optimize the multiobjective
model for emergency resource allocation to provide comprehensive and valuable schemes.
The flowchart of MOCGA is shown in Figure 2.

i-1,j

i,j+1

i,j

i,j-1

i+1,j

1. Filtration

2. Selection

3. Evolutionary operation 4. Combination

5. Sorting

Parents

Offspring

Auxiliary 

population

Initialization

gen=0

Output

A1 A2 A3 A4 A5A

B1 B2 B3 B4 B5B

A’ B1 A2 B3 A4 A5

A’ B1 A2 B3 A4 A5

A’ C1 A2 B3 D4 A5

Cross

Mutation

Y

N

If gen=maximum ?

Figure 2. The structure and procedure of MOCGA.

3.1. Chromosome Coding and Initialization

Real number coding is adopted because it can reflect resource flow during the rescue
process. Each chromosome of MOCGA determines an allocation scheme and indicates the
emergency resource flows between WHs, RSs, PDPs, and SDPs. Thus, each chromosome in
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period t is represented as Ct =
{

C1
t , C2

t
}

, where the former part C1
t determines the resources

for RSs, C1
t =

(
x1,t

1,1 · · · x
1,t
I,1 · · · x

1,t
I,J · · · x

H,t
I,J

)
, and the latter part C2

t determines the resources

for PDPs and SDPs, C2
t =

{(
x1,t

1,1 · · · x
1,t
J,1 · · · x

1,t
J,K · · · x

H,t
J,K

)}
,
(

x1,t
1,1 · · · x

1,t
J,1 · · · x

1,t
J,S · · · x

H,t
J,S

)}
.

The chromosomes are initialized randomly to ensure the diversity. Constraints are
attached to make chromosomes comply with the actual conditions. When the former

part C1
t is initialized, xh,t

1,1 is generated in the range
(

0, G̃h,t
i

)
and xh,t

i,j is generated in the

range
(

0, G̃h,t
i −∑

j−1
j=1 xh,t

i,j

)
. When ∑

j
j=1 xh,t

i,j > G̃h,t
i , xh,t

i,j = 0; if it does not match the

constraints, it will be set to 0. When the latter part C2
t is initialized, xh,t

j,k is generated

in the range
(

0, ∑i∈I xh,t
i,j −∑k−1

k=1 xh,t
j,k

)
and it will be set to 0 if ∑k

k=1 xh,t
j,k > ∑i∈I xh,t

i,j . xh,t
j,s

is generated in the range
(

0, ∑i∈I xh,t
i,j −∑k∈K xh,t

j,k −∑s−1
s=1 xh,t

j,s

)
and it will be set to 0 if

∑s−1
s=1 xh,t

j,s > ∑i∈I xh,t
i,j −∑k∈K xh,t

j,k .

3.2. Fitness Evaluation and Selection

In order to evaluate the fitness for multiobjective optimization, the chromosomes
undergo rapid nondominated sorting [49]. The fitness of chromosome Fitness(C) is defined
according to the layer and crowding distance. The chromosomes with lower fitness are
considered to be superior.

There are two types of selection in the algorithm iteration. The first one is for the
evolutionary operation. In the two-dimensional grids, the selection is conducted within the
set π, which consists of the central cell (Ct)i,j and its neighborhood structure. The selection
probability is represented as Pi,j = Fitness(Ct)i,j/ ∑x,y∈π Fitness(Ct)x,y. It differs from the
genetic algorithm in that the operation is restricted to the set π and diverse populations.
The other is to select the optimal chromosome from the Pareto front θ for the next period of
optimization, as shown in the following equations [50]:

αi =


1 Fi ≤ Fmin

i
Fmax

i −Fi
Fmax

i −Fmin
i

Fmin
i < Fi < Fmax

i , i ∈ N.

0 Fi ≥ Fmax
i

(14)

α(m) =
∑i∈N αi(m)

∑m∈θ ∑j∈N αj(m)
(15)

where N is the number of objective functions, Fi is the value of the objective function i, and
Fmax

i and Fmin
i represent the minimum and maximum value of Fi in the Pareto front θ.

