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Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen

transmitted by Ixodid ticks and naturally maintained in complex and incompletely

assessed enzootic cycles. Several studies have demonstrated an extensive genetic

variability with variable host tropisms and pathogenicity. However, the relationship

between genetic diversity and modified pathogenicity is not yet understood. Because

of their proximity to humans, dogs are potential sentinels for the transmission of

vector-borne pathogens. Furthermore, the strong molecular similarity between human

and canine isolates of A. phagocytophilum in Europe and the USA and the positive

association in the distribution of human and canine cases in the USA emphasizes the

epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within

neutrophils by disregulating neutrophil functions and evading specific immune responses.

Moreover, the complex interaction between the bacterium and the infected host immune

system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis

is an acute febrile illness characterized by lethargy, inappetence, weight loss and

musculoskeletal pain. Hematological and biochemistry profile modifications associated

with this disease are unspecific and include thrombocytopenia, anemia, morulae within

neutrophils and increased liver enzymes activity. Coinfections with other tick-borne

pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the

clinical presentation, diagnosis and response to treatment. Although clinical studies have

been published in dogs, it remains unclear if several clinical signs and clinicopathological

abnormalities can be related to this infection.
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INTRODUCTION

Canine granulocytic anaplasmosis (CGA) is an emerging
zoonotic tick-borne disease that is distributed worldwide. The
causative agent, Anaplasma phagocytophilum, is an obligate
intracellular gram-negative alpha-proteobacterium that develops
within granulocytic cells. It is usually transmitted by ticks
belonging to the genus Ixodes and it causes disease in several
mammalian species (1, 2). In the USA, both canine and human
exposures have progressively increased from 2008 to 2010 with
the number of reported human cases increasing by 53% during
this period (3, 4). Data from the USA Center for Disease
Control and Prevention (4) andMorbidity andMortality Weekly
Report (MMWR) reported 36,342 human cases between 2010
and 2018 and almost a 12-fold increase during this same
period (4). Currently, human granulocytic anaplasmosis (HGA),
is considered amongst the three most important vector-borne
disease (VBD) in the USA with Lyme borreliosis and Zika virus
(5, 6) and is increasingly being diagnosed in several European and
Asian countries (7, 8).

The focus on canine VBDs has increased the past decade as
they represent an important threat to both canine and human
health (9). Because of their proximity to humans, dogs may serve
as reservoirs of vector-borne pathogens, a source of infection
for vectors, mechanical transporters of infected vectors, and
as sentinel indicators of regional infection risk (2, 3, 10–15).
Furthermore, the strong molecular similarity between human
and canine isolates of A. phagocytophilum in Europe and the
USA (16–21) and the positive association in the distributions of
human and canine cases in the USA emphasizes the use for dogs
as sentinels in epidemiological studies (3, 4, 9, 15, 22, 23).

The lack of specific clinicopathological signs, the frequent
rapid evolution and positive prognosis even without treatment,
the prompt response to a commonly used antibiotic and the
possibility of coinfections (24–28) all make the diagnosis of
CGA challenging for veterinarians. Description of signs and
laboratory abnormalities associated with A. phagocytophilum
infection in dogs is mostly available from Europe and North
America. Although some studies have described the most
common manifestations of CGA (13, 24–35), it remains unclear
if some clinical signs and clinicopathological abnormalities are
related to this infection. In this paper, we provide an overview
of the current knowledge on the worldwide epidemiological
features of A. phagocytophilum focusing on dogs, and describe
the clinicopathological aspects of CGA with an emphasis on
missing data.

DESCRIPTION OF ANAPLASMA

PHAGOCYTOPHILUM

Classification
Anaplasma phagocytophilum is a bacterium belonging to the
family of Anaplasmataceae in the order of Rickettsiales (36).
The phylogenetic molecular analysis based on the 16S rRNA
and the groEL genes sequencing in addition to morphologic
and phenotypic characteristics have led to the reorganization
of the family of Anaplasmataceae and the reclassification of

some agents. Consequently, the name A. phagocytophilum was
given in 2001 to three previously distinct agents, i.e., the agent
that causes equine granulocytic anaplasmosis (Ehrlichia equi),
the agent that causes tick-borne fever or pasture fever in sheep
and cattle (Ehrlichia phagocytophila) and the agent that causes
HGA [formerly human granulocytic ehrlichiosis (HGE)] (1).
The renaming of these three agents as A. phagocytophilum
has been controversial because of differences in their host
tropism and cell target from other Anaplasma species, such as
Anaplasma marginale (37). Additionally, although these three
agents share genetic, antigenic and biological characteristics
(1), they are considered phenotypic variants due to differences
in their distribution, prevalence, virulence and target host
species (38, 39).

Morphology and Genome
Anaplasma phagocytophilum typically exhibits coccoid to
ellipsoid shapes measuring ∼0.2–2.0µm in diameter. The
bacteria infect myeloid cells primarily neutrophils (and
occasionally eosinophils), forming intracytoplasmic inclusions
derived from the host cell membrane measuring 1.5–2.5µm,
called “morula” (from Latin “morum”: mulberry) (1, 40).

The A. phagocytophilum genome is composed of a single
circular double-stranded chromosome. The complete genomic
sequence is estimated at 1.47 megabases (Mb) and was published
on GenBank in 2006 (NC007797) (19, 36). Despite its apparently
simple genome, A. phagocytophilum exhibits an extensive
genomic diversity (19, 41, 42). More than 500 partial A.
phagocytophilum pseudogene sequences derived from human,
ticks and animals from several US, European and Asian regions
are available in GenBank (19). Moreover, twenty complete A.
phagocytophilum genomes have been sequenced including 16
American and four European strains. However, genomes from
only a few different strains per host species are available (aside
from humans), underscoring the lack of information on strain
diversity within different host species (19, 36).

Genetic Variability
Genetic variability between strains may explain the ecological
complexity, the host tropism diversity, the differences in
incidence and clinical presentation, severity and evolution of
the disease documented in different countries (42–47). Many
studies demonstrated different virulence and hosts tropism of
specific A. phagocytophilum strains (17, 41–50). However, the
host specificity of strains seems to be restricted and multiple
infections with different strains are often observed. Farm and
large wild animals, small mammals and ticks were especially
prone to carrying multiple genetic variants. In humans and
domestic animals double infections are not so frequent (51). The
16S rRNA gene nucleotide sequences analysis discriminated 15
worldwide variants differing in a variable fragment located near
the 5’ end of the gene. Among them, two are pathogenic for
human and abundant all over the world (52). In the USA, several
variants have been identified based on the sequencing of the
16S rRNA and the only pathogenic variant to humans (AP-ha)
is also able to induce the disease in dogs, horses and mice but
not in cattle. In Europe, other variants have been identified in
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humans and the AP-ha variant was also detected in wild ruminant
species (41–43, 48, 49). Strains infecting domestic ruminants in
Europe and white-tailed deer in the USA seem to genetically
differ from those infecting humans, horses and dogs (44, 50).
In Washington State, five different 16S rRNA variants (named
WA1–5) that differed at four nucleotide positions were identified
from dogs displaying clinical signs consistent with CGA. All WA
variants were distinct from those identified in sheep in Norway
and llama-associated ticks but one was identical to equine and
human variants (24). In another European study, seven different
16S rRNA variants were identified from dogs, with the two most
common variants showing statistically significant differences in
the frequency of clinical signs and hematological abnormalities,
which suggests possible differences in strain pathogenicity (45).
Finally, a recent study showed that dogs can be naturally infected
concurrently with A. phagocytophilum variant 1, variant 4, and
HGE agent (53). The pathogenic role of the classic sheep variant,
A. phagocytophilum variant 1, in the canine species is uncertain.
Previous studies showed that the “HGA agent” appears to be
more pathogenic for dogs than other variants (45).

The 16S rRNA gene was considered too conserved for
use in the phylogenetic analysis of different strains of A.
phagocytophilum. It has a poor resolution and failed to
discriminate between ecotypes circulating in wild ruminants
compared to other animals. Furthermore, the 16S rRNA sequence
analysis could not categorize human-infective isolates in order
to detect virulent strains and was unable to distinguish variants
according to their geographic origin (43, 54–56). As such,
other genes have been proposed to study the genetic variability
of A. phagocytophilum including msp4, ankA, groEL operon,
msp2/p44, pfam01617 superfamily, and drhm genes (19–21, 50,
56–59). Sequencing different genes revealed similarities between
human and canine isolates, suggesting that dogs and humansmay
be infected by the same strains (16–21, 24, 45, 53, 60–62).

VECTORS

Although several transmission modes have been reported
(mostly in humans) (63–66), A. phagocytophilum is commonly
transmitted to people and domestic animals through tick bites
(67). It is naturallymaintained in complex and poorly understood
enzootic tick-wild animal cycles (55, 59, 68) and is transmitted
most frequently by ticks of the Ixodes persulcatus complex. These
ticks are commonly found in the northern hemisphere and their
occurrence depends on climatic conditions (between 10 and
30◦C, and >80% relative humidity) and the availability of hosts
(49, 69).

In the USA, several ixodid ticks transmit this pathogen,
depending on the geographic location. The main vector in
the humid forests of the upper midwestern, north central and
northeastern regions is Ixodes scapularis whereas Ixodes pacificus
is located in shrub forests and deserts of the western USA
(70–72). The prevalence of A. phagocytophilum DNA among
ticks varies from <1% up to 50% throughout the country
(73–76). Other tick species have been reported to be infected
with A. phagocytophilum, such as Amblyomma americanum and
Dermacentor spp., and Ixodes spinipalpis and Ixodes dentatus are

recognized as competent vectors (77–81). Other Ixodes species
including Ixodes angustus, Ixodes ochotonae, and Ixodes woodi
are suggested to act as vectors for the bacterium (82, 83). In
central and southern America, very few studies are published
on the prevalence of A. phagocytophilum among ticks. However,
among the three available studies, none have detected the DNA
of this bacterium in Ixodes spp. ticks. In contrast, its DNA
has been amplified from Rhipicephalus sanguineus, Amblyomma
cajennense, Amblyomma dissimile, Amblyomma maculatum,
Dermacentor variabilis (84–86). Amblyomma spp. and D.
variabilis were positively correlated with A. phagocytophilum
infection in Brazil and Mexico (84, 86).

In Europe, the most common vector is Ixodes ricinus (69),
which is widely distributed from western Europe to central Asia.
This tick lives mostly in humid wooded habitats and pastures and
is rarely encountered in the Mediterranean region or in mixed or
deciduous forests except at high altitudes (67). The prevalence
of A. phagocytophilum DNA among I. ricinus ticks in Europe
varies from <1 to 76.7% (87, 88). Other Ixodes spp. ticks seem
to be involved in epidemiological cycles that are distinct from
those involving I. ricinus (55, 89, 90). In addition, the DNA of
this bacterium has been detected in several other tick species
in Europe including Dermacentor reticulatus, Haemaphysalis
concinna, Hyalomma marginatum, Ixodes ventaloi, and Ixodes
trianguliceps (58, 91–95). Rhipicephalus species were also infected
by A. phagocytophilum and could act as competent vectors in
the eastern Mediterranean area (96–99). Ixodes persulcatus is
another competent vector of A. phagocytophilum in eastern
Europe and Asia, with rates of DNA detection up to 16.7 and
21.6%, respectively (100, 101).

Although I. persulcatus is considered the primary vector in
Asia, A. phagocytophilum DNA has been detected in several
other tick species including Ixodes nipponensis, Ixodes ovatus,
Rhipicephalus turanicus, Rhipicephalus haemaphysaloides,
H. marginatum, Boophilus kohlsi, Dermacentor silvarum,
and several Haemaphysalis species (96, 102–106). Molecular
investigations indicated that I. ovatus, Dermacentor silvarum,
Hae. concinna, Haemaphysalis longicornis, Rhipicephalus
microplus, R. sanguineus, and Dermacentor nuttalli might be
involved in the transmission of A. phagocytophilum in China
(8, 107–109).

In North Africa, one study in Morocco and Tunisia detected
A. phagocytophilumDNA in 1 and 3% of I. ricinus andHyalomma
detritum, respectively (110). Two separate studies detected DNA
in R. sanguineus from free-roaming dogs in Egypt and H.
marginatum from horses in Tunisia with prevalence rates of 13.7
and 2.3%, respectively (111, 112). These studies indicate that A.
phagocytophilum is likely to circulate in a wide variety of ticks,
but their involvement in transmitting the bacterium to host has
yet to be established (112).

DISTRIBUTION AND PREVALENCE OF
ANAPLASMA PHAGOCYTOPHILUM

Anaplasma phagocytophilum has a worldwide distribution and
endemic areas include some regions of the USA (northeastern
and mid-Atlantic, Upper Midwest, and Pacific Northwest states),
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Europe and Asia (China, Siberian Russia, and Korea). These
regions correspond to occurrence areas of I. persulcatus group
ticks (12, 13, 24, 29, 113). Several prevalence studies in dogs
have been conducted in various American, European, Asian
and African countries (Table 1). However, data are lacking
in large parts of Asia, Africa, South America and Australia.
The geographic variation in tick exposure, the differences
in inclusion criteria to select dog populations, and the use
of different serologic tests [i.e., immunofluorescent antibody
test (IFAT), enzyme-linked immunosorbent assay (ELISA) or
Western blot] make comparison between studies difficult (234,
235). In addition, cross-reactivity with the most important other
Anaplasma species infecting dogs, i.e., Anaplasma platys, is
reported to occur for both IFA and ELISA (1, 9, 120, 121, 236–
241). Therefore, in regions where both pathogens could be
present (southern USA states, southern Europe, South America,
Asia, and Africa), seropositivity may not necessarily reflect
exposure to A. phagocytophilum and potential overestimation of
the true prevalence and distribution can occur (9, 162, 189, 198,
234, 236, 238, 241). As a result, PCR-based assays are necessary
to determine which of the two agents is responsible for positive
serologic test results in regions where both bacteria are present
(241). In areas where the Ixodes tick vector is less prevalent
or absent, a positive Anaplasma spp. serologic result could be
the result of A. platys exposure (164). Less frequent and minor
serological cross-reactions were described at low titers between
A. phagocytophilm and Ehrlichia species (i.e., Ehrlichia canis,
Ehrlichia chaffeensis, Ehrlichia ewingii, and Neorickettsis sennetsu
formerly Ehrlichia sonnetsu), especially with hyperimmune sera,
when using IFA and immunoblot assay (1, 29, 39, 121, 127,
242, 243). However, it is not clear whether the cross-reactivity
with E. canis was attributable, in part, to antibodies against A.
platys because dogs are sometimes exposed to both E. canis and
A. platys (164, 240). In contrast, no cross-reactivity has been
documented between Anaplasma spp. and Ehrlichia spp. when
using the point-of-care dot ELISA (234, 240).

The first CGA cases in the USA were detected in California;
then, the exposure of dogs to this organism has been recorded
in more than 39 USA states and highest rates were noted in
the upperMidwestern, northeastern and western states. Serologic
surveys revealed prevalence values of Anaplasma spp. antibodies
ranging from 0.0 to 40.0% (3, 9, 10, 12, 13, 15, 23, 119, 120, 122–
126, 236, 242, 244, 245). Five countrywide serologic studies
showed an overall prevalence of Anaplasma spp. of 1.9 to 4.8%
with the highest rates recorded in northeastern regions (3, 9,
15, 23, 119). The study that found a prevalence rate of 1.9%,
used species-specific peptides to detect canine antibodies to A.
phagocytophilum (3). In addition, cases confirmed by PCR were
diagnosed in several USA states (12, 13, 24, 26, 27, 29, 124,
245–247). In the USA, over 100,000 and 220,000 dogs were
seropositive to Anaplasma spp. in 2015 and 2019, respectively
(248, 249). Two recent studies analyzing regional trends of
Anaplasma spp. exposure in dogs showed that seroprevalence
increased broadly in the northeastern, upper midwestern states,
northern California, mid-atlantic coast and southern Oregon
(249, 250). In Canada, six serologic surveys on Anaplasma spp.
are available (Table 1) (3, 114–118), and six cases of CGA from

Vancouver Island (251), Saskatoon (252) and Montreal (253)
were confirmed by DNA detection. In Latin America and the
Caribbean, the seroprevalence ofAnaplasma spp. ranges from 1.0
to 53.2% (Table 1) (133, 134, 254). In addition, two studies and
a case report have detected the DNA of A. phagocytophilum in
Brazil (Table 1) (129, 255).

In Europe, Anaplasma spp. seroprevalence has been reported
in almost all countries with rates ranging from 1.1 to 56.5%
(143, 148, 150, 183, 190). The detection of A. phagocytophilum
DNA has also been reported mostly from central and northern
countries (Table 1) with prevalence rates up to 14.2% (174).
Additionally, several cases of CGA have been described (25, 28,
30–32, 34, 256–262).

In Asia, Anaplasma spp. seroprevalence is available from
China, Korea, Malaysia, Taiwan and Israel and range from 1.2
to 24.7% (Table 1) (212, 214). Anaplasma phagocytophilum DNA
has also been detected in dogs with prevalence rates up to 39.5
and 57.3% in Jordan and Iran, respectively (219, 222).

In Africa, only a few prevalence studies have been published
on Anaplasma spp. in dogs (Table 1). Seroprevalence rates
recorded in African countries range from 11.8 to 47.7% (Table 1)
(225, 231). Similarly, very limited studies have investigated A.
phagocytophilum infection in dogs in this continent. The DNA
of this bacterium has been detected in Tunisia, Nigeria, Cape
Verde and South Africa (Table 1) (224, 228, 229, 232) but not
in Algeria and Morocco (225, 227). In addition, an Anaplasma
species closely related to A. phagocytophilum was detected in
blood samples from South African dogs based on 16S rRNA gene
sequencing (263) whereas all dogs from Algeria, Ghana andMaio
Island tested negative by PCR (Table 1) (225, 231, 233).

EPIDEMIOLOGICAL ROLE OF DOGS

Several wild and domestic animals are receptive to A.
phagocytophilum infection. However, the disease has been
reported only in a few species including domestic ruminants,
horses, cats, dogs and humans (22, 24, 63, 264–269). Although
dogs are susceptible to A. phagocytophilum infection, they are
mostly recognized as incidental hosts and their role as potential
reservoirs is still controversial (24, 270). As A. phagocytophilum
is an obligate intracellular bacterium, its reservoirs should be
animal hosts permitting its survival, particularly outside the
activity period of its vectors (271). To be considered as a host
reservoir, a host must be fed on by an infected vector tick at
least occasionally, take up a critical number of the infectious
agent during the bite by an infected tick, allow the pathogen to
multiply and survive for a period in at least some parts of the
body, and allow the pathogen to find its way into other feeding
ticks (272, 273). Therefore, the detection of pathogens or their
DNA in animal hosts is not enough to consider them as reservoir
hosts (274).

Dogs are considered unlikely reservoir hosts due to the
probable short duration of bacteremia (<28 days) and
uncertainty regarding their ability to host enough nymphal
tick stages to contribute to the spread of the bacterium (2, 67).
In Austria, no significant difference in the seroprevalence of

Frontiers in Veterinary Science | www.frontiersin.org 4 June 2021 | Volume 8 | Article 686644

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


El Hamiani Khatat et al. Anaplasma phagocytophilum in Dogs

TABLE 1 | Prevalence of Anaplasma spp. (A. phagocytophilum and A. platys) antibodies and/or DNA detection of A. phagocytophilum in blood samples from dogs in

several countries.