3.3. Constraints Handling

Since the proposed emergency resource allocation model is a constrained one, it
is critical that the optimal scheme obtained is feasible. Accordingly, the evolutionary
process is subject with constraints handling so that the generated chromosome Ct

∗ is fea-
sible. If evolutionary operation is conducted in the resource flow between WHs and RSs,

∑c∈(K∪S) xh,t
b,c −∑i∈I,i 6=a xh,t

i,b ≤ xh,t
a,b
∗ ≤ G̃h,t

a −∑j∈J,j 6=b xh,t
a,j . It maintains a balance between re-

source flow out of WHs and into RSs. If the evolutionary operation is conducted in the resource flow

between RSs and PDPs or SDPs, D̃h,t
b −∑c∈J,c 6=a xh,t

c,b ≤ xh,t
a,b
∗ ≤ ∑i∈I xh,t

i,a −∑c∈(K∪ S),c 6=b xh,t
a,c.

It maintains the balance between resource flows out of RSs and into PDPs or SDPs.
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4. Numerical Study

In connection with the actual situation of the disaster chain, the in-depth study of the
emergency resource allocation process is a prerequisite for effective control of catastrophe
risks. Logistics network is an important element of emergency relief. The research trend
on disaster chain is associated with the dynamic simulation of the cumulative amplifi-
cation effect. Government regulation is the ultimate attribution of disaster management.
To verify whether the above elements play a positive or negative role in disaster chain
system, three numerical scenarios related to logistics performance, coupling of disaster
factors, and government regulation were analyzed. The main practical problems faced
in emergency response of the disaster chain were identified, and theoretical support and
effective measures were explored.

4.1. Road Network Visualization

Road network construction and path planning are performed by means of the im-
proved A* algorithm with the raster map. To model the practical road network, the grids
represent different physical entities. Green grids represent rescue stations, red grids repre-
sent primary disaster points, yellow grids represent secondary disaster points, blue grids
represent warehouses, gray grids represent fixed obstacles, and light-yellow grids represent
unexpected road elements. It enables visualization of paths among points and the flexibility
to avoid unexpected road conditions. The planned paths from Rescue Station j1, j2, and j3
to each site and the paths’ overview are shown in Figures 3–6.

The distances among WHs, RSs, PDPs, and SDPs are determined based on the planning
results, as shown in Table 1. At the same time, the important nodes in the road network
can be analyzed from the path generation, providing theoretical support for the reliability
of emergency transportation.

Fixed Obstacles

Rescue Stations J

Primary 

Disaster Sites K

Secondary 

Disaster Sites S

Warehouses I

Unexpected 

Road Elements

i1

i2

j1

s2

k1

Planned Path 

From j1

s1

k2

k3

Figure 3. Paths from Rescue Station j1 to each site.
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Figure 4. Paths from Rescue Station j2 to each site.
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Figure 5. Paths from Rescue Station j3 to each site.
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Secondary 
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Unexpected 
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From j1

Planned Path 

From j2

Planned Path 

From j3

i1

i2

j1

j2

j3

s2

k3

s1

k2

k1

Figure 6. Paths’ Overview.

Table 1. The distances between WHs, RSs, PDPs, and SDPs.

I1 I2 K1 K2 K3 S1 S2

J1 50 29 35 37 45 18 41
J2 24 30 43 35 39 32 22
J3 22 47 55 42 35 47 12

Notes: J1, J2, J3 represent the rescue stations; I1, I2 represent the warehouses; K1, K2, K3 represent the primary
disaster points; S1, S2 represent the secondary disaster points.

4.2. Scenarios Design and Study

The actual disaster chain fluctuates due to risk environment and system factors.
The proposed model and algorithm are validated with numerical scenarios. The literature
research is followed to summarize some key perspectives of general interest nowadays.
Three scenarios related to disaster relief operations are included, i.e., logistics performance,
coupling of disaster factors, and government regulation.