Countries Number of

dogs

Type of dog population Prevalence (%) Method References

AMERICA

Canada 86,251 Sick and healthy dogs from 238 practices 0.2 ELISA (114)

115,636 Not stated 0.29 ELISA (115)

753,468 Not stated 0.4 ELISA (116)

7 provinces 285 Not stated 1.1 ELISA (3)

South Ontario, Quebec 53 Suspected to have TBD 0.0 IFA (117)

Saskatchewan 515 Sick and healthy client-owned dogs 0.6 ELISA (118)

USA 3,950,852 Not stated 3.8 ELISA (15)

3,588,477 Sick and healthy dogs tested for VBD 4.4 ELISA (23)

479,640 Dogs suspected to have a VBD 4.8 ELISA (9)

14,496 Dogs suspected to have a VBD 1.9 ELISA (119)

6,268 Dogs suspected to have a VBD 1.5–3.5 ELISA (3)

Oregon, California 2,431 Clinically healthy dogs 2.4 ELISA (120)

North Carolina, Virginia 1,845 Dogs admitted regardless of the reason for examination to the

NCSU-VTH

1.1 IFA (121)

Maine 1,087 Dogs tested for heartworm or undergoing surgery 7.1 ELISA (122)

California 1,385 Non-ehrlichial related illnesses or well-animal care 8.7 IFA (10)

184 Rural dogs with or without clinical signs 40.0

7.6

IFA

PCR

(12)

Minnesota 731 Sick and healthy pet dogs 29.0 ELISA (13)

273 9.5 PCR

Oklahoma 259 Dogs suspected to have a VBD 33.0 IFA (123)

Northern Arizona 233 Pet and stray dogs 11.6

0.0

ELISA

PCR

(124)

New Jersey 202 Healthy dogs 9.4 ELISA (125)

North Carolina 118 Clinically healthy dogs 0.0 ELISA (126)

Connecticut, New York 106 Sick client-owned dogs living 9.4 IFA, WB (127)

Cumberland Gap Region 232 Shelter dogs 0.9 ELISA (128)

Brazil

Rio de Janeiro 398 Not stated 6.0 PCR (84)

253 Not stated 7.1 PCR (129)

Southeastern 198 Dogs suspected to have TBD 0.0 PCR (130)

Southern 196 Companion dogs 9.7 ELISA (131)

Central-northern Parana 138 Rural and urban dogs 13.8 ELISA (132)

Puerto Rico 629 Dogs from shelters and a veterinary clinic 1.0 ELISA (133)

Colombia 498 Not stated (abstract only) 33.0 ELISA (133)

218 Working, shelter and client-owned dogs 53.2 ELISA (134)

Haiti 210 Owned dogs 17.6

0.0

ELISA

PCR

(135)

West Indies 157 Not stated 10.8 ICG (136)

Caribbean region 29 Not stated 10.0 ELISA (3)

Mexico 1,706 Healthy dogs and dogs with clinical signs compatible with VBD 9.9 ELISA (137)

Costa Rica 408 Apparently healthy dogs 2.7 IFA (138)

374 0.3 PCR

Ecuador Galapagos

Islands

58 Without consideration of the patients’ presenting complaint 12.1 ELISA (139)

Nicaragua 329 Dogs presented at veterinary clinics 28.6

2.2

ELISA

PCR

(140)

Chile 905 Urban and rural dogs 44.0 IFA (141)

EUROPE

Germany 5,881 Sick dogs suspected to have anaplasmosis 21.5 ELISA (142)

(Continued)
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TABLE 1 | Continued

Countries Number of

dogs

Type of dog population Prevalence (%) Method References

1,124 Dogs suspected to have anaplasmosis 50.1 IFA (143)

522 Healthy dogs and dogs suspected of CGA 43.0

5.7

IFA

PCR

(144)

111 Healthy dogs and dogs suspected of CGA 43.2

6.3

IFA

PCR

(31)

1,862 Traveling dogs to Germany 17.8 IFA (145)

792 Retrospective analysis of serum sample 41.9 IFA (146)

Munich 448 Healthy and sick dogs 19.4 ELISA (147)

171 Healthy Bernese Mountain Dogs 50.3 IFA (148)

57 Healthy dogs from other breeds 24.6

Brandenburg 1,023 Blood samples from veterinary clinics or a commercial

diagnostic laboratory

1.5 PCR (149)

Russia

European part 440 Urban dogs with a history of tick bites 1.1 ELISA (150)

Voronezh Reserve 82 Dogs owned by Voronezh Reserve staff 34.1 ELISA

Hungary 1,305 Healthy pet dogs 7.9 ELISA (151)

Southern Hungary 126 Shepherd, hunting and stray dogs 11.0 PCR (152)

Slovakia 87 Dogs suspected to have babesiosis 8.0 PCR (153)

Dogs randomly selected 11.7 ELISA (154)

Bulgaria

Central-southern 167 Dogs presented for various clinical reasons 19.2 IFA (155)

Austria 1,470 56.5 IFA (156)

United Kingdom 120 Dogs suspected to have TBD 0.8 PCR (157)

Sweden 611 Dogs not clinically suspected to be infected by Ehrlichia spp or

B. burgdorferi sensu lato

17.7 IFA (158)

100 Not stated 17.0 IFA (159)

Finland 340 Pet dogs with or without clinical signs of illness 5.3 ELISA (160)

50 Healthy hunting dogs 4.0

Albania 30 Clinically healthy semi-domesticated dogs 40 IFA (161)

Tirana 602 Client-owned dogs 24.1

1.0

IFA

PCR

(162)

Latvia 470 Healthy dogs and dogs suspected to have borreliosis and/or

anaplasmosis

11.4 ELISA (163)

Romania 1,146 Guard, pet, shelter, stray and hunting dogs 5.5 ELISA (164)

29 Pet and stray dogs from Romania 7.4 IFA (165)

109 Dogs imported from Romania to Germany 2.2 PCR

Eight counties 357 Not stated 5.3 PCR (166)

Southeastern 257 Not stated 6.2 PCR (167)

South Central 149 Asymptomatic shelter dogs 3.3 ELISA (168)

Serbia

Vojvodina province 84 Randomly selected dogs 15.5 IFA (169)

Belgrade municipalities 111 Shelter, free-roaming and hunting dogs 28.8

0.0

ELISA

PCR

(170)

Poland 3,094 Healthy dogs with a history of tick bite 12.3 ELISA (171)

Eastern 400 Healthy dogs 8.0

2.8

ELISA

PCR

(172)

(173)

Northwestern 192 Dogs from endemic regions of borreliosis 1.0 PCR (174)

100 Healthy dogs from a shelter 4.0 PCR

92 Dogs suspected to have Lyme disease 14.0 PCR (175)

50 Dogs diagnosed with babesiosis 0.0

79 Apparently healthy sled dogs 1.3

(Continued)
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TABLE 1 | Continued

Countries Number of

dogs

Type of dog population Prevalence (%) Method References

Czech Republic 296 Healthy dos and dogs suspected to have TBD 3.4

26.0

PCR

IFA

(176)

Italy

Stretto di Messina 249 Outdoor-kennel dogs Not stated 38.0 IFA (177)

5,881 32.8 IFA

Central Italy 1,965 Urban and rural dogs without signs of TBD 4.7 IFA (178)

1,232 Not stated 8.8 IFA (179)

215 Hunting dogs 14.8

0.9

IFA

PCR

(180)

1,026 Owned dogs 3.3 IFA (181)

Sicily 344 Pet, pound and hunting dogs 0.0 PCR (182)

87 Not stated 44.8

0.0

IFA

PCR

(183)

372 Not stated 4.8 PCR (184)

Southern 165 Dogs with febrile illness and healthy controls 37.8

0.0

IFA

PCR

(185)

Northeastern 488 Privately-owned canine blood donors and free-roaming dogs 3.3

0.0

IFA

PCR

(186)

Sardinia 50 Dogs suspected of tick bite–related fever 6.0 PCR (187)

Portugal 1,185 Healthy dogs and dogs suspected to have VBD 4.5 ELISA (188)

55 Dogs suspected to have TBD 54.5

0.0

IFA

PCR

(189)

55 Dogs suspected to have TBD 55.0 IFA (190)

100 Apparently healthy military dogs 16.0 IFA (191)

France 919 Not stated 2.7 ELISA (192)

Spain 466 Sick and healthy dogs 11.5 IFA (11)

Nothwestern 1,100 Dogs presented to veterinary clinics 3.1 ELISA (193)

479 5.0 IFA (194)

Northern 556 Healthy dogs and dogs with signs compatible with VBDs 1.26 ELISA (195)

Central 131 Shelter dogs 19.0 ELISA (196)

Turkey 757 Stray, shelter and pet dogs 0.5 PCR (197)

Thrace region 400 Healthy shelter dogs 6.0 PCR (198)

Croatia 1,080 Apparently healthy dogs 0.3 PCR (199)

435 Apparently healthy owned and shelter dogs 6.21 ELISA (200)

Greece 200 Owned and shelter dogs 1.0

0.5

ELISA

PCR

(201)

ASIA

Japan 154 Sick and healthy dogs 0.0 PCR (202)

332 Dogs presented at 6 private veterinary clinics in Ibaraki

Prefecture

2.1

0.3

IFA

PCR

(203)

China 600 Companion, working and shelter dogs 0.5 ELISA (204)

234 Stray and pet dogs 13.2 PCR (205)

219 Dogs from rural areas 10.0

10.9

IFA

PCR

(107)

26 Dogs from rural areas 7.7

50

ELISA

IFA

(206)

562 Dogs presented for reasons unrelated to suspicion of VBD 2.7 ELISA (207)

637 Apparently healthy indoor and breeding dogs 1.4 ELISA (208)

201 Apparently healthy stray dogs 11.9 PCR (209)

Korea 1,058 Shelter dogs 0.1 PCR (210)

532 Outdoor dogs 15.6

2.3

ELISA

PCR

(211)

418 Shelter dogs 1.2 ELISA (212)

(Continued)
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TABLE 1 | Continued

Countries Number of

dogs

Type of dog population Prevalence (%) Method References

229 Urban shelter dogs and rural hunting dogs 18.8 ELISA (213)

245 Blood samples from military dogs 4.4

0.0

IFA

PCR

(214)

Malaysia 48 Stray dogs 9.3

4.3

ELISA

PCR

(215)

India 191 Pets, stray and working dogs 4.7 ELISA (216)

230 stray dogs in Tamil Nadu 0.4 PCR (217)

Israel 195 Healthy pet dogs, stray and shelter dogs 9.0 IFA (218)

Jordan 38 Stray dogs 39.5 PCR (219)

161 Stray, police, or breeding with tick infestation 9.9 ELISA (220)

Taiwan 175 Asymptomatic dogs 21.1

0.0

ELISA

PCR

(221)

Iran 103 Apparently healthy rural dogs 57.3 PCR (222)

150 Owned and stray dogs from Tehran 2.0 PCR (223)

AFRICA

Tunisia 286 Healthy and sick pet, kenneled dogs 25.2

0.9

IFA

PCR

(224)

Algeria

Algiers 150 Owned dogs admitted for surgery or vaccination 47.7 IFA (225)

63 Stray dogs from a shelter 0.0 PCR

Morocco 217 Owned urban, rural and military healthy dogs or displaying signs

of VBD

16.6 ELISA (226)

Northwestern 425 Owned urban, rural and military healthy dogs or displaying signs

of TBD

21.9

0.0

ELISA

PCR

(227)

Nigeria 245 Healthy and sick dogs 0.8 PCR (228)

South Africa 141 Apparently healthy owned and free roaming dogs 2.1 PCR (229)

56 Apparently healthy domestic dogs 0.3 PCR (230)

Ghana 17 Client-owned dogs presented for a variety of complaints or for

vaccination

11.8

0.0

ELISA

PCR

(231)

Cape Verde

Priai 57 1.8 PCR (232)

Mayo Island 153 Apparently healthy dogs 0.0 PCR (233)

TBD, tick-borne disease; VBD, vector-borne disease; IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction, WB, western blot;

ICG, immunochromatography.

A. phagocytophilum among owners of seropositive pets and
owners without pets was observed, suggesting that pets are
not a source of infection for humans (275). However, wild
and domestic carnivores are considered the primary source of
tick-borne zoonotic agents to humans (276) and contact with
pet cats and dogs has been proposed as a risk factor for tick
exposure and tick-borne disease among humans (277, 278).
Moreover, according to some authors, almost all studies
investigating the role of dogs in the transmission of tick-borne
diseases (TBDs) focused on companion dogs. These animals are
usually treated for ectoparasites, have limited free access to the
outdoors and host reservoir habitats, and are less exposed to
ticks compared with hunting, stray or shelter dogs. Therefore,
these studies may not accurately reflect the public health risk
associated with dogs in endemic areas (152). Others suggested
that domestic animals including dogs could be considered as
reservoir hosts of A. phagocytophilum in Europe especially

in urban areas (18, 270, 279–282). In a study from Hungary,
the prevalence of A. phagocytophilum DNA in stray dogs was
higher than in several studies from other European countries
(152). In addition, two studies reported high prevalence rates
of A. phagocytophilum DNA in dogs suspected to have Lyme
disease and rural dogs from Poland and China, respectively
(107, 174). Anaplasma phagocytophilum was also the most
frequently detected bacterium by PCR in stray dogs that lived in
close contact with domestic animals and humans in rural and
peri-urban areas of the Mediterranean zone of Jordan (219). In
addition, high prevalence rates of A. phagocytophilum DNA was
found in I. ricinus collected from dogs in Belgium and Poland,
and R. sanguineus (adult and nymphs) from free-roaming
dogs in Egypt (111, 280, 283). Moreover, A. phagocytophilum
DNA was detected in experimentally infected dogs during
60 days without immunosuppressive drug, and the canine
immune response seems to have evolved to only partially control
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infection, suggesting a longer bacteremia possibly allowing
timely transmission to the vector (18, 284). Based on these
results, dogs could act as potential reservoir for the bacterium at
least in some regions, but further studies are needed.

The geographical distribution of canine infection seems to
parallel the distribution of HGA in the USA with a positive
association of human and canine cases in many states (3, 23).
Indeed, several studies found the highest prevalence rates of A.
phagocytophilum antibodies in dogs from the upper midwest,
northeast, and mid-atlantic, which correlate with areas where the
highest incidence of human anaplasmosis were reported (3, 4,
9, 15, 22, 23). In addition, the estimated regression coefficient
for the endemic risk factor in the contiguous USA model was
positive and significant. This implies a higher prevalence among
dogs living in areas where HGA is endemic (15). Furthermore, a
study has evaluated regional and local temporal trends of canine
Anaplasma spp. (A. phagocytophilum and A. platys) exposure
using a Bayesian spatio-temporal binomial regression model
for analyzing serologic test results. In this study, similarity
was found between temporal trends in canine Anaplasma spp.
seroprevalence and the reported incidence rate of HGA (249).
Finally, human and canine strains of A. phagocytophilum were
similar according to several gene sequencing studies, and human
isolates have been reported to induce clinical disease in dogs
in both Europe and the USA (16–21). Therefore, in addition
to the possible role of dogs as potential reservoir hosts, the
prevalence data of A. phagocytophilum infection in dogs provides
important information on the incidence, risk factors, exposure
sources, and real-time risk of exposure for human infection (3).
More generally, several studies have documented the utility of
using dogs as sentinels for human vector-borne diseases (VBDs)
(14, 17, 18).

PATHOGENESIS OF ANAPLASMA

PHAGOCYTOPHILUM INFECTION

Anaplasma phagocytophilum is transmitted by ticks to their hosts
within 24–48 h of feeding time (285–288) but establishment
of infections in dogs is apparently dependent on a minimum
inoculation dose (288). Bacteremia, however, develops 4–7 days
after the tick bite during natural infection or 3–4 days after
experimental blood inoculation, suggesting that the bacterium
remains at undetectable levels in the blood or replicates in other
cells in the early stages of infection (69). Cell surface analysis
suggested that the endothelial cells of the microvasculature
provide an excellent site for A. phagocytophilum dissemination
to peripheral blood granulocytes. Endothelial cells may play a
crucial role in the development of persistent infections and are
stimulated to express surface molecules and cytokines in a dose-
dependent manner that may lead to inflammatory responses at
the site of infection (289). After inoculation, A. phagocytophilum
exhibits a biphasic developmental cycle in which the infectious
small dense-cored cells bind to host cellular targets and enter
the cytoplasm of neutrophils by endocytosis. After, the non-
infectious reticulate cells multiply by binary fission within
phagosomes until forming morulae. After 28–32 h, replication

ceases and reticulate cells re-transition to dense-cored cells that
are released after cell lysis to initiate the next wave of infection
and possibly spread to multiple organs (40, 290, 291).

Anaplasma phagocytophilum has several strategies to
dysregulate the bactericidal functions of neutrophils and ensure
its survival and replication. This bacterium regulates host defense
and antimicrobial mechanisms by a direct interaction with
specific gene regulatory regions in the nucleus of the neutrophil,
decreasing endothelial adherence, mobility, transmigration,
phagocytic activity, and degranulation. It can also alter the
respiratory and oxidative burst mechanism of neutrophils, delay
apoptosis and increase the inflammatory recruitment of new
neutrophils (289, 292–297). In addition, the antigenic variation
of the immunodominant surface proteins msp2/p44 enables the
bacterium to evade the specific immune response and to subvert
the adaptive immune response (297). Neutrophils circulate
for 10–12 h before they enter tissues and undergo apoptosis,
which may lead to the destruction of the pathogens. Therefore,
the decreased endothelial adherence and delayed apoptosis
both enhance the bacterial survival and the replication to form
morulae in a normally short-lived, terminally differentiated
granulocytic cell. Furthermore, the impaired neutrophil function
can result in an immune deficiency, predisposing patients to
opportunistic infections (293–295). Anaplasma phagocytophilum
was suggested to possibly manipulate the host endoplasmic
reticulum stress signals to facilitate intracellular proliferation
and infection of surrounding cells before or after host cell
apoptosis (298).

The immune response induced by A. phagocytophilum is
thought to play an important role in the initial control of the
disease but may also induce inflammatory injuries associated
with granulocytic anaplasmosis. Indeed, the absence of A.
phagocytophilum control induces a clear rise in inflammatory
lesions, which is considered the major pathogenic effect
in humans and murine models (299–301). In dogs, the
hematological modifications associated with A. phagocytophilum
infection are similar to those induced by other members of
Ehrlichia or Anaplasma genera, although they infect different
blood cells, suggesting that the major mechanism of cytological
injuries is related to an immunological response or to
substances secreted from the bacteria (302, 303). Anaplasma
phagocytophilum induces an upregulation of chemokine and
pro-inflammatory cytokine [IL-8, macrophage inflammatory
protein (MIP)-1a, MIP-1b, monocyte chemoattractant protein
(MCP)-1] expression in vitro, which attracts leukocytes and
inhibits hematopoiesis leading to myelosuppression (304,
305). In mice, several leukocyte populations expand during
infection including NK and NKT cells followed later by
CD4 and CD8T lymphocytes and the immune response
proceeds mostly through production of interferon gamma
(IFN-γ), commonly produced by T lymphocytes (301–303,
306). In humans, the manifestation of severe disease is
associated with hypercytokinemia and macrophage activation
or hemophagocytic syndromes (MAS/HPS). The underlying
pathogenesis of MAS/HPS is poorly understood; however, it is
frequently associated with a defective function or depletion of
cytotoxic cells and is driven mostly by the persistent stimulation
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of cytokine production, especially the macrophage-activating
IFN-γ (307–309). The clear role of IFN-γ in the pathogenesis
of the disease is demonstrated by the observation that the lack
of this molecule in A. phagocytophilum-infected mice resolves
inflammatory tissue injury (300).