4.2.1. Parameters and Data

In the algorithm’s preselection, it is found that the Pareto front of MOCGA fully domi-
nates the nondominated sorting genetic algorithm (NSGA-II). The algorithm parameters of
MOCGA are set as follows: The area of cell space is set to 12 × 10, the population size is
set to 120, the maximum number of iterations is set to 500, the probability of crossover pc
is set to 0.6, and mutation pm is set to 0.9. The probability of secondary disasters in each
site is randomly set to (0.7, 0.5). The supply of WHs and the demand from PDPs and SDPs
are shown in Tables 2 and 3, which can be generated by the population of disaster sites.
In reality, the probability of secondary disasters, supply, and demand can be estimated
based on rescue records over the years.
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Table 2. Supply of WHs in different periods.

H1 H2

I1 I2 I1 I2

T = 1 (90,100,110) (75,80,95) (25,30,35) (55,60,65)
T = 2 (130,150,170) (50,60,70) (40,50,60) (50,50,50)

Table 3. Demand of PDPs and SDPs in different periods.

H1 H2

K1 K2 K3 S1 S2 S1 S2

T = 1 (55,60,65) (60,70,80) (45,50,55) (25,30,35) (15,20,25) (65,70,75) (45,50,55)
T = 2 (40,50,60) (75,80,85) (35,40,45) (0,0,0) (50,60,70) (65,70,75) (25,30,35)

4.2.2. Logistics Performance of the Hierarchical Network

This section investigates the influence of logistics access performance on the objec-
tive functions. Through path planning, a specific area in the central–eastern part of the
map is identified as having the highest traffic load. The transportation road network
with the collapsed key hub is shown in Figure 7. It can be noted that detours become
inevitable. The disrupted multiechelon logistics network poses a challenge to emergency
transit activities.

Fixed Obstacles

Rescue Stations J

Primary

Disaster Sites K

Secondary 

Disaster Sites S

Warehouses I

Unexpected 

Road Elements

Planned Path 

From j1

Planned Path 

From j2

Planned Path 

From j3

i1

i2

j1

j2

j3

s2

k1
Traffic 

Control Area

s1

k2

k3

Figure 7. Detours when the key transportation hub fails.

The breakdown of the transportation hub results in an overall suboptimal allocation of
emergency resources, both in terms of unsatisfied demand and the time cost. A comparison
of the population scatter in period T = 1 and period T = 2 is shown in Figure 8a,b.
The Pareto front of normal road network dominates the distribution of detour. The unmet
demand increases by 16.1%, yet delivery time is only 1.4% lower than the original base.
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(b)(a)

Figure 8. Population scatter comparison of the secondary disaster in period (a) T1 and (b) T2.

Notably, it validates the environmental challenges raised through semistructured
interviews with disaster management agencies [51]—that is, unexpected events, disrup-
tions in infrastructure support, cascading effect of disasters, and time urgency become
additional environmental pressures on relief actions. Pre-emptive maintenance of critical
infrastructure serves better than temporary rerouting on wartime. It suggests that the
development of resilient infrastructure, with a shift from remediation to preparedness, will
greatly contribute to withstanding the effects of environmental damage.

4.2.3. Coupling Effect of Disaster Chain Factors

The overall disaster situation is often not a simple superposition of several individual
disasters [52]. The disaster chain is a complex disaster system composed of the causative
factors chain, gestation environment, and the disaster-bearing body. A disaster situation is
formed by the complicated coupling in time and space of characteristics, such as the hazard
of causative factors, the instability of gestation environment, and the vulnerability of the
disaster-bearing body.

It is found that the gestation environment in a disaster chain is often modified by
the preceding disaster type. With different hazards in the natural disaster chain, the
vulnerability and exposure of the disaster-bearing body are not simply linear superposition.
The causative factors chain formed by the interaction among hazards is often constrained
by the gestation environment. The feedback effects of the disaster-bearing body on the
causative factors chain are complex and it can be transformed into a causative factor under
some conditions. The triggering of causative factors chain makes it possible for the disaster-
bearing body to be subject to multiple forms of attacks, resulting in the concurrent and
cascading phenomenon with disasters’ cumulative amplification.