Several studies have confirmed the role of the IFN-γ in
mediating both the pathology and early control of bacteria,
although it is not essential for bacterial clearance. Other
protective mechanisms might be involved in the control of
A. phagocytophilum infection, as some infected mice lacking
IFN-γ are able to survive (292, 300–303, 306). Data suggest
that the humoral immunity may also play an important
role in the clearance of ehrlichial infections, as passive
immunization has a moderately protective effect. Moreover,
severely immunocompromised mice that lack both B and T
cells remained persistently infected, as opposed to mice lacking
only T cells, which were able to control the infection (301,
310). Experimentally infected dogs develop serologic responses
(immunoglobulin G) 7 days after inoculation. However, positive
A. phagocytophilum PCR assay results persist up to 42 days
despite the high antibody response suggesting that the humoral
response is not sufficient to clear the infection (284). It appears
that the innate immune mediators used to activate phagocytes to
kill other intracellular bacteria (reactive nitrogen intermediates,
Toll-like receptor 2 and 4, MyD88, phagocyte NADPH oxidase)
do not play a crucial role in A. phagocytophilum clearance and
may contribute to the observed pathology (301, 303, 311).

CANINE GRANULOCYTIC ANAPLASMOSIS

Clinical Signs
The discrepancy between the high seroprevalence and the
relatively low number of sick dogs in endemic areas suggests that
most infected dogs remain apparently healthy or develop a mild
self-limiting illness (9, 10, 13, 25). The severity of the disease
varies from mild subclinical to severe acute forms (24, 34), with
severe clinical presentation often associated with co-infections,
the immune response of the host and the variability of strains
pathogenicity (13, 18, 33, 45).

CGA is a multi-systemic unspecific acute illness characterized
by many clinicopathological modifications due to the possible
involvement of several body systems. After an incubation period
of 1–2 weeks, the most frequently observed clinical signs
include fever, lethargy, inappetence or anorexia, weight loss and
musculoskeletal pain or discomfort (Table 2) (24, 25, 29, 30, 35,
53, 60, 312, 314). More than 75% of dogs display lethargy and
inappetence or anorexia (24, 26, 29, 30, 33, 35). Lethargy has been
reported in almost all infected dogs (13, 24–26, 29–31, 33, 35, 45)
and was the most frequent clinical signs in several studies (24–
27, 29, 33, 35). It was also reported to be disproportionately
severe in comparison with the lack of other clinical abnormalities
in a case report (247). Fever is both inconstant and variable
with frequencies ranging from 46 to 100% (24, 33, 35) and
values from 39.2 to 41.5◦C (25–27, 30, 35, 246, 251, 252,
257, 258, 261, 314). Fever generally coincides with the peak
of bacteremia and lasts less than a week (33). Musculoskeletal
pain or discomfort has been described in more than 50% of

dogs and manifests in reluctance to move, weakness, stiffness,
lameness, and myalgia. However, <10% of dogs have overt joint
pain (29, 30). Lameness and joint swelling were reported in 11–
34% (25, 34, 35) and 6–62% cases (24, 26, 35) respectively. They
are more likely related to neutrophilic inflammation (25, 26,
244, 314, 315), but immune-mediated mechanisms also might
be involved (244, 315). In a retrospective study, polyarthropathy
(50%)wasmore frequently observed thanmonoarthropathy (5%)
(27). In a report from California investigating the prevalence
of tick-borne infections in dogs with polyarthritis and/or
thrombocytopenia, A. phagocytophilum was the most frequently
detected pathogen (244). Lymphadenopathy, splenomegaly and
hepatomegaly were frequent findings in CGA (25, 26, 29, 35, 53,
314, 315). Splenomegaly was reported in 12–100% of naturally
infected dogs (25, 26, 35). In canine and murine models of A.
phagocytophilum infection, lymphadenopathy and splenomegaly
are due to reactive lymphoid hyperplasia, with concurrent extra-
medullary hematopoiesis in the spleen, enlarged activated lymph
nodes and increased numbers of macrophages and plasma cells
in the red pulp (284, 285, 314). In experimentally infected dogs,
non-specific reactive hepatitis and mild periportal inflammatory
lesions were also described (284, 314) and lesions tended to be
more pronounced in dogs euthanized in the acute stage (314).

Other clinical signs include gastro-intestinal
signs, polyuria, polydipsia, respiratory signs, pale
mucous membranes, bleeding disorders, uveitis, scleral
congestion, polymyositis, and neurological signs (Table 2)
(13, 24, 26, 29, 30, 32, 33, 35, 53, 60, 256, 257, 312, 314, 316).
Gastrointestinal signs include diarrhea, nausea, vomiting, and
abdominal pain (25–27, 33–35, 312), but their origin is still
unknown. In two cases of CGA displaying gastrointestinal signs,
associated pancreatitis was suspected based on biochemistry
and abdominal ultrasound abnormalities (246, 252). Respiratory
signs include dyspnea, tachypnea, and coughing, which is
usually infrequent, soft and non-productive (35, 238, 314).
One patient displayed coughing and presented interstitial
patterns on thoracic radiographs associated with focal alveolar
patterns, and showed morulae within neutrophils upon
microscopic examination of tracheal lavage specimen (238).
Bleeding disorders including petechiae, gingival bleeding,
melena, fresh blood in feces, epistaxis, pulmonary hemorrhage,
vaginal hemorrhage or hematoma (35) are infrequent in dogs
infected with A. phagocytophilum, unlike other rickettsial
infections, such as E. canis, A. platys, and Rickettsia rickettsii
infections or other infectious diseases, such as aspergillosis,
bartonellosis, and leishmaniasis. Indeed, only 3–11% of CGA
cases displayed epistaxis (25, 316). In two separate reports, dogs
with CGA that presented with epistaxis had mild to moderate
thrombocytopenia that could not explain the bleeding disorder.
In addition, these dogs were seronegative to B. burgdorferi, E.
canis, andDirofilaria immitis, but other concurrent diseases were
not ruled out. Therefore, other factors than thrombocytopenia
may cause epistaxis, such as an infection-induced vasculitis
(27, 33). Similarly, another report described two dogs with
bleeding disorders associated with A. phagocytophilum infection
that displayed platelet counts within the reference range
(35). Although neurological signs were reported to occur
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TABLE 2 | Clinical signs associated with canine granulocytic anaplasmosis after

natural infection and corresponding frequency recorded in several studies.

Clinical sign Frequency

(%)

Number of dogs

included in the

study

References

Fever 84

47

61

46

89

52

100

57

67

60

67

32

49

18

26

18

60

8

28

6

15

61

(26)

(31)

(25)

(33)

(27)

(45)

(24)

(13)

(312)

(60)

(35)

Fever, lethargy 88 17 (29)

Fever, lethargy, depression 93 14 (30)

Fever, lethargy, anorexia 51 107 (34)

Lethargy/depression 94

88

74

72

67

81

67

26

50

83

73

18

17

34

18

49

26

60

28

6

63

15

(25)

(29)

(26)

(27)

(31)

(33)

(45)

(13)

(312)

(35)

(60)

Inappetence/anorexia 62

33

58

55

29

87

88

50

63

67

34

49

26

60

51

8

17

6

63

15

(26)

(31)

(33)

(45)

(13)

(24)

(29)

(312)

(35)

(60)

Weight loss 25 8 (24)

Pale mucous membrane 28

12

50

18

8

6

(25)

(24)

(312)

Dehydratation 37 8 (24)

Musculoskeletal Signs

Lameness 32

16

11

50

23

34

16

16

27

34

49

18

26

60

107

28

63

15

(26)

(31)

(25)

(33)

(45)

(34)

(13)

(35)

(60)

Joint swelling 62

6

19

55

14

33

8

34

26

18

28

6

(24)

(26)

(33)

(27)

(13)

(312)

(Continued)

TABLE 2 | Continued

Clinical sign Frequency

(%)

Number of dogs

included in the

study

References

Digestive signs 23

13

107

15

(34)

(60)

Vomiting 24

11

15

6

50

8

34

18

26

18

6

63

(26)

(25)

(33)

(27)

(312)

(35)

Diarrhea 9

17

50

14

34

18

6

63

(26)

(25)

(312)

(35)

Abdominal pain 9 34 (26)

Tense abdomen 28

40

18

63

(25)

(35)

Lymphadenopathy 32

19

6

13

6

34

26

18

17

63

(26)

(33)

(27)

(29)

(35)

Splenomegaly 12

40

13

100

17

84

34

60

17

18

6

57

(26)

(45)

(29)

(25)

(312)

(35)

Hepathomegaly 8

33

26

6

(33)

(312)

Hepatosplenomegaly 7

12

17

57

(29)

(35)

RESPIRATORY SIGNS

High respiratory rate 29

2

34

63

(26)

(35)

Cough 8

37

3

26

8

63

(33)

(24)

(35)

Respiratory or urinary tract

disease

7 91 (34)

Bleeding disorders 12

13

66

63

(34)

(35)

Petechiae 11

3

18

63

(25)

(35)

Epistaxis 6

8

6

4

2

18

26

18

28

63

(25)

(33)

(27)

(13)

(35)

Melena 6

17

18

6

(25)

(312)

Gingival bleeding,

hematoma, fresh blood in

feces, pulmonary and

vaginal hemorrage

2 63 (35)

Neurological signs 7 28 (13)

Left cerebral dysfunction 6 18 (27)

(Continued)
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TABLE 2 | Continued

Clinical sign Frequency

(%)

Number of dogs

included in the

study

References

Cervical pain 6

2

18

63

(27)

(35)

Proprioceptifon deficit 7 17 (29)

Seizures 15

7

2

40

17

63

(34)

(29)

(35)

Ataxia 67

7

6

15

(312)

(60)

Skin disease 10

12

61

33

(34)

(313)

in CGA (35), no studies investigating this association have
confirmed the infection by PCR. Moreover, two studies failed
to demonstrate an association between A. phagocytophilum
infection and neurological signs (317, 318). Consequently, A.
phagocytophilum seems to be a rare cause of neurological disease
in dogs and other potential etiologies or concurrent diseases
should be ruled out before a final diagnosis of CGA. Anaplasma
phagocytophilum infection is also suspected to induce skin lesions
in dogs (34, 313). In one study that investigated skin-associated
lesions in seropositive dogs, four of 12 showed positive DNA
amplification from skin lesions. The most frequent lesions
identified in these dogs included erythema, papules and plaques
that resolved after doxycycline therapy (239). Cutaneous lesions
were also present in seropositive but PCR-negative dogs (313). In
a previous case report, one dog positive to A. phagocytophilum
by serologic tests, PCR from blood and post-mortem spleen
samples, was presented first for skin problem including pruritus,
hair loss and seborrhea in association with regenerative anemia,
leukocytosis and thrombocytopenia. Ehrlichia canis and E.
chaffeensis exposure were serologically excluded (256). The lack
of typical clinical signs and thrombocytopenia in dogs with
PCR-positive skin lesions could be suggestive of a persistent
infection as reported in studies in sheep, suggesting that skin
could be a site of persistence of A. phagocytophilum (313).

Evolution of the Disease
CGA is currently considered to be an acute disease. Clinical signs
usually develop during the bacteremic phase (24, 25, 29, 30)
and the duration of the disease is variable. In a retrospective
study, the duration of illness ranged from 1 to 14 days with a
median duration of 3 days (27). Two studies demonstrated that
the majority of dogs were sick for <7 days prior to diagnosis
(26, 35). However, the duration of clinical signs ranged from 1
day to 2 months (26). In another report, the duration of illness
ranged from 1 to 8 days, but one dog remained infected for a
month before the diagnosis was established (30).

Chronic or persistent A. phagocytophilum infection has
not been demonstrated in naturally infected dogs and is still
controversial (2, 24, 53, 319). In contrast, experimental studies
showed a persistent infection in dogs for more than several

months to almost a year (18, 284, 320–324). These studies
support the findings of another report that demonstrated that
dogs could have long-lasting infections with acute flare-up (30)
whereas another one failed to demonstrate a chronic infection
in experimentally infected dogs (324). The results of the latter
study differ from those of three other reports in which repeated
amplification ofA. phagocytophilumDNA occurred in some dogs
probably because of the differences in the way of inoculation.
Indeed, in contrast to the other experimental studies in which the
bacterium had been inoculated intravenously to the dogs (18, 284,
320–322), in Contreras et al. (324), dogs were infected through
tick bites after Ixodes spp. infestation. A 1 year persistence of
A. phagocytophilum infection has been described in a naturally
infected Rhodesian ridgeback dog (53). In addition, some authors
consider the possibility of a chronic phase characterized by
more localized clinicopathological signs (such as lameness and
proteinuria) that could be associated with immune-mediated
mechanisms secondary to persistent antigen stimulation (34).
Studies on E. canis infection in dogs showed that the spleen is
probably the organ that harbors bacteria for the longest period
and is the best source for the diagnosis of carrier state by PCR
(325). Similarly, the spleen remained PCR-positive in monkeys
and mice experimentally infected with human strains of A.
phagocytophilum (299, 326).

The prognosis of the disease in dogs is usually favorable
with a rapid remission after doxycycline therapy (24, 26–28,
35, 324). However, some fatal cases have been reported (33,
35, 256, 257). Among the 12 fatality cases reported, five died
of immune-mediated hemolytic anemia (IMHA) complicated
by disseminated intravascular coagulation (DIC) (33, 256, 257).
Two of these dogs were seropositive for Neorickettsia risticii, R.
rickettsii, and B. burgdorferi (33). One was euthanized after 14
days because of IMHA and another one died because of epileptic
seizures after 3 days (35).

Coinfections
Coinfection with multiple VBPs in dogs appears more frequent
in endemic areas (9, 13). In a large retrospective serologic study
carried out in North America and the Caribbean, exposure
to up to five vector-borne pathogens (VBPs) was detected in
the same dogs (3). In a kennel of North Carolina, 40% of
dogs had serologic evidence of exposure at the same time
with Anaplasma spp., Babesia canis, Babesia vinsonii, E. canis,
or R. rickettsii (236). In another study, 16.5% of USA dog
samples were found to be seropositive for more than one
pathogen (119). Two serologic surveys showed that 1.32 and
14.3% of dogs had antibodies against two pathogens in Italy
and Morocco, respectively (178, 226). In Tunisia, 22.4% of
dogs were seropositive for E. canis and A. phagocytophilum
(224). In Algeria, coinfections by A. phagocytophilum and 1–3
other pathogens were higher in stray than client-owned dogs
(225). Two studies investigated the association between co-
infections with several VBPs and the occurrence on clinical
canine leishmaniosis (327, 328) and one reported a statistical
association between dogs with clinical leishmaniosis stages III
and IV and the seroreactivity to A. phagocytophilum in Spain
(327). Coinfection with B. burgdorferi and A. phagocytophilum
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is frequently described in dogs, probably because pathogens are
transmitted by Ixodid ticks and maintained in sylvatic cycles
with the same rodent reservoir (13, 33, 225, 329–331). In the
USA, almost 22% of A. phagocytophilum-seropositive samples
were also seropositive for B. burgdorferi (240). The prevalence
of seropositive dogs to both pathogens was as high as 45%
(12, 33). The ability of co-infected I. scapularis ticks to transmit
B. burgdorferi and A. phagocytophilum was lower compared with
transmission of either agent by singly infected ticks (331).

Experimental studies in mouse and human case reports
of A. phagocytophilum and B. burgdorferi coinfection have
described an enhanced severity and complexity of clinical signs
along with an increased likelihood of disease compared with
single infections (13, 329, 330, 332). Similarly, dogs seropositive
for both agents (43%) were more likely to display clinical
signs than those seroreactive to either A. phagocytophilum
(25%) or B. burgdorferi (9%) (13). Experimental studies in
rodents have demonstrated that coinfection modulates the host
immune response to A. phagocytophilum and the production
of interleukins (ILs), decreases IFN-γ levels and the number
of CD8+ T cells which leads to more severe clinical signs,
increases pathogen burdens in blood and tissues, and induces
more persistent infections (13, 329, 330, 333). Furthermore,
the interaction of both pathogens at the blood-endothelial
cell interface seems to be a critical point in pathogenesis
(332). Two in vitro studies on human blood-brain barrier
models showed that A. phagocytophilum-infected neutrophils
enhanced B. burgdorferi migration across both systemic and
brain microvascular endothelial cells. Several mechanisms are
thought to be involved including impaired phagocytic neutrophil
function caused by A. phagocytophilum, increased production
of vasoactive and pro-inflammatory molecules (IL-6, IL-8, IL-
10, tumor necrosis factor alpha, and macrophage inflammatory
protein 1α) and the release of matrix metalloproteinases (329,
332). These factors lead to enhanced vascular permeability and
inflammatory response in tissues and promote B. burgdorferi
migration, which results in worsened clinical manifestations
(329, 330, 332, 333).

LABORATORY ABNORMALITIES

Hematological Modifications
Hematological modifications associated with CGA include
thrombocytopenia, anemia, leukopenia, and lymphopenia,
although variable white blood cells count (WBC) modifications
have been described (Table 3) (13, 24–27, 29–33, 35, 45). In
experimentally infected dogs, hematological changes usually
occurred during the acute stage of infection and normalized a few
days after morulae disappeared from blood (302, 314). Suggested
mechanisms of cytopenia include cytokine myelosuppression,
autoantibodies formation, infection of hematopoietic precursors,
and blood cell consumption (especially platelets) (25, 304, 334).
Bone marrow aspirates of infected dogs were hyper- or
normocellular, with normal, increased, or decreased iron storage,
a slight increase in immature erythroid cells, and megakaryocyte
and myeloid hyperplasia associated with relative shift toward

immature myeloid cells, suggesting impaired myelopoiesis
(312, 314).