This section describes the challenges posed by a disaster’s cumulative amplification
on the allocation of emergency resources. Due to disaster-bearing properties, S1 is sensitive
to the disaster propagation of K1. K2 is located in the middle of K1 and K3, and its gestation
environment changes subsequently. Based on the analysis of disaster cases, the typical
characteristics of the natural disaster chain are classified as cumulative action type, short-
term action type, and dynamic action type. The demand of S1 and K2 changes at a particular
time, which in turn changes the supply and demand. Accordingly, it is assumed that
the demand of S1 changes in the second period and the demand of K2 changes in the
first period.

Observing the initial relief capacity, the supply/demand ratio RH1
T1

of resource H1 in

period T1 is 85.7%. The ratio RH2
T1

of resource H2 in period T1 is 75.0%. The ratio RH1
T2

of
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resource H1 in period T2 is 91.3%. The ratio RH2
T2

of resource H2 in period T2 is 100.0%.

Then, the tight supply and shrinking supply–demand ratio occur with RH1
T1

, RH1
T2

, and RH2
T2

updated to 62.5%, 79.2%, and 83.3%, respectively.
Comparing the results of emergency resource allocation under the scenarios, the

supply increases to a certain extent when the proportion of demand increases at the
corresponding disaster site. The total supply increases by 2.6% over the original, yet its
overall unmet demand increases by 8.84% with a slight rise in travel time of 1.6%. As shown
in Figure 9, the great majority of initial resource supply rates are higher than those after
disaster amplification. When supply and demand are adjusted, resources tilt toward units
with high demand and low distribution time costs. Nevertheless, this cannot address the
sudden surge in relief needs and may further create imbalances in distribution rates across
sites, ultimately leading to a social problem of regional inequity.

Gestation 

Environment

Disaster-bearing

Body

Gestation 

Environment

K2
S1

Causative Factor Causative Factor

Disaster-bearing

Body

Figure 9. Allocation of emergency resource under the initial scenario and the case.

4.2.4. Political Intervention in Disaster Chain Disposal

In the events of supply–demand imbalance or disaster coupling amplification, as
simulated above, intervention mechanisms are needed to bring them back into balance.
Ultimately, political intervention can generate informative solutions, as disposal of disasters
are political spaces [53]. This section examines the role government intervention plays and
how some risks can be eliminated through what additional resource capacity.

The government’s newly assigned budget is maximized for its effectiveness. In the
meantime, relief fairness, specifically regional allocation rates, is also an important factor of
government regulation that decision makers should have to take into account. Government
departments increase the supply of corresponding emergency resources by setting up
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additional warehouses at suitable locations. The objective expression of minimizing the
maximum demand unsatisfied rate is introduced to measure the regional allocation fairness,
as defined by Equation (16). As can be observed from Table 4, these initiatives promote
supply in general and balance the distribution of social resources in a local sense.

Min
(

Max
(

Uh,t
k , Uh,t

s

))
, k ∈ K, s ∈ S, h ∈ H, t ∈ T (16)

Table 4. Allocation of emergency resource under changes in supply and demand ratios.

Disaster Sites K1 K2 K3 S1 S2

Period T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

Demand/H1 60 50 70→ 128 80 50 40 30 0→ 35 20 60
Supply/H1 59 49 127 80 49 40 16 31 15 41

Demand/H2 / / / / / / 70 70→ 90 50 30
Supply/H2 / / / / / / 49 80 26 27

Figure 10 displays the resource availability during the rescue process. The demand
surge for emergency resource H1 from PDP K1 is supported by additional WH I3 in period
T = 1. The burst resources demand for H1 and H2 from SDP S1 is supported by WH I1
with supplementary resource in period T = 2. The supply is balanced and the total supply
increases by 22.2%. The allocation of emergency resources under the natural disaster chain
is a complicated decision with periodicity and fluctuation. Therefore, scientific policy
support and modeling methods are necessary to provide decision makers with the optimal
allocation scheme.

Figure 10. The resource flows of optimal rescue scheme.