Thrombocytopenia is the most common disorder associated
with CGA. It has been described in 16.7–95% of natural
(13, 24–26, 29, 30, 35) and 100% of experimental infections
(302, 314). According to some authors, thrombocytopenia
reflects an ongoing immunological response in dogs even when
associated with low antibody titers against A. phagocytophilum
(34). A recent study showed a significant association between
thrombocytopenia and high concentrations of circulating
immune complexes (CIC), low albumin to globulin (A/G) ratios
and an acute phase protein concentration. The importance of
thrombocytopenia was emphasized as an indicator of acute
anaplasmosis, regardless of antibody titer (28). Therefore,
thrombocytopenia is considered the most relevant abnormality
in the diagnosis of CGA after morulae detection (13, 24–26, 29,
30). The severity of thrombocytopenia varies from mild to severe
and the platelet count has been reported to range from 5,000 to
164,000 cells/µl (24, 25, 29, 30, 35, 314). However, in a report,
none of the 12 dogs seropositive to A. phagocytophilum had
platelet counts lower than 105,000 cells/ml and dogs that were
also seropositive to B. burgdorferi had a lower median platelet
count of 51,000 cells/µl (33). In another study, five of the six
CGA cases with significant thrombocytopenia had concurrent
diseases (lymphoma and systemic lupus erythematosus) or
were serologically positive to B. burgdorferi or E. canis (29).
A prospective study aiming to investigate the presence of
bacteria belonging to the genera Anaplasma and Ehrlichia
in 159 blood samples from thrombocytopenic dogs, detected
only two A. phagocytophilum-PCR positive dogs (335). As it
has been described for a wide range of Ehrlichia species,
CGA-associated thrombocytopenia may be related to platelet
consumption due to DIC, immunological destruction, spleen
sequestration or production of inhibitory factors (336–338). The
organism seems to be able to enter megakaryocytes lineage but
without impairment of their ability to produce platelets (339).
The mechanism inducing thrombocytopenia seems to be more
associated with an inflammatory process rather than with the
direct action of A. phagocytophilum (34). Destruction of platelets
has been suggested as a probable mechanism because of the
increased number of both mature and immature megakaryocytes
in the bone marrow (302). On the other hand, anti-platelet
antibodies have been detected in both human and canine cases,
with up to 60 and 80% of patients with CGA and HGA
displaying anti-platelet antibodies, respectively (25, 35, 257, 336–
338). However, thrombocytopenia usually occurs during the
early stages of infection, before antibody detection and has
also been described in severely immunocompromised mice due
to B or T cell suppression, suggesting that mechanisms other
than decreased hematopoietic production or immune-mediated
destruction are involved. Increased platelet consumption is
also suspected to play an important role (340, 341). In vitro,
increased production of monocyte tissue pro-coagulant activity
in peripheral blood mononuclear cells has been observed,
supporting the platelet consumption hypothesis (27, 340).

Anemia is an inconstant hematological finding (34) described
in 3–82% of dogs with clinical signs compatible with CGA either
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TABLE 3 | Hematological abormalities associated with canine granulocytic

anaplasmosis after natural infection and corresponding frequency recorded in

several studies.

Hematological

abnormalities

Frequency (%) Number of dogs

included in the

study

References

Thrombocytes count modifications

Thrombocytopenia 95

71

69

89

56

94

65

87

86

86

57

17

86

22

–

49

18

25

18

60

8

7

7

28

6

63

(26)

(32)

(31)

(25)

(33)

(27)

(45)

(24)

(29)

(30)

(13)

(312)

(35)

Erythrocytes modifications

Anemia 47

17

57

82

24

42

3

24

70

34

–

49

11

25

60

15

14

63

(26)

(32)

(31)

(25)

(33)

(45)

(29)

(30)

(35)

Non regenerative

anemia

67

37

50

18

8

6

(27)

(25)

(312)

Regenerative anemia 27 11 (25)

IMHA 12

24

25

17

(33)

(35)

Leukocytes modifications

Leukopenia 9

9

18

55

10

62

7

14

31

–

49

18

60

8

14

63

(26)

(32)

(31)

(27)

(45)

(24)

(30)

(35)

Leukocytosis 19

21

61

28

7

7

33

27

31

–

49

25

15

14

6

63

(26)

(32)

(31)

(33)

(29)

(30)

(312)

(35)

Lymphopenia 65

12

39

33

100

67

44

31

25

18

60

8

15

63

(26)

(33)

(27)

(45)

(24)

(29)

(35)

Eosinopenia 10

50

9

49

18

63

(31)

(27)

(35)

(Continued)

TABLE 3 | Continued

Hematological

abnormalities

Frequency (%) Number of dogs

included in the

study

References

Neutropenia 37

7

8

15

(24)

(29)

Neutrophilia 19

33

51

31

6

63

(26)

(312)

(35)

Left shift 28

20

33

26

15

6

(33)

(29)

(312)

Monocytosis 45

6

33

43

49

18

60

63

(31)

(27)

(45)

(35)

Morulae

Morulae detection 36

56

(29)

(24)

4

56

94

49

18

18

(31)

(25)

(27)

Percentage of

neutrophils with

morulae

10–24

7–24

9–32

1–5

0–11

–

5

8

6

35

(29)

(30)

(24)

(312)

(316)

seropositive (33), PCR-positive (25, 27, 35, 45), displaying A.
phagocytophilum-like morulae on fresh blood smear examination
(24, 26) or being positive to two (29, 30) or three (31)
aforementioned diagnostic methods (Table 3). In a retrospective
study, no dogs were anemic, even during the bacteremic phase,
but the mean values of hematocrit, hemoglobin concentration
and red blood cell counts were significantly lower than in the
control group (34). In contrast, three different studies described
63, 67, and 70% of anemic dogs (27, 35, 224). CGA-associated
anemia is usually mild to moderate non-regenerative normocytic
normochromic resembling anemia of inflammation (24, 27, 29,
31, 302, 312, 314). In nine dogs experimentally infected with A.
phagocytophilum that developedmild normocytic normochromic
anemia, decreased serum iron and total iron-binding capacity
were recorded during bacteremia, but levels returned to reference
ranges 1 week after the disappearance of morulae (302). In a
report, most dogs had mild to moderate anemia with hematocrits
ranging from 19 to 39%, but two had severe anemia with
hematocrit levels <20% and three had signs of regeneration. Five
were suspected to have hemolytic anemia based on increased
serum levels of bilirubin but all had negative Coombs tests
(25). Regenerative anemia has been less frequently reported,
and severe IMHA is an unusual disorder associated with CGA
(25, 33, 257, 258). One retrospective duty aiming to investigate
infectious causes of lethal immune-mediated anemia in Croatian
dogs, only two dogs were found positive to A. phagocytophilum
DNA and one of these two dogs was also co-infected with B. canis
(342). Six cases of IMHA in dogs with CGA have been reported
in the UK, the USA and Denmark (33, 35, 257, 315). Authors
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from Germany described the possible occurrence of IMHA in
a small number of dogs (25). Others from Belgium described
IMHA in a dog with a positive titer to A. phagocytophilum and
without other concomitant diseases (262). A previous case report
described a dog withA. phagocytophilum infection (confirmed by
positive PCR from blood and post-mortem spleen samples) with
regenerative anemia, severe bilirubinuria, and positive test for
osmotic resistance of red blood cells. This dog was serologically
negative for babesiosis, leptospirosis, E. canis and E. chaffeensis
infections (256). More recently, four dogs had a positive Coombs
test among 17 ones that underwent this analysis in a case series
on CGA (35). Only one case series has evaluated the prevalence of
IMHA associated with CGA. In this study, three dogs had IMHA
based on spherocytes in blood smears and/or positive Coombs
test, without evidence of abdominal or thoracic neoplasia.
However, two dogs had positive antibodies for at least one other
TBP includingNeorickettsia risticii (formerly Ehrlichia risticii), B.
burgdorferi, and Rickettsia rickettsii. The authors emphasized that
both R. rickettsii and B. burgdorferi are not commonly associated
with IMHA and N. risticii is not yet associated with clinical
disease in dogs as suggested by experimental studies (33). In
addition, anti-erythrocyte antibodies have been detected in three
dogs with CGA in the USA (312). Even if CGA has not yet been
proven to be a common cause of IMHA, A. phagocytophilum
should be included in the differential diagnosis, especially in
endemic area (33).

The most diagnostically relevant hematological abnormality
in CGA is the identification of A. phagocytophilum inclusions
within neutrophils during blood smear examinations. Morulae
appear classically as basophilic inclusions detectable by light
microscopy of peripheral blood smears (41, 234). They are
usually present transiently during the bacteremic phase (4–14
days after inoculation) and persist for 4–8 days in experimentally
infected dogs (302, 314). Morulae can also be identified from
cytocentrifuged synovial fluid, bone marrow aspirates, and they
were also present in the abdominal fluid of an unusual CGA
case and in the tracheal wash from a dog with respiratory signs
(40, 238, 247, 302, 312, 315). The proportion of neutrophils
containing morulae in blood smears varies from <1 to 34%
(24, 29, 30, 312, 314, 316). In an experimentally study, the
most severely affected dogs were those with higher percentage of
neutrophils containing morulae and the lowest proportion was
recorded in non-febrile dogs (314). In endemic areas, 38% of
dogs displaying clinical signs compatible with CGA had morulae
within neutrophils (13). Three studies reported that 56%, 94%
(25, 27), and 88 to 93% (33) of dogs presented morulae while
other reports failed to identify these inclusions (246, 257). It is
important to mention that A. phagocytophilum morulae cannot
be distinguished from those of E. ewingii, which can lead to
misdiagnosis in the regions where both pathogens are present.
Therefore, other methods, such as PCR are needed to confirm
the diagnosis (2, 24, 302).

Experimentally infected dogs developed moderate leucopenia
(314), but WBC count modifications in naturally infected dogs
are considered non-specific and variable, and both decreased
and increased WBC counts have been reported (24–27, 29–
35, 45). Therefore, the use of the WBC count as a marker of

the course of the disease is controversial (34). Lymphopenia
is the most frequently reported WBC count abnormality in
CGA (24–26, 29, 302, 314). Other reported modifications
include leukocytosis, leukopenia, lymphocytosis, eosinopenia,
monocytosis, monocytopenia and mild to moderate neutropenia
or neutrophilia (24–27, 29–31, 35, 45, 53, 302, 312, 314).
Left shift of neutrophils and toxic changes have also been
reported to occur with A. phagocytophilum infection in dogs
(26, 29, 33, 252, 257, 312).

Serum Biochemistry Profile Modification
Serum biochemistry profile modifications documented in CGA
include increased liver enzyme activity, hyperbilirubinemia,
hypophosphatemia, hyperproteinemia, hyperglobulinemia, and
hypoalbuminemia (Table 4) (24–27, 29–31, 33, 35, 45, 314,
316). A moderate increase in alkaline phosphatase (ALP) was
reported in 7–100% of CGA cases and mild to moderate
hypoalbuminemia was present in 17–66% (25, 26, 29, 33).
In a retrospective study, 30% of dogs displayed a slightly
increased alanine aminotransferase (ALT) activity but concurrent
diseases had not been ruled out (26). In another report, the
most frequent findings in dogs with CGA were increased in
liver enzymes and hyperbilirubinemia (35). According to some
authors, hypoalbuminemia and hyperglobulinemia might be due
to a decreased production of albumin in the liver associated
with a rise in α- and β-globulin production (304). In a study
investigating serum protein profiles of seropositive and PCR-
positive dogs, the major modification was a low A/G ratio
(84.4%), mostly in groups with antibody titers higher than
1:1,024. Hyperglobulinemia was due to an increase in the acute
phase proteins (α2-, β1-, and β-2 globulin). In the same study,
62 and 71.8% of dogs in the group with lower A/G ratios
had thrombocytopenia and clinical signs compatible with CGA,
respectively, suggesting an acute infectious process. However,
other diseases had not been excluded; hence dysproteinemia
could possibly be the result of concurrent diseases (28). Others
reported hypergammaglobulinemia as a prominent modification
associated with CGA but without exclusion of concurrent
diseases (316). Decreased serum levels of urea and hypokalemia
have been recorded in 27% of dogs (25) and 27–37% of dogs
were reported to have hyperbilirubinemia (25, 26, 35). An
increase in serum amylase activity was described in 50% of
CGA cases (29). Two case reports described dogs diagnosed
with CGA with suspected pancreatitis on the basis of increased
serum level of amylase and lipase and clinical signs suggesting
pancreatitis (abdominal pain in the pancreatic region of one dog
and abdominal ultrasoundmodifications in the pancreatic region
of the other dog) (246, 252). In another previous report, two of
seven dogs had increased serum lipase concentrations (24).

Prolonged prothrombin time (PT) and activated partial
thromboplastin time (aPTT), along with increased fibrin-
degradation product concentration and fibrinogen concentration
have been reported in some CGA cases (Table 4) (25, 35, 252,
257, 314). DIC was suspected or diagnosed in four dogs; two of
which had IMHA (25, 33, 257). Elevated aPTT was also described
in one dog with SIRS secondary to A. phagocytophilum infection
(26). In a recent study on portal vein thrombosis, four of 29
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TABLE 4 | Serum biochemistry abormalities associated with canine granulocytic

anaplasmosis after natural infection and corresponding frequencies recorded in

several studies.

Serum biochemistry

abnormalities

Frequency (%) Number of dogs References

Hyperproteinemia 12

43

49

62

(31)

(35)

Hypoproteinemia 10

20

2

49

11

62

(31)

(29)

(35)

Hypoalbuminemia 44

29

17

28

44

55

50

62

27

49

23

60

9

18

6

61

(26)

(31)

(33)

(45)

(29)

(25)

(312)

(35)

Hyperglobulinemia 50

38

6

61

(312)

(35)

Serum protein

electrophoresis A/G

ratio<0.8

21 145 (28)

CIC 80 204 (28)

Hypophosphatemia 62 8 (24)

Increased ALP 52

59

26

43

75

100

7

67

27

49

23

60

8

9

14

61

(26)

(31)

(33)

(45)

(24)

(29)

(30)

(35)

Increased ALT 30

35

18

27

49

62

(26)

(31)

(35)

Increased bilirubin 37

31

34

27

49

61

(26)

(31)

(35)

Azotemia 27

3

49

62

(31)

(35)

Increased aPTT 60

55

10

29

(25)

(35)

Increased PT 30

34

10

29

(25)

(35)

A/G ratio, albumin to globulins ratio; ALP, alkaline phosphatase; ALT, alanine

aminotransferase; apt, activated partial thromboplastin time; CIC, circulating

immune complexes.

dogs had infectious diseases and one had A. phagocytophilum
infection (343).

Urinalysis Modifications
Acute renal failure (ARF) is a complication described in
some HGA cases (344, 345). In a recent study, 30.6% of
human patients with confirmed A. phagocytophilum infection by
PCR had abnormalities on urinalysis including hemoglobinuria
or myoglobinuria (not distinguished by further analysis).
Hemoglobinuria/myoglobinuria could be the precursor of ARF
described in severe human cases (346). Experimental studies

TABLE 5 | Urinary abormalities associated with granulocytic anaplasmosis after

natural infection and corresponding frequency recorded in several studies.

Urinary abnormalities Frequency (%) Number of dogs References

Hyposthenuria 12 49 (26)

Proteinuria 15

87

27

38

50

58

40

13

8

23

8

6

58

5

(26)

(25)

(33)

(29)

(30)

(28)

(312)

Glucosuria 12 8 (25)

Bilirubinuria 50

25

50

8

8

5

(25)

(29)

(312)

Hematuria 87.5

40

8

5

(25)

(312)

Hemoglobinuria 60 6 (31)

Urinary sediment

Casts 50 8 (25)

Epithelial cells 75 8 (25)

Protein electrophoresis (28)

LMWP 42 36

MMWP and HMWP 30 36

LMWP, low molecular weight proteins (<66 kDa); MNWP, middle molecular weight

proteins (66–76 kDa); HMWP, high molecular weight proteins (>76 kDa).

revealed evidence of A. phagocytophilum DNA in the kidneys
of three persistently infected lambs and lesions of vasculitis and
thrombosis in the kidney of a horse (347, 348). Similarly, one
study amplified A. phagocytophilum DNA in the kidney of one
dog after necropsy (342). CGA is suspected to induce immune-
mediated glomerulonephritis (IMGN) likely by vasculitis (349).
In contrast to blood modification, urinary abnormalities have
not been fully assessed in dogs and only a few reports have
described abnormalities in urinalysis (Table 5) (25, 26, 28–30,
33, 312). One such study described the presence of mild to
moderate proteinuria, glucosuria, bilirubinuria, hematuria, and
epithelial cells in urine sediments. In the same report, only
three of eight dogs in which urinalysis was performed were also
measured for urine protein to creatinine (UPC) ratios, and one
displayed a mild increase (0.88) (25). Another report showed a
significant difference in proteinuria between A. phagocytophilum
seropositive and seronegative dogs (34). In a retrospective study,
two dogs displayed proteinuria with UPC ratios of 1.5 and 2.2
(26) and 17% of dogs had proteinuria in another report. In
this study the only dog with a UPC ratio higher than one had
antibodies against both A. phagocytophilum and B. burgdorferi
(33). More recently, 3% of CGA cases included retrospectively
displayed signs of azotemia (35), however other concurrent
diseases causing azotemia have not been ruled out. In most
studies on CGA, proteinuric dogs were identified mainly on
the basis of dipstick and only a few of them underwent UPC
measurement. Moreover, urinary tract infection (UTI) was not
excluded in all dogs. However, another study demonstrated that
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38% of dogs had proteinuria without signs of UTI, which could
be compatible with kidney injury (29). Proteinuria due to middle
and high molecular weight proteins was found exclusively in
30.5% of A. phagocytophilum-seropositive dogs. The authors
indicated that proteinuria might be the result of chronic antigenic
stimulation and suggested that persistent infection can lead to the
development of IMGN (34). In one case of CGA, a persistent
proteinuria after 28 days of doxycycline therapy was reported.
The dog remained asymptomatic during a 305-day follow up;
however, mild proteinuria was still present even with a renin-
angiotensin-aldosterone system inhibitor (261). More recently,
a case report described a dog with IMGN complicated with
systemic hypertension and chronic kidney disease without any
identified etiology except an active A. phagocytophilum infection
on the basis of a very high antibody (1:20,480) titer at first
consultation and more than a 4-fold decrease in antibody titer
several weeks after (262). Finally, the consensus statement of the
American College of Veterinary Internal Medicine (ACVIM) for
dogs with suspected glomerular disease recommends serologic
screening for anaplasmosis of patients with renal proteinuria
in addition to other infectious diseases known to induce
proteinuria (350).

CONCLUSION AND FUTURES
PERSPECTIVES

Understanding granulocytic anaplasmosis is important due to
its zoonotic aspect, potential severe outcomes in both dogs
and humans, and the possibility of using epidemiological data
in canine species as a good estimation of risk for human
exposure. The aims of this review were to summarize the
wide epidemiological data published on A. phagocytophilum in

canine species and to describe the clinicopathological aspects
of CGA that are available in the few case series and reports.
In this manuscript, the authors wanted to gather together
all data on A. phagocytophilum in dogs that can be valuable
for researchers and to highlight the fields where important
information is still missing and toward which future research
should be focused. Indeed, information regarding the prevalence
of A. phagocytophilum in some parts of the world, the potential
role of dogs as competent reservoir hosts, the possibility of
tick species other than Ixodes spp. acting as vectors of A.
phagocytophilum and the implication of the genetic variability
in the pathogenesis of the disease with some strains being
potentially more virulent for humans is still incomplete or
lacking. The pathogenesis of CGA is not fully elucidated too.
Finally, some publications on CGA discussed the possibility of
a chronic evolution and the association of this disease with
serious clinicopathological manifestations with a crucial impact
on the prognosis and management, such as immune-mediated
hemolytic anemia, glomerulonephritis, and neurological signs
that are still incomplete and thus need further investigations.
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