As can be observed intuitively from the delivery flow displayed in Figure 11, there
is potential regional coordination in the optimal emergency resource allocation decision.
Under the multiobjective constraint, warehouses, rescue stations, and disaster sites are
matched with each other. For example, there are three main supply chains of “WH I1—RS
J3—PDP K3”, “WH I2—RS J1—PDP K1”, and “WH I3—RS J2—PDP K2”. From the per-
spective of government managers and logistics operators, this section has the following
two implications. On the one hand, government managers can further divide the relief
blocks and coordinate cross-regional transportation. Through the collaboration of logistics
facilities and multiple supply routes, a positive circulation between regions can be formed
and the normal supply of living materials can be ensured. On the other hand, the logis-
tics operators in the collaborative distribution pattern can utilize the tense transportation
resources. Reducing the “marginal cost” of cross-regional transportation through service
sharing is especially important in the middle and late stages of relief.
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Figure 11. Optimized delivery flow network with additional resources in T = 1.

5. Discussion and Conclusions

A multiobjective emergency resource allocation problem under the natural disaster
chain was presented from methodology and operational research. The key scientific issues
in disaster chain response were realized, such as dynamic response system, multilevel
resource coordination, and emergency auxiliary decision. The resource allocation was
creatively combined with path planning through the proposed MOCGA and improved A*
algorithm with the raster map. MOCGA was applied to achieve parallel optimization of
timeliness, efficiency, and fairness in humanitarian relief. The A* algorithm was improved to
visualize and intellectualize the resource flow and maintain the trip reliability. The proposed
model and algorithm can provide the optimal and scientific solution for emergency resource
allocation in response to the natural disaster chain, coping with the uncertainty in rescue.

To further explore the identification and elimination of actual risks faced by decision
makers, numerical studies were conducted under scenarios of logistics performance, cou-
pling of disaster factors, and government regulation. When an important transportation
hub in the original three-echelon logistics network fails, the efficiency of resource avail-
ability is greatly reduced. Thus, the overall performance of the scheme is affected by a
16.1% increase in unmet demand. Besides, the coupling of the causative factors chain,
gestation environment, and disaster-bearing body in the disaster chain system brings ad-
ditional resource allocation fluctuations. The overall unmet demand increases by 8.84%
with a slight rise in travel time of 1.6%. If the supply cannot be kept up in time, it will
trigger a serious break in the disaster relief loop. While neglecting regional distribution
balance, the pursuit of resource supply efficiency at the macro level is also detached from
the principle of postdisaster relief. In the subsequent analysis, the role of government regu-
lation is added and reflects the fairness pursued by society. The government departments
respond in real time and reallocate additional social resources as the disaster situation
develops. The supply is balanced and the total supply rate increases by 22.2%. Therefore,
the derivation of disaster situations is controlled by supplemental social resources, and
forms potential regional coordination.

Disruption in infrastructure support, cascading effect of disasters, and time urgency
are challenges imposed by the environment. The results show that the interconnection of
A* algorithms and MOCGA is suitable and practically usable. The critical transportation
hub derived by the A* algorithm and resilient supply mechanism provided by MOCGA
play a key role in risk avoidance and resource availability. Vehicle path planning is the
prerequisite and emergency resource allocation is the goal, thus forming a closed loop
for the response of the actual natural disaster chain. Resilient infrastructure and supply
schemes shift from remediation to preparedness, contributing significantly to overcome
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environmental damage. In this way, resilient and sustainable regions are formed in disaster
prevention. The potential coordination of regional facilities and supply routes can be quite
beneficial to both managers and operators in creating a virtuous circle between regions
and reducing the “marginal cost” of cross-regional transport. In conclusion, the optimal
allocation solution complemented by political intervention is a new working idea for
scientific response of the disaster chain.

On future work, the study will be extended to other safety fields of the disaster chain
and multiple transportation modes will be considered. The potential regional coordination
identified in this paper could provide a basis for the next study on emergency response
regarding biological disasters with regional sanitary barriers. Specific resource allocation
strategies can also be relevant as future work.
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